mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-22 05:57:48 +00:00
6f5514b6e2
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
2563 lines
95 KiB
C
2563 lines
95 KiB
C
#pragma once
|
|
|
|
//
|
|
// GGML Tensor Library
|
|
//
|
|
// This documentation is still a work in progress.
|
|
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
//
|
|
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
//
|
|
// ## Overview
|
|
//
|
|
// This library implements:
|
|
//
|
|
// - a set of tensor operations
|
|
// - automatic differentiation
|
|
// - basic optimization algorithms
|
|
//
|
|
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
// but is not limited to, the following:
|
|
//
|
|
// - linear regression
|
|
// - support vector machines
|
|
// - neural networks
|
|
//
|
|
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
// using one of the available optimization algorithms.
|
|
//
|
|
// For example, here we define the function: f(x) = a*x^2 + b
|
|
//
|
|
// {
|
|
// struct ggml_init_params params = {
|
|
// .mem_size = 16*1024*1024,
|
|
// .mem_buffer = NULL,
|
|
// };
|
|
//
|
|
// // memory allocation happens here
|
|
// struct ggml_context * ctx = ggml_init(params);
|
|
//
|
|
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
//
|
|
// ggml_set_param(ctx, x); // x is an input variable
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
//
|
|
// {
|
|
// ...
|
|
//
|
|
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
|
// ggml_build_forward_expand(gf, f);
|
|
//
|
|
// // set the input variable and parameter values
|
|
// ggml_set_f32(x, 2.0f);
|
|
// ggml_set_f32(a, 3.0f);
|
|
// ggml_set_f32(b, 4.0f);
|
|
//
|
|
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
|
//
|
|
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// The actual computation is performed in the ggml_graph_compute() function.
|
|
//
|
|
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
// actually needed.
|
|
//
|
|
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
// differentiation and optimization algorithms.
|
|
//
|
|
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
// the user can avoid the memory allocation overhead at runtime.
|
|
//
|
|
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
//
|
|
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
// yet, but a few examples are demonstrated in the following operations:
|
|
//
|
|
// - ggml_permute()
|
|
// - ggml_conv_1d_1s()
|
|
// - ggml_conv_1d_2s()
|
|
//
|
|
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
// calculus class, or watch the following video:
|
|
//
|
|
// What is Automatic Differentiation?
|
|
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
//
|
|
//
|
|
// ## Tensor data (struct ggml_tensor)
|
|
//
|
|
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
//
|
|
// {
|
|
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
//
|
|
// assert(c->src[0] == a);
|
|
// assert(c->src[1] == b);
|
|
// }
|
|
//
|
|
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
// contiguous in memory.
|
|
//
|
|
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
//
|
|
// {
|
|
// const int nx = 2;
|
|
// const int ny = 3;
|
|
//
|
|
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
|
|
//
|
|
// for (int y = 0; y < ny; y++) {
|
|
// for (int x = 0; x < nx; x++) {
|
|
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
|
// }
|
|
// }
|
|
//
|
|
// ...
|
|
// }
|
|
//
|
|
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
//
|
|
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Multi-threading
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Overview of ggml.c
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## SIMD optimizations
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
// ## Debugging ggml
|
|
//
|
|
// TODO
|
|
//
|
|
//
|
|
|
|
#ifdef GGML_SHARED
|
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
# ifdef GGML_BUILD
|
|
# define GGML_API __declspec(dllexport)
|
|
# else
|
|
# define GGML_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define GGML_API __attribute__ ((visibility ("default")))
|
|
# endif
|
|
#else
|
|
# define GGML_API
|
|
#endif
|
|
|
|
#ifdef GGML_MULTIPLATFORM
|
|
# if defined(_WIN32)
|
|
# define GGML_CALL
|
|
# else
|
|
# define GGML_CALL __attribute__((__ms_abi__))
|
|
# endif
|
|
#else
|
|
# define GGML_CALL
|
|
#endif
|
|
|
|
// TODO: support for clang
|
|
#ifdef __GNUC__
|
|
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
|
#elif defined(_MSC_VER)
|
|
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
|
#else
|
|
# define GGML_DEPRECATED(func, hint) func
|
|
#endif
|
|
|
|
#ifndef __GNUC__
|
|
# define GGML_ATTRIBUTE_FORMAT(...)
|
|
#elif defined(__MINGW32__)
|
|
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
|
#else
|
|
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
|
#endif
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
|
|
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
|
#define GGML_FILE_VERSION 2
|
|
|
|
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
|
|
|
#define GGML_MAX_DIMS 4
|
|
#define GGML_MAX_PARAMS 2048
|
|
#define GGML_MAX_CONTEXTS 64
|
|
#define GGML_MAX_SRC 10
|
|
#ifndef GGML_MAX_NAME
|
|
#define GGML_MAX_NAME 64
|
|
#define GGML_MAX_N_THREADS 512
|
|
|
|
#endif
|
|
#define GGML_MAX_OP_PARAMS 64
|
|
#define GGML_DEFAULT_N_THREADS 4
|
|
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
|
#if UINTPTR_MAX == 0xFFFFFFFF
|
|
#define GGML_MEM_ALIGN 4
|
|
#else
|
|
#define GGML_MEM_ALIGN 16
|
|
#endif
|
|
|
|
#define GGML_EXIT_SUCCESS 0
|
|
#define GGML_EXIT_ABORTED 1
|
|
|
|
#define GGML_ROPE_TYPE_NEOX 2
|
|
|
|
#define GGUF_MAGIC "GGUF"
|
|
|
|
#define GGUF_VERSION 3
|
|
|
|
#define GGUF_DEFAULT_ALIGNMENT 32
|
|
|
|
#define GGML_UNUSED(x) (void)(x)
|
|
|
|
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
|
|
|
#ifndef NDEBUG
|
|
#define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
|
#elif defined(__GNUC__)
|
|
#define GGML_UNREACHABLE() __builtin_unreachable()
|
|
#elif defined(_MSC_VER)
|
|
#define GGML_UNREACHABLE() __assume(0)
|
|
#else
|
|
#define GGML_UNREACHABLE() ((void) 0)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
#define GGML_NORETURN [[noreturn]]
|
|
#elif defined(_MSC_VER)
|
|
#define GGML_NORETURN __declspec(noreturn)
|
|
#else
|
|
#define GGML_NORETURN _Noreturn
|
|
#endif
|
|
|
|
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
|
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
|
|
|
|
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
|
// main purpose is to reduce code duplication and improve readability.
