#include "llama-kv-cache.h" #include "llama-impl.h" #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model.h" #include "llama-context.h" #include #include #include #include #include #include // // llama_kv_cache_unified // uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { // the FA kernels require padding to avoid extra runtime boundary checks return cparams.flash_attn ? 256u : 32u; } llama_kv_cache_unified::llama_kv_cache_unified( const llama_model & model, ggml_type type_k, ggml_type type_v, bool v_trans, bool offload, uint32_t kv_size, uint32_t padding) : model(model), hparams(model.hparams), v_trans(v_trans), padding(padding) { const int32_t n_layer = hparams.n_layer; has_shift = false; can_shift = true; LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d, padding = %d\n", __func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift, padding); GGML_ASSERT(kv_size % padding == 0 && "kv_size must be a multiple of padding"); head = 0; size = kv_size; used = 0; this->type_k = type_k; this->type_v = type_v; cells.clear(); cells.resize(kv_size); // create a context for each buffer type std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { ggml_init_params params = { /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { return nullptr; } ctx_map[buft] = ctx; ctxs.emplace_back(ctx); return ctx; } return it->second; }; k_l.reserve(n_layer); v_l.reserve(n_layer); for (int i = 0; i < n_layer; i++) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); const char * dev_name = "CPU"; ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); if (offload) { auto * dev = model.dev_layer(i); buft = ggml_backend_dev_buffer_type(dev); dev_name = ggml_backend_dev_name(dev); } LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, i, dev_name); ggml_context * ctx = ctx_for_buft(buft); if (!ctx) { throw std::runtime_error("failed to create ggml context for kv cache"); } ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); k_l.push_back(k); v_l.push_back(v); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { auto * buft = it.first; auto * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { throw std::runtime_error("failed to allocate buffer for kv cache"); } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); bufs.emplace_back(buf); } { const size_t memory_size_k = size_k_bytes(); const size_t memory_size_v = size_v_bytes(); LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } } void llama_kv_cache_unified::clear() { for (int32_t i = 0; i < (int32_t) size; ++i) { cells[i].pos = -1; cells[i].seq_id.clear(); } head = 0; used = 0; for (auto & buf : bufs) { ggml_backend_buffer_clear(buf.get(), 0); } } bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = size; if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } for (uint32_t i = 0; i < size; ++i) { if (cells[i].pos >= p0 && cells[i].pos < p1) { if (seq_id < 0) { cells[i].seq_id.clear(); } else if (cells[i].has_seq_id(seq_id)) { cells[i].seq_id.erase(seq_id); } else { continue; } if (cells[i].is_empty()) { // keep count of the number of used cells if (cells[i].pos >= 0) { used--; } cells[i].pos = -1; if (new_head == size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != size && new_head < head) { head = new_head; } return true; } void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // otherwise, this is the KV of a Transformer-like model head = 0; for (uint32_t i = 0; i < size; ++i) { if (cells[i].has_seq_id(seq_id_src) && cells[i].pos >= p0 && cells[i].pos < p1) { cells[i].seq_id.insert(seq_id_dst); } } } void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { uint32_t new_head = size; for (uint32_t i = 0; i < size; ++i) { if (!cells[i].has_seq_id(seq_id)) { if (cells[i].pos >= 0) { used--; } cells[i].pos = -1; cells[i].seq_id.clear(); if (new_head == size){ new_head = i; } } else { cells[i].seq_id.clear(); cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != size && new_head < head) { head = new_head; } } void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { if (delta == 0) { return; } uint32_t new_head = size; if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over the if (p0 == p1) { return; } for (uint32_t i = 0; i < size; ++i) { if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) { has_shift = true; cells[i].pos += delta; cells[i].delta += delta; if (cells[i].pos < 0) { if (!cells[i].is_empty()) { used--; } cells[i].pos = -1; cells[i].seq_id.clear(); if (new_head == size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. head = new_head != size ? new_head : 0; } void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (d == 1) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over the cache. if (p0 == p1) { return; } for (uint32_t i = 0; i < size; ++i) { if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) { has_shift = true; { llama_pos p_old = cells[i].pos; cells[i].pos /= d; cells[i].delta += cells[i].pos - p_old; } } } } llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { llama_pos result = 0; for (uint32_t i = 0; i < size; ++i) { if (cells[i].has_seq_id(seq_id)) { result = std::max(result, cells[i].pos); } } return result; } void llama_kv_cache_unified::restore() { if (pending.ranges.empty()) { return; } uint32_t new_head = size; for (auto & range : pending.ranges) { for (uint32_t i = range.c0; i < range.c1; ++i) { cells[i].seq_id.clear(); // keep count of the number of used cells if (cells[i].pos >= 0) { used--; } cells[i].pos = -1; } new_head = std::min(new_head, range.c0); } if (new_head != size && new_head < head) { head = new_head; } } void llama_kv_cache_unified::commit() { if (pending.ranges.empty()) { LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n", __func__, "https://github.com/ggml-org/llama.cpp/pull/12695"); return; } pending.ranges.clear(); } bool llama_kv_cache_unified::update(llama_context & lctx) { bool need_reserve = false; auto * sched = lctx.get_sched(); if (has_shift) { if (!get_can_shift()) { GGML_ABORT("The current KV cache / model configuration does not support K-shift"); } LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); // apply K-shift if needed if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { ggml_backend_sched_reset(sched); auto * gf = lctx.graph_init(); auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf); ggml_backend_sched_alloc_graph(sched, gf); res->set_inputs(nullptr); lctx.graph_compute(gf, false); need_reserve = true; } { has_shift = false; for (uint32_t i = 0; i < size; ++i) { cells[i].delta = 0; } } } if (do_defrag) { LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); if (defrag_prepare(lctx.graph_max_nodes())) { ggml_backend_sched_reset(sched); auto * gf = lctx.graph_init(); auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf); ggml_backend_sched_alloc_graph(sched, gf); res->set_inputs(nullptr); lctx.graph_compute(gf, false); need_reserve = true; } do_defrag = false; } return need_reserve; } void llama_kv_cache_unified::defrag_sched(float thold) { // - do not defrag small contexts (i.e. < 2048 tokens) // - count the padding towards the number of used tokens const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(used + padding)/n)) : 0.0f; // queue defragmentation for next llama_kv_cache_update if (fragmentation > thold) { LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); do_defrag = true; } } void llama_kv_cache_unified::set_full() { n = size; } llama_sbatch llama_kv_cache_unified::sbatch_init( const llama_batch & batch, bool logits_all) { return llama_sbatch(batch, hparams.n_embd, true, logits_all); } llama_ubatch llama_kv_cache_unified::ubatch_next( llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { GGML_UNUSED(embd_pooled); return sbatch.split_simple(n_ubatch); } bool llama_kv_cache_unified::find_slot( const llama_ubatch & ubatch) { const uint32_t n_tokens = ubatch.n_tokens; const uint32_t n_seqs = ubatch.n_seqs; const uint32_t n_seq_tokens = ubatch.n_seq_tokens; // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (head > used + 2*ubatch.n_tokens) { head = 0; } // otherwise, one cell per token. if (n_tokens > size) { LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %d\n", __func__, n_tokens, size); return false; } uint32_t n_tested = 0; while (true) { if (head + n_tokens > size) { n_tested += size - head; head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cells[head + i].pos >= 0) { found = false; head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= size) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t s = 0; s < n_seqs; s++) { for (uint32_t i = 0; i < n_seq_tokens; ++i) { uint32_t k = s*n_seq_tokens + i; cells[head + k].pos = ubatch.pos[k]; for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) { cells[head + k].seq_id.insert(ubatch.seq_id[s][j]); } } } used += n_tokens; pending.ranges.push_back({head, head + n_tokens}); // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important n = std::min(size, std::max(padding, GGML_PAD(cell_max(), padding))); //printf("n = %5d, used = %5d, head = %5d\n", n, used, head); return true; } int32_t llama_kv_cache_unified::get_n_tokens() const { int32_t result = 0; for (uint32_t i = 0; i < size; i++) { result += cells[i].seq_id.size(); } return result; } int32_t llama_kv_cache_unified::get_used_cells() const { return used; } bool llama_kv_cache_unified::get_can_shift() const { return can_shift; } llama_pos llama_kv_cache_unified::get_pos_max() const { llama_pos pos_max = -1; for (const auto & cell : cells) { pos_max = std::max(pos_max, cell.pos); } return pos_max; } size_t llama_kv_cache_unified::total_size() const { size_t size = 0; for (const auto & buf : bufs) { size += ggml_backend_buffer_get_size(buf.get()); } return size; } size_t llama_kv_cache_unified::size_k_bytes() const { size_t size_k_bytes = 0; for (const auto & k : k_l) { size_k_bytes += ggml_nbytes(k); } return size_k_bytes; } size_t llama_kv_cache_unified::size_v_bytes() const { size_t size_v_bytes = 0; for (const auto & v : v_l) { size_v_bytes += ggml_nbytes(v); } return size_v_bytes; } ggml_tensor * llama_kv_cache_unified::build_rope_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_tensor * cur, ggml_tensor * shift, ggml_tensor * factors, float freq_base, float freq_scale) const { const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; const auto & yarn_ext_factor = cparams.yarn_ext_factor; const auto & yarn_beta_fast = cparams.yarn_beta_fast; const auto & yarn_beta_slow = cparams.yarn_beta_slow; const auto & n_rot = hparams.n_rot; const auto & rope_type = hparams.rope_type; // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor; ggml_tensor * tmp; if (ggml_is_quantized(cur->type)) { // dequantize to f32 -> RoPE -> quantize back tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); tmp = ggml_rope_ext(ctx, tmp, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); tmp = ggml_cpy(ctx, tmp, cur); } else { // we rotate only the first n_rot dimensions tmp = ggml_rope_ext_inplace(ctx, cur, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); } return tmp; } class llm_graph_input_k_shift : public llm_graph_input_i { public: llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} virtual ~llm_graph_input_k_shift() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * k_shift; // I32 [kv_size] const llama_kv_cache_unified * kv_self; }; void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); if (k_shift) { assert(ggml_backend_buffer_is_host(k_shift->buffer)); int32_t * data = (int32_t *) k_shift->data; for (uint32_t i = 0; i < kv_self->size; ++i) { data[i] = kv_self->cells[i].delta; } } } llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & n_layer = hparams.n_layer; const auto & n_embd_head_k = hparams.n_embd_head_k; //const auto & n_embd_head_v = hparams.n_embd_head_v; const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; //GGML_ASSERT(kv_self->size == n_ctx); auto inp = std::make_unique(this); inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx); ggml_set_input(inp->k_shift); for (uint32_t il = 0; il < n_layer; ++il) { const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const bool is_swa = hparams.is_swa(il); // note: the swa rope params could become part of the cparams in the future // if we decide to make them configurable, like the non-sliding ones const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base; const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale; ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il); ggml_tensor * k = ggml_view_3d(ctx, k_l[il], n_embd_head_k, n_head_kv, size, ggml_row_size(k_l[il]->type, n_embd_head_k), ggml_row_size(k_l[il]->type, n_embd_k_gqa), 0); ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); ggml_build_forward_expand(gf, cur); } res->add_input(std::move(inp)); return res; } llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & ids = defrag_info.ids; #if 0 // CPU defrag // // TODO: optimizations are possible: // - multiple threads // - avoid copying to the host memory when already there // // likely not worth the effort, as we have ggml_graph based defrag // const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const uint32_t kv_size = size; std::vector buf_k; std::vector buf_v; for (uint32_t il = 0; il < n_layer; ++il) { const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); const size_t v_size_el = ggml_type_size(v_l[il]->type); const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); buf_k.resize(k_size); buf_v.resize(v_size); ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); // batch move [i, i+nm) to [id, id+nm) // note: cells can move only to a lower index for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t id = ids[i]; if (i == id || id == n_kv) { continue; } uint32_t nm = 1; while (i + nm < n_kv && ids[i + nm] == id + nm) { nm++; } // move keys { const int64_t os = i*k_size_row; const int64_t od = id*k_size_row; memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); } // move values (note: they are transposed) { const int64_t os = i; const int64_t od = id; for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); } } i += nm - 1; } ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); } #else for (uint32_t i = 0; i < ids.size(); ++i) { const uint32_t id = ids[i]; if (i == id || id == ids.size()) { continue; } uint32_t nm = 1; while (i + nm < ids.size() && ids[i + nm] == id + nm) { nm++; } for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il], n_embd_k_gqa, nm, ggml_row_size(k_l[il]->type, n_embd_k_gqa), ggml_row_size(k_l[il]->type, n_embd_k_gqa*i)); ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il], n_embd_k_gqa, nm, ggml_row_size(k_l[il]->type, n_embd_k_gqa), ggml_row_size(k_l[il]->type, n_embd_k_gqa*id)); ggml_tensor * view_v_src; ggml_tensor * view_v_dst; if (cparams.flash_attn) { // NOTE: the V cache is not transposed when using flash attention view_v_src = ggml_view_2d(ctx, v_l[il], n_embd_v_gqa, nm, ggml_row_size(v_l[il]->type, n_embd_v_gqa), ggml_row_size(v_l[il]->type, n_embd_v_gqa*i)); view_v_dst = ggml_view_2d(ctx, v_l[il], n_embd_v_gqa, nm, ggml_row_size(v_l[il]->type, n_embd_v_gqa), ggml_row_size(v_l[il]->type, n_embd_v_gqa*id)); } else { view_v_src = ggml_view_2d(ctx, v_l[il], nm, n_embd_v_gqa, ggml_row_size(v_l[il]->type, size), ggml_row_size(v_l[il]->type, i)); view_v_dst = ggml_view_2d(ctx, v_l[il], nm, n_embd_v_gqa, ggml_row_size(v_l[il]->type, size), ggml_row_size(v_l[il]->type, id)); } ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); } i += nm - 1; } //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); #endif return res; } bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) { const uint32_t n_layer = hparams.n_layer; const uint32_t n_kv = cell_max(); const uint32_t n_used = used; assert(n_used <= n_kv); //const int64_t t_start = ggml_time_us(); // number of cells moved uint32_t n_moves = 0; // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) // - source view, destination view, copy operation // - x2 for keys and values //const uint32_t max_moves = max_nodes()/(6*n_layer); // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); // determine which KV cells to move where // // cell i moves to ids[i] // // if ids[i] == i || ids[i] == n_kv, then cell i is not moved // auto & ids = defrag_info.ids; ids.clear(); ids.resize(n_kv, n_kv); for (uint32_t i0 = 0; i0 < n_used; ++i0) { const auto & cell0 = cells[i0]; if (!cell0.is_empty()) { ids[i0] = i0; continue; } // found a hole - fill it with data from the end of the cache uint32_t nh = 1; // determine the size of the hole while (i0 + nh < n_used && cells[i0 + nh].is_empty()) { nh++; } uint32_t nf = 0; uint32_t is = n_kv - 1; // starting from the end, find nh non-empty cells for (; is > i0; --is) { const auto & cell1 = cells[is]; if (cell1.is_empty() || ids[is] != n_kv) { continue; } // non-empty cell which is not yet moved nf++; if (nf == nh) { break; } } // this can only happen if `n_used` is not accurate, which would be a bug GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); nf = 0; uint32_t i1 = is; // are we moving a continuous block of memory? bool cont = false; // should we stop searching for the next move? bool stop = false; // go back and move the nf cells to the hole for (; i1 < n_kv; ++i1) { auto & cell1 = cells[i1]; if (cell1.is_empty() || ids[i1] != n_kv) { if (n_moves == max_moves) { stop = true; break; } cont = false; continue; } // this cell goes to (i0 + nf) ids[i1] = i0 + nf; // move the cell meta data cells[i0 + nf] = cell1; // clear the old cell and move the head there cell1 = kv_cell(); head = n_used; if (!cont) { n_moves++; cont = true; } nf++; if (nf == nh) { break; } } if (stop || n_moves == max_moves) { break; } //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); i0 += nh - 1; } if (n_moves == 0) { return false; } LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); return true; } uint32_t llama_kv_cache_unified::cell_max() const { for (uint32_t i = size; i > 0; --i) { const kv_cell & cell = cells[i - 1]; if (cell.pos >= 0 && !cell.is_empty()) { return i; } } return 0; } void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { std::vector> cell_ranges; // ranges, from inclusive, to exclusive uint32_t cell_count = 0; // Count the number of cells with the specified seq_id // Find all the ranges of cells with this seq id (or all, when -1) uint32_t cell_range_begin = size; for (uint32_t i = 0; i < size; ++i) { const auto & cell = cells[i]; if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { ++cell_count; if (cell_range_begin == size) { cell_range_begin = i; } } else { if (cell_range_begin != size) { cell_ranges.emplace_back(cell_range_begin, i); cell_range_begin = size; } } } if (cell_range_begin != size) { cell_ranges.emplace_back(cell_range_begin, size); } // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count uint32_t cell_count_check = 0; for (const auto & range : cell_ranges) { cell_count_check += range.second - range.first; } GGML_ASSERT(cell_count == cell_count_check); io.write(&cell_count, sizeof(cell_count)); state_write_meta(io, cell_ranges, seq_id); state_write_data(io, cell_ranges); } void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { uint32_t cell_count; io.read_to(&cell_count, sizeof(cell_count)); bool res = true; res = res && state_read_meta(io, cell_count, seq_id); res = res && state_read_data(io, cell_count); if (!res) { if (seq_id == -1) { clear(); } else { seq_rm(seq_id, -1, -1); } throw std::runtime_error("failed to restore kv cache"); } } void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { for (const auto & range : cell_ranges) { for (uint32_t i = range.first; i < range.second; ++i) { const auto & cell = cells[i]; const llama_pos pos = cell.pos; const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; io.write(&pos, sizeof(pos)); io.write(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id) { for (auto seq_id : cell.seq_id) { io.write(&seq_id, sizeof(seq_id)); } } } } } void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { const uint32_t v_trans = this->v_trans ? 1 : 0; const uint32_t n_layer = hparams.n_layer; io.write(&v_trans, sizeof(v_trans)); io.write(&n_layer, sizeof(n_layer)); std::vector tmp_buf; // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Write key type const int32_t k_type_i = (int32_t)k_l[il]->type; io.write(&k_type_i, sizeof(k_type_i)); // Write row size of key const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); io.write(&k_size_row, sizeof(k_size_row)); // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * k_size_row; io.write_tensor(k_l[il], range.first * k_size_row, buf_size); } } if (!v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)v_l[il]->type; io.write(&v_type_i, sizeof(v_type_i)); // Write row size of value const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); io.write(&v_size_row, sizeof(v_size_row)); // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * v_size_row; io.write_tensor(v_l[il], range.first * v_size_row, buf_size); } } } else { // When v is transposed, we also need the element size and get the element ranges from each row const uint32_t kv_size = size; for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)v_l[il]->type; io.write(&v_type_i, sizeof(v_type_i)); // Write element size const uint32_t v_size_el = ggml_type_size(v_l[il]->type); io.write(&v_size_el, sizeof(v_size_el)); // Write GQA embedding size io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); // For each row, we get the element values of each cell for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { // Read each range of cells of v_size_el length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; const size_t buf_size = range_size * v_size_el; io.write_tensor(v_l[il], src_offset, buf_size); } } } } } bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { if (dest_seq_id != -1) { // single sequence seq_rm(dest_seq_id, -1, -1); llama_sbatch sbatch; llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); batch.n_tokens = cell_count; batch.n_seq_tokens = cell_count; batch.n_seqs = 1; for (uint32_t i = 0; i < cell_count; ++i) { llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id != 0) { LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); return false; } batch.pos[i] = pos; } batch.n_seq_id[0] = 1; batch.seq_id[0] = &dest_seq_id; if (!find_slot(batch)) { LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); return false; } commit(); // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) // Assume that this is one contiguous block of cells GGML_ASSERT(head + cell_count <= size); GGML_ASSERT(cells[head].pos == batch.pos[0]); GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); } else { // whole KV cache restore if (cell_count > size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); return false; } clear(); for (uint32_t i = 0; i < cell_count; ++i) { kv_cell & cell = cells[i]; llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); cell.pos = pos; for (uint32_t j = 0; j < n_seq_id; ++j) { llama_seq_id seq_id; io.read_to(&seq_id, sizeof(seq_id)); // TODO: llama_kv_cache_unified should have a notion of max sequences //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { if (seq_id < 0) { //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); return false; } cell.seq_id.insert(seq_id); } } head = 0; used = cell_count; } return true; } bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { uint32_t v_trans; uint32_t n_layer; io.read_to(&v_trans, sizeof(v_trans)); io.read_to(&n_layer, sizeof(n_layer)); if (n_layer != hparams.n_layer) { LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); return false; } if (cell_count > size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); return false; } if (this->v_trans != (bool) v_trans) { LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); return false; } // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Read type of key int32_t k_type_i_ref; io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); const int32_t k_type_i = (int32_t) k_l[il]->type; if (k_type_i != k_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); return false; } // Read row size of key uint64_t k_size_row_ref; io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); if (k_size_row != k_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); return false; } if (cell_count) { // Read and set the keys for the whole cell range ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); } } if (!this->v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read row size of value uint64_t v_size_row_ref; io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); if (v_size_row != v_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); return false; } if (cell_count) { // Read and set the values for the whole cell range ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); } } } else { // For each layer, read the values for each cell (transposed) for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read element size of value uint32_t v_size_el_ref; io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); const size_t v_size_el = ggml_type_size(v_l[il]->type); if (v_size_el != v_size_el_ref) { LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); return false; } // Read GQA embedding size uint32_t n_embd_v_gqa_ref; io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); if (n_embd_v_gqa != n_embd_v_gqa_ref) { LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); return false; } if (cell_count) { // For each row in the transposed matrix, read the values for the whole cell range for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { const size_t dst_offset = (head + j * size) * v_size_el; ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); } } } } return true; } // // llama_kv_cache_recurrent // llama_kv_cache_recurrent::llama_kv_cache_recurrent( const llama_model & model, ggml_type type_k, ggml_type type_v, bool offload, uint32_t kv_size) : hparams(model.hparams) { const int32_t n_layer = hparams.n_layer; LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d\n", __func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); head = 0; size = kv_size; used = 0; this->type_k = type_k; this->type_v = type_v; cells.clear(); cells.resize(kv_size); // create a context for each buffer type std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { ggml_init_params params = { /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { return nullptr; } ctx_map[buft] = ctx; ctxs.emplace_back(ctx); return ctx; } return it->second; }; k_l.reserve(n_layer); v_l.reserve(n_layer); for (int i = 0; i < n_layer; i++) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); const char * dev_name = "CPU"; ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); if (offload) { auto * dev = model.dev_layer(i); buft = ggml_backend_dev_buffer_type(dev); dev_name = ggml_backend_dev_name(dev); } LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name); ggml_context * ctx = ctx_for_buft(buft); if (!ctx) { throw std::runtime_error("failed to create ggml context for kv cache"); } ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); k_l.push_back(k); v_l.push_back(v); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { auto * buft = it.first; auto * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { throw std::runtime_error("failed to allocate buffer for kv cache"); } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); bufs.emplace_back(buf); } { const size_t memory_size_k = size_k_bytes(); const size_t memory_size_v = size_v_bytes(); LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } } void llama_kv_cache_recurrent::clear() { for (int32_t i = 0; i < (int32_t) size; ++i) { cells[i].pos = -1; cells[i].seq_id.clear(); cells[i].src = -1; cells[i].tail = -1; } head = 0; used = 0; for (auto & buf : bufs) { ggml_backend_buffer_clear(buf.get(), 0); } } bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = size; if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // models like Mamba or RWKV can't have a state partially erased if (seq_id >= (int64_t) size) { // could be fatal return false; } if (0 <= seq_id) { int32_t & tail_id = cells[seq_id].tail; if (tail_id >= 0) { const kv_cell & cell = cells[tail_id]; // partial intersection is invalid if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { return false; } // invalidate tails which will be cleared if (p0 <= cell.pos && cell.pos < p1) { tail_id = -1; } } } else { // seq_id is negative, then the range should include everything or nothing if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { return false; } } for (uint32_t i = 0; i < size; ++i) { if (cells[i].pos >= p0 && cells[i].pos < p1) { if (seq_id < 0) { cells[i].seq_id.clear(); } else if (cells[i].has_seq_id(seq_id)) { cells[i].seq_id.erase(seq_id); } else { continue; } if (cells[i].is_empty()) { // keep count of the number of used cells if (cells[i].pos >= 0) { used--; } cells[i].pos = -1; cells[i].src = -1; if (new_head == size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != size && new_head < head) { head = new_head; } return true; } void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { kv_cell & tail_src = cells[seq_id_src]; kv_cell & tail_dst = cells[seq_id_dst]; if (tail_dst.tail >= 0) { // clear destination seq_id if it wasn't empty kv_cell & cell_dst = cells[tail_dst.tail]; cell_dst.seq_id.erase(seq_id_dst); tail_dst.tail = -1; if (cell_dst.seq_id.empty()) { cell_dst.pos = -1; cell_dst.src = -1; used -= 1; } } if (tail_src.tail >= 0) { kv_cell & cell_src = cells[tail_src.tail]; cell_src.seq_id.insert(seq_id_dst); tail_dst.tail = tail_src.tail; } } } void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { uint32_t new_head = size; for (uint32_t i = 0; i < size; ++i) { if ((llama_seq_id) i != seq_id) { cells[i].tail = -1; } if (!cells[i].has_seq_id(seq_id)) { if (cells[i].pos >= 0) { used--; } cells[i].pos = -1; cells[i].src = -1; cells[i].seq_id.clear(); if (new_head == size){ new_head = i; } } else { cells[i].seq_id.clear(); cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != size && new_head < head) { head = new_head; } } void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { if (delta == 0) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over the if (p0 == p1) { return; } // for Mamba-like or RWKV models, only the pos needs to be shifted if (0 <= seq_id && seq_id < (int64_t) size) { const int32_t tail_id = cells[seq_id].tail; if (tail_id >= 0) { kv_cell & cell = cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos += delta; } } } } void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (d == 1) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over the cache. if (p0 == p1) { return; } // for Mamba-like or RWKV models, only the pos needs to be changed if (0 <= seq_id && seq_id < (int64_t) size) { const int32_t tail_id = cells[seq_id].tail; if (tail_id >= 0) { kv_cell & cell = cells[tail_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos /= d; } } } } llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { llama_pos result = 0; for (uint32_t i = 0; i < size; ++i) { if (cells[i].has_seq_id(seq_id)) { result = std::max(result, cells[i].pos); } } return result; } void llama_kv_cache_recurrent::restore() { if (pending.ranges.empty()) { return; } seq_rm(-1, -1, -1); } void llama_kv_cache_recurrent::commit() { pending.ranges.clear(); } bool llama_kv_cache_recurrent::update(llama_context & lctx) { GGML_UNUSED(lctx); return false; } void llama_kv_cache_recurrent::defrag_sched(float thold) { GGML_UNUSED(thold); // noop } void llama_kv_cache_recurrent::set_full() { n = size; } llama_sbatch llama_kv_cache_recurrent::sbatch_init( const llama_batch & batch, bool logits_all) { return llama_sbatch(batch, hparams.n_embd, false, logits_all); } llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { if (embd_pooled) { // Pooled embeddings cannot be split across ubatches (yet) return sbatch.split_seq(n_ubatch); } return sbatch.split_equal(n_ubatch); } bool llama_kv_cache_recurrent::find_slot( const llama_ubatch & ubatch) { const uint32_t n_tokens = ubatch.n_tokens; const uint32_t n_seqs = ubatch.n_seqs; const uint32_t n_seq_tokens = ubatch.n_seq_tokens; // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (head > used + 2*n_tokens) { head = 0; } // For recurrent state architectures (like Mamba or RWKV), // each cache cell can store the state for a whole sequence. // A slot should be always be contiguous. // can only process batches with an equal number of new tokens in each sequence GGML_ASSERT(ubatch.equal_seqs); int32_t min = size - 1; int32_t max = 0; // everything should fit if all seq_ids are smaller than the max for (uint32_t s = 0; s < n_seqs; ++s) { const uint32_t n_seq_id = ubatch.n_seq_id[s]; for (uint32_t j = 0; j < n_seq_id; ++j) { const llama_seq_id seq_id = ubatch.seq_id[s][j]; if (seq_id < 0 || (uint32_t) seq_id >= size) { // too big seq_id // TODO: would it be possible to resize the cache instead? LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size); return false; } if (j > 0) { kv_cell & seq = cells[seq_id]; if (seq.tail >= 0) { kv_cell & cell = cells[seq.tail]; // clear cells from seq_ids that become shared // (should not normally happen, but let's handle it anyway) cell.seq_id.erase(seq_id); seq.tail = -1; if (cell.seq_id.empty()) { cell.pos = -1; cell.src = -1; used -= 1; } } } } } #ifndef NDEBUG { std::vector tails_verif; tails_verif.assign(size, -1); for (uint32_t i = 0; i < size; ++i) { kv_cell & cell = cells[i]; for (llama_seq_id seq_id : cell.seq_id) { if (tails_verif[seq_id] != -1) { LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); } tails_verif[seq_id] = i; } } for (uint32_t i = 0; i < size; ++i) { if (tails_verif[i] != cells[i].tail) { LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]); } } } #endif // find next empty cell uint32_t next_empty_cell = head; for (uint32_t i = 0; i < size; ++i) { if (next_empty_cell >= size) { next_empty_cell -= size; } kv_cell & cell = cells[next_empty_cell]; if (cell.is_empty()) { break; } next_empty_cell += 1; } // find usable cell range for (uint32_t s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; kv_cell & seq_meta = cells[seq_id]; bool has_cell = false; if (seq_meta.tail >= 0) { kv_cell & cell = cells[seq_meta.tail]; GGML_ASSERT(cell.has_seq_id(seq_id)); // does this seq_id "own" the cell? if (cell.seq_id.size() == 1) { has_cell = true; } } if (!has_cell) { kv_cell & empty_cell = cells[next_empty_cell]; GGML_ASSERT(empty_cell.is_empty()); // copy old tail into the empty cell if (seq_meta.tail >= 0) { kv_cell & orig_cell = cells[seq_meta.tail]; empty_cell.pos = orig_cell.pos; empty_cell.src = orig_cell.src; orig_cell.seq_id.erase(seq_id); empty_cell.seq_id.insert(seq_id); // will be overwritten } seq_meta.tail = next_empty_cell; // find next empty cell if (s + 1 < n_seqs) { next_empty_cell += 1; for (uint32_t i = 0; i < size; ++i) { if (next_empty_cell >= size) { next_empty_cell -= size; } kv_cell & cell = cells[next_empty_cell]; if (cell.is_empty()) { break; } next_empty_cell += 1; } } } if (min > seq_meta.tail) { min = seq_meta.tail; } if (max < seq_meta.tail) { max = seq_meta.tail; } } // gather and re-order for (uint32_t s = 0; s < n_seqs; ++s) { int32_t dst_id = s + min; int32_t src_id = cells[ubatch.seq_id[s][0]].tail; if (dst_id != src_id) { kv_cell & dst_cell = cells[dst_id]; kv_cell & src_cell = cells[src_id]; std::swap(dst_cell.pos, src_cell.pos); std::swap(dst_cell.src, src_cell.src); std::swap(dst_cell.seq_id, src_cell.seq_id); // swap tails (assuming they NEVER overlap) for (const llama_seq_id seq_id : src_cell.seq_id) { cells[seq_id].tail = src_id; } for (const llama_seq_id seq_id : dst_cell.seq_id) { cells[seq_id].tail = dst_id; } } } // update the pos of the used seqs for (uint32_t s = 0; s < n_seqs; ++s) { const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; int32_t cell_id = s + min; kv_cell & cell = cells[cell_id]; if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { // What should happen when the pos backtracks or skips a value? // Clearing the state mid-batch would require special-casing which isn't done. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens); } cell.pos = last_pos; cell.seq_id.clear(); for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) { const llama_seq_id seq_id = ubatch.seq_id[s][j]; cell.seq_id.insert(seq_id); cells[seq_id].tail = cell_id; } } // allow getting the range of used cells, from head to head + n head = min; n = max - min + 1; used = std::count_if(cells.begin(), cells.end(), [](const kv_cell & cell){ return !cell.is_empty(); }); // sanity check return n >= n_seqs; } int32_t llama_kv_cache_recurrent::get_n_tokens() const { int32_t result = 0; for (uint32_t i = 0; i < size; i++) { result += cells[i].seq_id.size(); } return result; } int32_t llama_kv_cache_recurrent::get_used_cells() const { return used; } llama_pos llama_kv_cache_recurrent::get_pos_max() const { llama_pos pos_max = -1; for (const auto & cell : cells) { pos_max = std::max(pos_max, cell.pos); } return pos_max; } bool llama_kv_cache_recurrent::get_can_shift() const { return false; } int32_t llama_kv_cache_recurrent::s_copy(int i) const { const uint32_t cell_id = i + head; ////////////////////////////////////////////// // TODO: this should not mutate the KV cache ! kv_cell & cell = const_cast(cells[cell_id]); // prevent out-of-bound sources if (cell.src < 0 || (uint32_t) cell.src >= size) { cell.src = cell_id; } int32_t res = cell.src; // TODO: do not mutate the KV cache // ensure copy only happens once if (cell.src != (int32_t) cell_id) { cell.src = cell_id; } return res; } float llama_kv_cache_recurrent::s_mask(int i) const { const uint32_t cell_id = i + head; ////////////////////////////////////////////// // TODO: this should not mutate the KV cache ! kv_cell & cell = const_cast(cells[cell_id]); float res = (float) (cell.src >= 0); // only clear once if (cell.src < 0) { cell.src = cell_id; } return res; } uint32_t llama_kv_cache_recurrent::cell_max() const { for (uint32_t i = size; i > 0; --i) { const kv_cell & cell = cells[i - 1]; if (cell.pos >= 0 && !cell.is_empty()) { return i; } } return 0; } size_t llama_kv_cache_recurrent::total_size() const { size_t size = 0; for (const auto & buf : bufs) { size += ggml_backend_buffer_get_size(buf.get()); } return size; } size_t llama_kv_cache_recurrent::size_k_bytes() const { size_t size_k_bytes = 0; for (const auto & k : k_l) { size_k_bytes += ggml_nbytes(k); } return size_k_bytes; } size_t llama_kv_cache_recurrent::size_v_bytes() const { size_t size_v_bytes = 0; for (const auto & v : v_l) { size_v_bytes += ggml_nbytes(v); } return size_v_bytes; } void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { std::vector> cell_ranges; // ranges, from inclusive, to exclusive uint32_t cell_count = 0; // Count the number of cells with the specified seq_id // Find all the ranges of cells with this seq id (or all, when -1) uint32_t cell_range_begin = size; for (uint32_t i = 0; i < size; ++i) { const auto & cell = cells[i]; if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { ++cell_count; if (cell_range_begin == size) { cell_range_begin = i; } } else { if (cell_range_begin != size) { cell_ranges.emplace_back(cell_range_begin, i); cell_range_begin = size; } } } if (cell_range_begin != size) { cell_ranges.emplace_back(cell_range_begin, size); } // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count uint32_t cell_count_check = 0; for (const auto & range : cell_ranges) { cell_count_check += range.second - range.first; } GGML_ASSERT(cell_count == cell_count_check); io.write(&cell_count, sizeof(cell_count)); state_write_meta(io, cell_ranges, seq_id); state_write_data(io, cell_ranges); } void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { uint32_t cell_count; io.read_to(&cell_count, sizeof(cell_count)); bool res = true; res = res && state_read_meta(io, cell_count, seq_id); res = res && state_read_data(io, cell_count); if (!res) { if (seq_id == -1) { clear(); } else { seq_rm(seq_id, -1, -1); } throw std::runtime_error("failed to restore kv cache"); } } void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { for (const auto & range : cell_ranges) { for (uint32_t i = range.first; i < range.second; ++i) { const auto & cell = cells[i]; const llama_pos pos = cell.pos; const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; io.write(&pos, sizeof(pos)); io.write(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id) { for (auto seq_id : cell.seq_id) { io.write(&seq_id, sizeof(seq_id)); } } } } } void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { const uint32_t v_trans = 0; const uint32_t n_layer = hparams.n_layer; io.write(&v_trans, sizeof(v_trans)); io.write(&n_layer, sizeof(n_layer)); std::vector tmp_buf; // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Write key type const int32_t k_type_i = (int32_t)k_l[il]->type; io.write(&k_type_i, sizeof(k_type_i)); // Write row size of key const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); io.write(&k_size_row, sizeof(k_size_row)); // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * k_size_row; io.write_tensor(k_l[il], range.first * k_size_row, buf_size); } } if (!v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)v_l[il]->type; io.write(&v_type_i, sizeof(v_type_i)); // Write row size of value const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); io.write(&v_size_row, sizeof(v_size_row)); // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * v_size_row; io.write_tensor(v_l[il], range.first * v_size_row, buf_size); } } } else { // When v is transposed, we also need the element size and get the element ranges from each row const uint32_t kv_size = size; for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)v_l[il]->type; io.write(&v_type_i, sizeof(v_type_i)); // Write element size const uint32_t v_size_el = ggml_type_size(v_l[il]->