|
|
//
|
|
// example:
|
|
//
|
|
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
|
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
|
//
|
|
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
|
const type prefix##0 = (pointer)->array[0]; \
|
|
GGML_UNUSED(prefix##0);
|
|
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
|
const type prefix##1 = (pointer)->array[1]; \
|
|
GGML_UNUSED(prefix##1);
|
|
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
|
const type prefix##2 = (pointer)->array[2]; \
|
|
GGML_UNUSED(prefix##2);
|
|
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
|
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
|
const type prefix##3 = (pointer)->array[3]; \
|
|
GGML_UNUSED(prefix##3);
|
|
|
|
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
|
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
|
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
|
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
|
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
|
|
|
enum ggml_status {
|
|
GGML_STATUS_ALLOC_FAILED = -2,
|
|
GGML_STATUS_FAILED = -1,
|
|
GGML_STATUS_SUCCESS = 0,
|
|
GGML_STATUS_ABORTED = 1,
|
|
};
|
|
|
|
// get ggml_status name string
|
|
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
|
|
|
|
// ieee 754-2008 half-precision float16
|
|
// todo: make this not an integral type
|
|
typedef uint16_t ggml_fp16_t;
|
|
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
|
|
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
|
|
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
|
|
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
|
|
|
|
// google brain half-precision bfloat16
|
|
typedef struct { uint16_t bits; } ggml_bf16_t;
|
|
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
|
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
|
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
|
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
|
|
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
|
|
|
struct ggml_object;
|
|
struct ggml_context;
|
|
|
|
// NOTE: always add types at the end of the enum to keep backward compatibility
|
|
enum ggml_type {
|
|
GGML_TYPE_F32 = 0,
|
|
GGML_TYPE_F16 = 1,
|
|
GGML_TYPE_Q4_0 = 2,
|
|
GGML_TYPE_Q4_1 = 3,
|
|
// GGML_TYPE_Q4_2 = 4, support has been removed
|
|
// GGML_TYPE_Q4_3 = 5, support has been removed
|
|
GGML_TYPE_Q5_0 = 6,
|
|
GGML_TYPE_Q5_1 = 7,
|
|
GGML_TYPE_Q8_0 = 8,
|
|
GGML_TYPE_Q8_1 = 9,
|
|
GGML_TYPE_Q2_K = 10,
|
|
GGML_TYPE_Q3_K = 11,
|
|
GGML_TYPE_Q4_K = 12,
|
|
GGML_TYPE_Q5_K = 13,
|
|
GGML_TYPE_Q6_K = 14,
|
|
GGML_TYPE_Q8_K = 15,
|
|
GGML_TYPE_IQ2_XXS = 16,
|
|
GGML_TYPE_IQ2_XS = 17,
|
|
GGML_TYPE_IQ3_XXS = 18,
|
|
GGML_TYPE_IQ1_S = 19,
|
|
GGML_TYPE_IQ4_NL = 20,
|
|
GGML_TYPE_IQ3_S = 21,
|
|
GGML_TYPE_IQ2_S = 22,
|
|
GGML_TYPE_IQ4_XS = 23,
|
|
GGML_TYPE_I8 = 24,
|
|
GGML_TYPE_I16 = 25,
|
|
GGML_TYPE_I32 = 26,
|
|
GGML_TYPE_I64 = 27,
|
|
GGML_TYPE_F64 = 28,
|
|
GGML_TYPE_IQ1_M = 29,
|
|
GGML_TYPE_BF16 = 30,
|
|
GGML_TYPE_Q4_0_4_4 = 31,
|
|
GGML_TYPE_Q4_0_4_8 = 32,
|
|
GGML_TYPE_Q4_0_8_8 = 33,
|
|
GGML_TYPE_TQ1_0 = 34,
|
|
GGML_TYPE_TQ2_0 = 35,
|
|
GGML_TYPE_COUNT,
|
|
};
|
|
|
|
// precision
|
|
enum ggml_prec {
|
|
GGML_PREC_DEFAULT,
|
|
GGML_PREC_F32,
|
|
};
|
|
|
|
enum ggml_backend_type {
|
|
GGML_BACKEND_TYPE_CPU = 0,
|
|
GGML_BACKEND_TYPE_GPU = 10,
|
|
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
|
};
|
|
|
|
// model file types
|
|
enum ggml_ftype {
|
|
GGML_FTYPE_UNKNOWN = -1,
|
|
GGML_FTYPE_ALL_F32 = 0,
|
|
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
|
|
GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
|
|
};
|
|
|
|
// available tensor operations:
|
|
enum ggml_op {
|
|
GGML_OP_NONE = 0,
|
|
|
|
GGML_OP_DUP,
|
|
GGML_OP_ADD,
|
|
GGML_OP_ADD1,
|
|
GGML_OP_ACC,
|
|
GGML_OP_SUB,
|
|
GGML_OP_MUL,
|
|
GGML_OP_DIV,
|
|
GGML_OP_SQR,
|
|
GGML_OP_SQRT,
|
|
GGML_OP_LOG,
|
|
GGML_OP_SIN,
|
|
GGML_OP_COS,
|
|
GGML_OP_SUM,
|
|
GGML_OP_SUM_ROWS,
|
|
GGML_OP_MEAN,
|
|
GGML_OP_ARGMAX,
|
|
GGML_OP_REPEAT,
|
|
GGML_OP_REPEAT_BACK,
|
|
GGML_OP_CONCAT,
|
|
GGML_OP_SILU_BACK,
|
|
GGML_OP_NORM, // normalize
|
|
GGML_OP_RMS_NORM,
|
|
GGML_OP_RMS_NORM_BACK,
|
|
GGML_OP_GROUP_NORM,
|
|
|
|
GGML_OP_MUL_MAT,
|
|
GGML_OP_MUL_MAT_ID,
|
|
GGML_OP_OUT_PROD,
|
|
|
|
GGML_OP_SCALE,
|
|
GGML_OP_SET,
|
|
GGML_OP_CPY,
|
|
GGML_OP_CONT,
|
|
GGML_OP_RESHAPE,
|
|
GGML_OP_VIEW,
|
|
GGML_OP_PERMUTE,
|
|
GGML_OP_TRANSPOSE,
|
|
GGML_OP_GET_ROWS,
|
|
GGML_OP_GET_ROWS_BACK,
|
|
GGML_OP_DIAG,
|
|
GGML_OP_DIAG_MASK_INF,
|
|
GGML_OP_DIAG_MASK_ZERO,
|
|
GGML_OP_SOFT_MAX,
|
|
GGML_OP_SOFT_MAX_BACK,
|
|
GGML_OP_ROPE,
|
|
GGML_OP_ROPE_BACK,
|
|
GGML_OP_CLAMP,
|
|
GGML_OP_CONV_TRANSPOSE_1D,
|
|
GGML_OP_IM2COL,
|
|
GGML_OP_IM2COL_BACK,
|
|
GGML_OP_CONV_TRANSPOSE_2D,
|
|
GGML_OP_POOL_1D,
|
|
GGML_OP_POOL_2D,
|
|
GGML_OP_POOL_2D_BACK,
|
|
GGML_OP_UPSCALE, // nearest interpolate
|
|
GGML_OP_PAD,
|
|
GGML_OP_ARANGE,
|
|
GGML_OP_TIMESTEP_EMBEDDING,
|
|
GGML_OP_ARGSORT,
|
|
GGML_OP_LEAKY_RELU,
|
|
|
|
GGML_OP_FLASH_ATTN_EXT,
|
|
GGML_OP_FLASH_ATTN_BACK,
|
|
GGML_OP_SSM_CONV,
|
|
GGML_OP_SSM_SCAN,
|
|
GGML_OP_WIN_PART,
|
|
GGML_OP_WIN_UNPART,
|
|
GGML_OP_GET_REL_POS,
|
|
GGML_OP_ADD_REL_POS,
|
|
GGML_OP_RWKV_WKV,
|
|
|
|
GGML_OP_UNARY,
|
|
|
|
GGML_OP_MAP_UNARY,
|
|
GGML_OP_MAP_BINARY,
|
|
|
|
GGML_OP_MAP_CUSTOM1_F32,
|
|
GGML_OP_MAP_CUSTOM2_F32,
|
|
GGML_OP_MAP_CUSTOM3_F32,
|
|
|
|
GGML_OP_MAP_CUSTOM1,
|
|
GGML_OP_MAP_CUSTOM2,
|
|
GGML_OP_MAP_CUSTOM3,
|
|
|
|
GGML_OP_CROSS_ENTROPY_LOSS,
|
|
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
|
|
|
GGML_OP_COUNT,
|
|
};
|
|
|
|
enum ggml_unary_op {
|
|
GGML_UNARY_OP_ABS,
|
|
GGML_UNARY_OP_SGN,
|
|
GGML_UNARY_OP_NEG,
|
|
GGML_UNARY_OP_STEP,
|
|
GGML_UNARY_OP_TANH,
|
|
GGML_UNARY_OP_ELU,
|
|
GGML_UNARY_OP_RELU,
|
|
GGML_UNARY_OP_SIGMOID,
|
|
GGML_UNARY_OP_GELU,
|
|
GGML_UNARY_OP_GELU_QUICK,
|
|
GGML_UNARY_OP_SILU,
|
|
GGML_UNARY_OP_HARDSWISH,
|
|
GGML_UNARY_OP_HARDSIGMOID,
|
|
GGML_UNARY_OP_EXP,
|
|
|
|
GGML_UNARY_OP_COUNT,
|
|
};
|
|
|
|
enum ggml_object_type {
|
|
GGML_OBJECT_TYPE_TENSOR,
|
|
GGML_OBJECT_TYPE_GRAPH,
|
|
GGML_OBJECT_TYPE_WORK_BUFFER
|
|
};
|
|
|
|
enum ggml_log_level {
|
|
GGML_LOG_LEVEL_ERROR = 2,
|
|
GGML_LOG_LEVEL_WARN = 3,
|
|
GGML_LOG_LEVEL_INFO = 4,
|
|
GGML_LOG_LEVEL_DEBUG = 5
|
|
};
|
|
|
|
enum ggml_tensor_flag {
|
|
GGML_TENSOR_FLAG_INPUT = 1,
|
|
GGML_TENSOR_FLAG_OUTPUT = 2,
|
|
GGML_TENSOR_FLAG_PARAM = 4,
|
|
};
|
|
|
|
// ggml object
|
|
struct ggml_object {
|
|
size_t offs;
|
|
size_t size;
|
|
|
|
struct ggml_object * next;
|
|
|
|
enum ggml_object_type type;
|
|
|
|
char padding[4];
|
|
};
|
|
|
|
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
|
|
|
// n-dimensional tensor
|
|
struct ggml_tensor {
|
|
enum ggml_type type;
|
|
|
|
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
|
|
|
struct ggml_backend_buffer * buffer;
|
|
|
|
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
// nb[0] = ggml_type_size(type)
|
|
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
|
// nb[i] = nb[i-1] * ne[i-1]
|
|
|
|
// compute data
|
|
enum ggml_op op;
|
|
|
|
// op params - allocated as int32_t for alignment
|
|
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
|
|
|
int32_t flags;
|
|
|
|
struct ggml_tensor * grad;
|
|
struct ggml_tensor * src[GGML_MAX_SRC];
|
|
|
|
// source tensor and offset for views
|
|
struct ggml_tensor * view_src;
|
|
size_t view_offs;
|
|
|
|
void * data;
|
|
|
|
char name[GGML_MAX_NAME];
|
|
|
|
void * extra; // extra things e.g. for ggml-cuda.cu
|
|
|
|
// char padding[4];
|
|
};
|
|
|
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
|
|
|
// Abort callback
|
|
// If not NULL, called before ggml computation
|
|
// If it returns true, the computation is aborted
|
|
typedef bool (*ggml_abort_callback)(void * data);
|
|
|
|
// Scheduling priorities
|
|
enum ggml_sched_priority {
|
|
GGML_SCHED_PRIO_NORMAL,
|
|
GGML_SCHED_PRIO_MEDIUM,
|
|
GGML_SCHED_PRIO_HIGH,
|
|
GGML_SCHED_PRIO_REALTIME
|
|
};
|
|
|
|
// Threadpool params
|
|
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
|
struct ggml_threadpool_params {
|
|
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
|
int n_threads; // number of threads
|
|
enum ggml_sched_priority prio; // thread priority
|
|
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
|
bool strict_cpu; // strict cpu placement
|
|
bool paused; // start in paused state
|
|
};
|
|
|
|
struct ggml_threadpool; // forward declaration, see ggml.c
|
|
|
|
typedef struct ggml_threadpool * ggml_threadpool_t;
|
|
|
|
// the compute plan that needs to be prepared for ggml_graph_compute()
|
|
// since https://github.com/ggerganov/ggml/issues/287
|
|
struct ggml_cplan {
|
|
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
|
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
|
|
|
int n_threads;
|
|
struct ggml_threadpool * threadpool;
|
|
|
|
// abort ggml_graph_compute when true
|
|
ggml_abort_callback abort_callback;
|
|
void * abort_callback_data;
|
|
};
|
|
|
|
enum ggml_cgraph_eval_order {
|
|
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
|
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
|
GGML_CGRAPH_EVAL_ORDER_COUNT
|
|
};
|
|
|
|
typedef uint32_t ggml_bitset_t;
|
|
|
|
struct ggml_hash_set {
|
|
size_t size;
|
|
ggml_bitset_t * used; // whether or not the keys are in use i.e. set
|
|
struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i)
|
|
};
|
|
|
|
// computation graph
|
|
struct ggml_cgraph {
|
|
int size;
|
|
int n_nodes;
|
|
int n_leafs;
|
|
|
|
struct ggml_tensor ** nodes;
|
|
struct ggml_tensor ** grads;
|
|
struct ggml_tensor ** leafs;
|
|
|
|
struct ggml_hash_set visited_hash_set;
|
|
|
|
enum ggml_cgraph_eval_order order;
|
|
};
|
|
|
|
// scratch buffer
|
|
struct ggml_scratch {
|
|
size_t offs;
|
|
size_t size;
|
|
void * data;
|
|
};
|
|
|
|
struct ggml_init_params {
|
|
// memory pool
|
|
size_t mem_size; // bytes
|
|
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
bool no_alloc; // don't allocate memory for the tensor data
|
|
};
|
|
|
|
// numa strategies
|
|
enum ggml_numa_strategy {
|
|
GGML_NUMA_STRATEGY_DISABLED = 0,
|
|
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
|
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
|
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
|
GGML_NUMA_STRATEGY_MIRROR = 4,
|
|
GGML_NUMA_STRATEGY_COUNT
|
|
};
|
|
|
|
//
|
|
// GUID
|
|
//
|
|
|
|
// GUID types
|
|
typedef uint8_t ggml_guid[16];
|
|
typedef ggml_guid * ggml_guid_t;
|
|
|
|
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
|
|
|
// misc
|
|
|
|
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
|
GGML_API int64_t ggml_time_ms(void);
|
|
GGML_API int64_t ggml_time_us(void);
|
|
GGML_API int64_t ggml_cycles(void);
|
|
GGML_API int64_t ggml_cycles_per_ms(void);
|
|
|
|
// accepts a UTF-8 path, even on Windows
|
|
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
|
|
|
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
|
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
|
|
|
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
|
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
|
|
|
GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
|
|
|
GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
|
|
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
|
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
|
|
|
GGML_DEPRECATED(
|
|
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
|
"use ggml_row_size() instead");
|
|
|
|
GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
|
|
GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
|
|
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
|
|
|
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
|
GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
|
|
|
GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
|
|
|
|
// TODO: temporary until model loading of ggml examples is refactored
|
|
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
|
|
|
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
|
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
|
|
|
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
|
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
|
|
|
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
|
|
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
|
|
|
// use this to compute the memory overhead of a tensor
|
|
GGML_API size_t ggml_tensor_overhead(void);
|
|
|
|
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
|
|
|
// main
|
|
|
|
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
GGML_API void ggml_free(struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
|
|
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
|
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
|
|
|
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
|
|
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int n_dims,
|
|
const int64_t *ne);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
|
struct ggml_context * ctx,
|
|
enum ggml_type type,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
|
|
|
// Context tensor enumeration and lookup
|
|
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
|
|
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
|
|
// Converts a flat index into coordinates
|
|
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
|
|
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
|
|
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
|
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
|
|
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
|
|
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
|
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
|
|
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
|
|
|
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
|
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
|
GGML_ATTRIBUTE_FORMAT(2, 3)
|
|
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
|
|
|
//
|
|
// operations on tensors with backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_dup(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_cast(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
enum ggml_type type);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// dst = a
|
|
// view(dst, nb1, nb2, nb3, offset) += b
|
|
// return dst
|
|
GGML_API struct ggml_tensor * ggml_acc(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sub_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_mul_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_div_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqr_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_log_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sin(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sin_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cos(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cos_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// return scalar
|
|
GGML_API struct ggml_tensor * ggml_sum(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
|
GGML_API struct ggml_tensor * ggml_sum_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// mean along rows
|
|
GGML_API struct ggml_tensor * ggml_mean(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// argmax along rows
|
|
GGML_API struct ggml_tensor * ggml_argmax(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// if a is the same shape as b, and a is not parameter, return a
|
|
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
GGML_API struct ggml_tensor * ggml_repeat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// sums repetitions in a into shape of b
|
|
GGML_API struct ggml_tensor * ggml_repeat_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// concat a and b along dim
|
|
// used in stable-diffusion
|
|
GGML_API struct ggml_tensor * ggml_concat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int dim);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_abs_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sgn_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_neg_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_step_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_tanh(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_tanh_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_elu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_elu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_leaky_relu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, float negative_slope, bool inplace);
|
|
|
|
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sigmoid(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_quick(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_silu_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_silu_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// hardswish(x) = x * relu6(x + 3) / 6
|
|
GGML_API struct ggml_tensor * ggml_hardswish(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// hardsigmoid(x) = relu6(x + 3) / 6
|
|
GGML_API struct ggml_tensor * ggml_hardsigmoid(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_exp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
GGML_API struct ggml_tensor * ggml_exp_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// normalize along rows
|
|
GGML_API struct ggml_tensor * ggml_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float eps);
|
|
|
|
// group normalize along ne0*ne1*n_groups
|
|
// used in stable-diffusion
|
|
GGML_API struct ggml_tensor * ggml_group_norm(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_groups,
|
|
float eps);
|
|
|
|
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_groups,
|
|
float eps);
|
|
|
|
// a - x
|
|
// b - dy
|
|
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
float eps);
|
|
|
|
// A: k columns, n rows => [ne03, ne02, n, k]
|
|
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
|
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
|
GGML_API struct ggml_tensor * ggml_mul_mat(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// change the precision of a matrix multiplication
|
|
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
|
|
GGML_API void ggml_mul_mat_set_prec(
|
|
struct ggml_tensor * a,
|
|
enum ggml_prec prec);
|
|
|
|
// indirect matrix multiplication
|
|
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * as,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * ids);
|
|
|
|
// A: m columns, n rows,
|
|
// B: p columns, n rows,
|
|
// result is m columns, p rows
|
|
GGML_API struct ggml_tensor * ggml_out_prod(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
//
|
|
// operations on tensors without backpropagation
|
|
//
|
|
|
|
GGML_API struct ggml_tensor * ggml_scale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float s);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float s);
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset); // in bytes
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t nb2,
|
|
size_t nb3,
|
|
size_t offset); // in bytes
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset); // in bytes
|
|
|
|
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t offset); // in bytes
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return modified a
|
|
GGML_API struct ggml_tensor * ggml_set_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset); // in bytes
|
|
|
|
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
|
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
size_t nb1,
|
|
size_t offset); // in bytes
|
|
|
|
// a -> b, return view(b)
|
|
GGML_API struct ggml_tensor * ggml_cpy(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cast(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_type type);
|
|
|
|
// make contiguous
|
|
GGML_API struct ggml_tensor * ggml_cont(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// make contiguous, with new shape
|
|
GGML_API struct ggml_tensor * ggml_cont_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cont_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// return view(a), b specifies the new shape
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1);
|
|
|
|
// return view(a)
|
|
// TODO: when we start computing gradient, make a copy instead of view
|
|
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2);
|
|
|
|
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3);
|
|
|
|
// offset in bytes
|
|
GGML_API struct ggml_tensor * ggml_view_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
size_t nb1, // row stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_3d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_view_4d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int64_t ne0,
|
|
int64_t ne1,
|
|
int64_t ne2,
|
|
int64_t ne3,
|
|
size_t nb1, // row stride in bytes
|
|
size_t nb2, // slice stride in bytes
|
|
size_t nb3,
|
|
size_t offset);
|
|
|
|
GGML_API struct ggml_tensor * ggml_permute(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int axis0,
|
|
int axis1,
|
|
int axis2,
|
|
int axis3);
|
|
|
|
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
GGML_API struct ggml_tensor * ggml_transpose(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// supports 3D: a->ne[2] == b->ne[1]
|
|
GGML_API struct ggml_tensor * ggml_get_rows(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
GGML_API struct ggml_tensor * ggml_diag(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// set elements above the diagonal to -INF
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// set elements above the diagonal to 0
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int n_past);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a);
|
|
|
|
// fused soft_max(a*scale + mask*(ALiBi slope))
|
|
// mask is optional
|
|
// max_bias = 0.0f for no ALiBi
|
|
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * mask,
|
|
float scale,
|
|
float max_bias);
|
|
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// rotary position embedding
|
|
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
|
// if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
|
|
//
|
|
// b is an int32 vector with size a->ne[2], it contains the positions
|
|
GGML_API struct ggml_tensor * ggml_rope(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode);
|
|
|
|
// custom RoPE
|
|
// c is freq factors (e.g. phi3-128k), (optional)
|
|
GGML_API struct ggml_tensor * ggml_rope_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow),
|
|
"use ggml_rope_ext instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow),
|
|
"use ggml_rope_ext_inplace instead");
|
|
|
|
// compute correction dims for YaRN RoPE scaling
|
|
GGML_CALL void ggml_rope_yarn_corr_dims(
|
|
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
|
|
|
// rotary position embedding backward, i.e compute dx from dy
|
|
// a - dy
|
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
int n_dims,
|
|
int mode,
|
|
int n_ctx_orig,
|
|
float freq_base,
|
|
float freq_scale,
|
|
float ext_factor,
|
|
float attn_factor,
|
|
float beta_fast,
|
|
float beta_slow);
|
|
|
|
// clamp
|
|
// in-place, returns view(a)
|
|
GGML_API struct ggml_tensor * ggml_clamp(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
float min,
|
|
float max);
|
|
|
|
// im2col
|
|
// converts data into a format that effectively results in a convolution when combined with matrix multiplication
|
|
GGML_API struct ggml_tensor * ggml_im2col(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s0, // stride dimension 0
|
|
int s1, // stride dimension 1
|
|
int p0, // padding dimension 0
|
|
int p1, // padding dimension 1
|
|
int d0, // dilation dimension 0
|
|
int d1, // dilation dimension 1
|
|
bool is_2D,
|
|
enum ggml_type dst_type);
|
|
|
|
GGML_API struct ggml_tensor * ggml_im2col_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // gradient of im2col output
|
|
int64_t * ne, // shape of im2col input
|
|
int s0, // stride dimension 0
|
|
int s1, // stride dimension 1
|
|
int p0, // padding dimension 0
|
|
int p1, // padding dimension 1
|
|
int d0, // dilation dimension 0
|
|
int d1, // dilation dimension 1
|
|
bool is_2D);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s0, // stride dimension 0
|
|
int s1, // stride dimension 1
|
|
int p0, // padding dimension 0
|
|
int p1, // padding dimension 1
|
|
int d0, // dilation dimension 0
|
|
int d1); // dilation dimension 1
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s0, // stride
|
|
int p0, // padding
|
|
int d0); // dilation
|
|
|
|
// conv_1d with padding = half
|
|
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
|
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s, // stride
|
|
int d); // dilation
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s0, // stride
|
|
int p0, // padding
|
|
int d0); // dilation
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a, // convolution kernel
|
|
struct ggml_tensor * b, // data
|
|
int s0, // stride dimension 0
|
|
int s1, // stride dimension 1
|
|
int p0, // padding dimension 0
|
|
int p1, // padding dimension 1
|
|
int d0, // dilation dimension 0
|
|
int d1); // dilation dimension 1
|
|
|
|
|
|
// kernel size is a->ne[0] x a->ne[1]
|
|
// stride is equal to kernel size
|
|
// padding is zero
|
|
// example:
|
|
// a: 16 16 3 768
|
|
// b: 1024 1024 3 1
|
|
// res: 64 64 768 1
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
// kernel size is a->ne[0] x a->ne[1]
|
|
// stride is 1
|
|
// padding is half
|
|
// example:
|
|
// a: 3 3 256 256
|
|
// b: 64 64 256 1
|
|
// res: 64 64 256 1
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
int stride);
|
|
|
|
enum ggml_op_pool {
|
|
GGML_OP_POOL_MAX,
|
|
GGML_OP_POOL_AVG,
|
|
GGML_OP_POOL_COUNT,
|
|
};
|
|
|
|
GGML_API struct ggml_tensor * ggml_pool_1d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_op_pool op,
|
|
int k0, // kernel size
|
|
int s0, // stride
|
|
int p0); // padding
|
|
|
|
// the result will have 2*p0 padding for the first dimension
|
|
// and 2*p1 padding for the second dimension
|
|
GGML_API struct ggml_tensor * ggml_pool_2d(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_op_pool op,
|
|
int k0,
|
|
int k1,
|
|
int s0,
|
|
int s1,
|
|
float p0,
|
|
float p1);
|
|
|
|
GGML_API struct ggml_tensor * ggml_pool_2d_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * af, // "a"/input used in forward pass
|
|
enum ggml_op_pool op,
|
|
int k0,
|
|
int k1,
|
|
int s0,
|
|
int s1,
|
|
float p0,
|
|
float p1);
|
|
|
|
// nearest interpolate
|
|
// multiplies ne0 and ne1 by scale factor
|
|
// used in stable-diffusion
|
|
GGML_API struct ggml_tensor * ggml_upscale(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int scale_factor);
|
|
|
|
// nearest interpolate
|
|
// nearest interpolate to specified dimensions
|
|
// used in tortoise.cpp
|
|
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int ne0,
|
|
int ne1,
|
|
int ne2,
|
|
int ne3);
|
|
|
|
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
|
GGML_API struct ggml_tensor * ggml_pad(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int p0,
|
|
int p1,
|
|
int p2,
|
|
int p3);
|
|
|
|
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
|
// timesteps: [N,]
|
|
// return: [N, dim]
|
|
GGML_API struct ggml_tensor * ggml_timestep_embedding(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * timesteps,
|
|
int dim,
|
|
int max_period);
|
|
|
|
// sort rows
|
|
enum ggml_sort_order {
|
|
GGML_SORT_ORDER_ASC,
|
|
GGML_SORT_ORDER_DESC,
|
|
};
|
|
|
|
GGML_API struct ggml_tensor * ggml_argsort(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_sort_order order);
|
|
|
|
GGML_API struct ggml_tensor * ggml_arange(
|
|
struct ggml_context * ctx,
|
|
float start,
|
|
float stop,
|
|
float step);
|
|
|
|
// top k elements per row
|
|
GGML_API struct ggml_tensor * ggml_top_k(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int k);
|
|
|
|
#define GGML_KQ_MASK_PAD 32
|
|
|
|
// q: [n_embd, n_batch, n_head, 1]
|
|
// k: [n_embd, n_kv, n_head_kv, 1]
|
|
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
|
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
|
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
|
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * mask,
|
|
float scale,
|
|
float max_bias,
|
|
float logit_softcap);
|
|
|
|
GGML_API void ggml_flash_attn_ext_set_prec(
|
|
struct ggml_tensor * a,
|
|
enum ggml_prec prec);
|
|
|
|
// TODO: needs to be adapted to ggml_flash_attn_ext
|
|
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * q,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * d,
|
|
bool masked);
|
|
|
|
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * sx,
|
|
struct ggml_tensor * c);
|
|
|
|
GGML_API struct ggml_tensor * ggml_ssm_scan(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * s,
|
|
struct ggml_tensor * x,
|
|
struct ggml_tensor * dt,
|
|
struct ggml_tensor * A,
|
|
struct ggml_tensor * B,
|
|
struct ggml_tensor * C);
|
|
|
|
// partition into non-overlapping windows with padding if needed
|
|
// example:
|
|
// a: 768 64 64 1
|
|
// w: 14
|
|
// res: 768 14 14 25
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_win_part(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int w);
|
|
|
|
// reverse of ggml_win_part
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_win_unpart(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int w0,
|
|
int h0,
|
|
int w);
|
|
|
|
GGML_API struct ggml_tensor * ggml_unary(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_unary_op op);
|
|
|
|
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
enum ggml_unary_op op);
|
|
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_get_rel_pos(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
int qh,
|
|
int kh);
|
|
|
|
// used in sam
|
|
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * pw,
|
|
struct ggml_tensor * ph);
|
|
|
|
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * pw,
|
|
struct ggml_tensor * ph);
|
|
|
|
GGML_API struct ggml_tensor * ggml_rwkv_wkv(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * k,
|
|
struct ggml_tensor * v,
|
|
struct ggml_tensor * r,
|
|
struct ggml_tensor * tf,
|
|
struct ggml_tensor * td,
|
|
struct ggml_tensor * state);
|
|
|
|
// custom operators
|
|
|
|
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
|
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
|
|
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
|
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun),
|
|
"use ggml_map_custom1 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_unary_op_f32_t fun),
|
|
"use ggml_map_custom1_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun),
|
|
"use ggml_map_custom2 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_binary_op_f32_t fun),
|
|
"use ggml_map_custom2_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_f32_t fun),
|
|
"use ggml_map_custom1 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_f32_t fun),
|
|
"use ggml_map_custom1_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_f32_t fun),
|
|
"use ggml_map_custom2 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_f32_t fun),
|
|
"use ggml_map_custom2_inplace instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_f32_t fun),
|
|
"use ggml_map_custom3 instead");
|
|
|
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_f32_t fun),
|
|
"use ggml_map_custom3_inplace instead");
|
|
|
|
// custom operators v2
|
|
|
|
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
|
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
|
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
|
|
|
#define GGML_N_TASKS_MAX -1
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom1(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
ggml_custom1_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom2(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
ggml_custom2_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom3(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c,
|
|
ggml_custom3_op_t fun,
|
|
int n_tasks,
|
|
void * userdata);
|
|
|
|
// loss function
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b);
|
|
|
|
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * a,
|
|
struct ggml_tensor * b,
|
|
struct ggml_tensor * c);
|
|
|
|
//
|
|
// automatic differentiation
|
|
//
|
|
|
|
GGML_API void ggml_set_param(
|
|
struct ggml_context * ctx,
|
|
struct ggml_tensor * tensor);
|
|
|
|
|
|
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
|
|
|
// graph allocation in a context
|
|
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
|
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
|
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
|
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
|
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
|
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
|
|
|
GGML_API size_t ggml_graph_overhead(void);
|
|
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
|
|
|
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
|
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params *p, int n_threads);
|
|
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params *p0, const struct ggml_threadpool_params *p1);
|
|
GGML_API struct ggml_threadpool* ggml_threadpool_new (struct ggml_threadpool_params * params);
|
|
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
|
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
|
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
|
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
|
|
|
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
|
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
|
GGML_API struct ggml_cplan ggml_graph_plan(
|
|
const struct ggml_cgraph * cgraph,
|
|
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
|
struct ggml_threadpool * threadpool /* = NULL */ );
|
|
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
|
|
|
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
|
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
|
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
|
|
|
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
|
|
|
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
|
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
|
|
|
// print info and performance information for the graph
|
|
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
|
|
// dump the graph into a file using the dot format
|
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
|
|
// build gradient checkpointing backward graph gb for gf using provided checkpoints
|
|
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
|
// but without the second forward pass nodes.
|
|
GGML_API void ggml_build_backward_gradient_checkpointing(
|
|
struct ggml_context * ctx,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
struct ggml_cgraph * gb_tmp,
|
|
struct ggml_tensor * * checkpoints,
|
|
int n_checkpoints);
|
|
//
|
|
// optimization
|
|
//
|
|
|
|
// optimization methods
|
|
enum ggml_opt_type {
|
|
GGML_OPT_TYPE_ADAM,
|
|
GGML_OPT_TYPE_LBFGS,
|
|
};
|
|
|
|
// linesearch methods
|
|
enum ggml_linesearch {
|
|
GGML_LINESEARCH_DEFAULT = 1,
|
|
|
|
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
};
|
|
|
|
// optimization return values
|
|
enum ggml_opt_result {
|
|
GGML_OPT_RESULT_OK = 0,
|
|
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
|
GGML_OPT_RESULT_NO_CONTEXT,
|
|
GGML_OPT_RESULT_INVALID_WOLFE,
|
|
GGML_OPT_RESULT_FAIL,
|
|
GGML_OPT_RESULT_CANCEL,
|
|
|
|
GGML_LINESEARCH_FAIL = -128,
|
|
GGML_LINESEARCH_MINIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
};
|
|
|
|
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
|
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
|
|
|
// optimization parameters
|
|
//
|
|
// see ggml.c (ggml_opt_default_params) for default values
|
|
//
|
|
struct ggml_opt_params {
|
|
enum ggml_opt_type type;
|
|
|
|
size_t graph_size;
|
|
|
|
int n_threads;
|
|
|
|
// delta-based convergence test
|
|
//
|
|
// if past == 0 - disabled
|
|
// if past > 0:
|
|
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
//
|
|
int past;
|
|
float delta;
|
|
|
|
// maximum number of iterations without improvement
|
|
//
|
|
// if 0 - disabled
|
|
// if > 0:
|
|
// assume convergence if no cost improvement in this number of iterations
|
|
//
|
|
int max_no_improvement;
|
|
|
|
bool print_forward_graph;
|
|
bool print_backward_graph;
|
|
|
|
int n_gradient_accumulation;
|
|
|
|
// ADAM parameters
|
|
struct {
|
|
int n_iter;
|
|
|
|
float sched; // schedule multiplier (fixed, decay or warmup)
|
|
float decay; // weight decay for AdamW, use 0.0f to disable
|
|
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
|
|
float alpha; // learning rate
|
|
float beta1;
|
|
float beta2;
|
|
float eps; // epsilon for numerical stability
|
|
float eps_f; // epsilon for convergence test
|
|
float eps_g; // epsilon for convergence test
|
|
float gclip; // gradient clipping
|
|
} adam;
|
|
|
|
// LBFGS parameters
|
|
struct {
|
|
int m; // number of corrections to approximate the inv. Hessian
|
|
int n_iter;
|
|
int max_linesearch;
|
|
|
|
float eps; // convergence tolerance
|
|
float ftol; // line search tolerance
|
|
float wolfe;
|
|
float min_step;
|
|
float max_step;
|
|
|
|
enum ggml_linesearch linesearch;
|
|
} lbfgs;
|
|
};
|
|
|
|
struct ggml_opt_context {
|
|
struct ggml_context * ctx;
|
|
struct ggml_opt_params params;
|
|
|
|
int iter;
|
|
int64_t nx; // number of parameter elements
|
|
|
|
bool just_initialized;
|
|
|
|
float loss_before;
|
|
float loss_after;
|
|
|
|
struct {
|
|
struct ggml_tensor * g; // current gradient
|
|
struct ggml_tensor * m; // first moment
|
|
struct ggml_tensor * v; // second moment
|
|
struct ggml_tensor * pf; // past function values
|
|
float fx_best;
|
|
float fx_prev;
|
|
int n_no_improvement;
|
|
} adam;
|
|
|
|
struct {
|
|
struct ggml_tensor * x; // current parameters
|
|
struct ggml_tensor * xp; // previous parameters
|
|
struct ggml_tensor * g; // current gradient
|
|
struct ggml_tensor * gp; // previous gradient
|
|
struct ggml_tensor * d; // search direction
|
|
struct ggml_tensor * pf; // past function values
|
|
struct ggml_tensor * lmal; // the L-BFGS memory alpha
|
|
struct ggml_tensor * lmys; // the L-BFGS memory ys
|
|
struct ggml_tensor * lms; // the L-BFGS memory s
|
|
struct ggml_tensor * lmy; // the L-BFGS memory y
|
|
float fx_best;
|
|
float step;
|
|
int j;
|
|
int k;
|
|
int end;
|
|
int n_no_improvement;
|
|
} lbfgs;
|
|
};
|
|
|
|
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
|
|
// optimize the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_params params,
|
|
struct ggml_tensor * f);
|
|
|
|
// initialize optimizer context
|
|
GGML_API void ggml_opt_init(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_opt_params params,
|
|
int64_t nx);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f);
|
|
|
|
// continue optimizing the function defined by the tensor f
|
|
GGML_API enum ggml_opt_result ggml_opt_resume_g(
|
|
struct ggml_context * ctx,
|
|
struct ggml_opt_context * opt,
|
|
struct ggml_tensor * f,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
ggml_opt_callback callback,
|
|
void * callback_data);
|
|
|
|
//
|
|
// tensor flags
|
|
//
|
|
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
|
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
// - ggml_quantize_init can be called multiple times with the same type
|
|
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
|
|
// automatically called by ggml_quantize_chunk for convenience
|
|
//
|
|
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
|
|
// call this at the end of the program to avoid memory leaks
|
|
//
|
|
// note: these are thread-safe
|
|
//
|
|
GGML_API void ggml_quantize_init(enum ggml_type type);
|
|
GGML_API void ggml_quantize_free(void);
|
|
|
|
// some quantization type cannot be used without an importance matrix
|
|
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
|
|
|
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
|
GGML_API size_t ggml_quantize_chunk(
|
|
enum ggml_type type,
|
|
const float * src,
|
|
void * dst,
|
|
int64_t start,
|
|
int64_t nrows,
|
|
int64_t n_per_row,
|
|
const float * imatrix);
|
|
|
|
//
|
|
// gguf
|
|
//
|
|
|
|
enum gguf_type {
|
|
GGUF_TYPE_UINT8 = 0,
|
|
GGUF_TYPE_INT8 = 1,
|
|
GGUF_TYPE_UINT16 = 2,
|
|
GGUF_TYPE_INT16 = 3,
|
|
GGUF_TYPE_UINT32 = 4,
|
|
GGUF_TYPE_INT32 = 5,
|
|
GGUF_TYPE_FLOAT32 = 6,
|
|
GGUF_TYPE_BOOL = 7,
|
|
GGUF_TYPE_STRING = 8,
|
|
GGUF_TYPE_ARRAY = 9,
|
|
GGUF_TYPE_UINT64 = 10,
|
|
GGUF_TYPE_INT64 = 11,
|
|
GGUF_TYPE_FLOAT64 = 12,
|
|
GGUF_TYPE_COUNT, // marks the end of the enum
|
|
};
|
|
|
|
struct gguf_context;
|
|
|
|
struct gguf_init_params {
|
|
bool no_alloc;
|
|
|
|
// if not NULL, create a ggml_context and allocate the tensor data in it
|
|
struct ggml_context ** ctx;
|
|
};
|
|
|
|
GGML_API struct gguf_context * gguf_init_empty(void);
|
|
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
|
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
|
|
|
GGML_API void gguf_free(struct gguf_context * ctx);
|
|
|
|
GGML_API const char * gguf_type_name(enum gguf_type type);
|
|
|
|
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
|
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
|
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
|
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
|
|
|
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
|
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
|
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
|
|
|
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
|
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
|
|
|
// will abort if the wrong type is used for the key
|
|
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
|
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
|
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
|
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
|
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
|
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
|
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
|
|
|
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
|
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
|
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
|
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
|
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
|
|
|
// removes key if it exists
|
|
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
|
|
|
// overrides existing values or adds a new one
|
|
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
|
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
|
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
|
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
|
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
|
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
|
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
|
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
|
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
|
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
|
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
|
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
|
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
|
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
|
|
|
// set or add KV pairs from another context
|
|
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
|
|
|
// manage tensor info
|
|
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
|
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
|
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
|
|
|
// writing gguf files can be done in 2 ways:
|
|
//
|
|
// - write the entire gguf_context to a binary file in a single pass:
|
|
//
|
|
// gguf_write_to_file(ctx, fname);
|
|
//
|
|
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
|
//
|
|
// FILE * f = fopen(fname, "wb");
|
|
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
|
// fwrite(f, ...);
|
|
// void * data = gguf_meta_get_meta_data(ctx);
|
|
// fseek(f, 0, SEEK_SET);
|
|
// fwrite(f, data, gguf_get_meta_size(ctx));
|
|
// free(data);
|
|
// fclose(f);
|
|
//
|
|
|
|
// write the entire context to a binary file
|
|
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
|
|
|
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
|
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
|
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
|
|
|
//
|
|
// system info
|
|
//
|
|
|
|
GGML_API int ggml_cpu_has_avx (void);
|
|
GGML_API int ggml_cpu_has_avx_vnni (void);
|
|
GGML_API int ggml_cpu_has_avx2 (void);
|
|
GGML_API int ggml_cpu_has_avx512 (void);
|
|
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
|
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
|
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
|
GGML_API int ggml_cpu_has_fma (void);
|
|
GGML_API int ggml_cpu_has_neon (void);
|
|
GGML_API int ggml_cpu_has_sve (void);
|
|
GGML_API int ggml_cpu_has_arm_fma (void);
|
|
GGML_API int ggml_cpu_has_metal (void);
|
|
GGML_API int ggml_cpu_has_f16c (void);
|
|
GGML_API int ggml_cpu_has_fp16_va (void);
|
|
GGML_API int ggml_cpu_has_wasm_simd (void);
|
|
GGML_API int ggml_cpu_has_blas (void);
|
|
GGML_API int ggml_cpu_has_cuda (void);
|
|
GGML_API int ggml_cpu_has_vulkan (void);
|
|
GGML_API int ggml_cpu_has_kompute (void);
|
|
GGML_API int ggml_cpu_has_gpublas (void);
|
|
GGML_API int ggml_cpu_has_sse3 (void);
|
|
GGML_API int ggml_cpu_has_ssse3 (void);
|
|
GGML_API int ggml_cpu_has_sycl (void);
|
|
GGML_API int ggml_cpu_has_rpc (void);
|
|
GGML_API int ggml_cpu_has_vsx (void);
|
|
GGML_API int ggml_cpu_has_matmul_int8(void);
|
|
GGML_API int ggml_cpu_has_cann (void);
|
|
GGML_API int ggml_cpu_has_llamafile (void);
|
|
|
|
//
|
|
// Internal types and functions exposed for tests and benchmarks
|
|
//
|
|
|
|
#ifdef __cplusplus
|
|
// restrict not standard in C++
|
|
#define GGML_RESTRICT
|
|
#else
|
|
#define GGML_RESTRICT restrict
|
|
#endif
|
|
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
|
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
|
typedef void (*ggml_from_float_to_mat_t)
|
|
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
|
|
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
|
const void * GGML_RESTRICT y, size_t by, int nrc);
|
|
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
|
const void * GGML_RESTRICT y, int nr, int nc);
|
|
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
|
const void * GGML_RESTRICT y, int nr, int nc);
|
|
|
|
typedef struct {
|
|
const char * type_name;
|
|
int64_t blck_size;
|
|
int64_t blck_size_interleave; // interleave elements in blocks
|
|
size_t type_size;
|
|
bool is_quantized;
|
|
ggml_to_float_t to_float;
|
|
ggml_from_float_t from_float;
|
|
ggml_from_float_t from_float_ref;
|
|
ggml_from_float_to_mat_t from_float_to_mat;
|
|
ggml_vec_dot_t vec_dot;
|
|
enum ggml_type vec_dot_type;
|
|
int64_t nrows; // number of rows to process simultaneously
|
|
int64_t ncols; // number of columns to process simultaneously
|
|
ggml_gemv_t gemv;
|
|
ggml_gemm_t gemm;
|
|
} ggml_type_traits_t;
|
|
|
|
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|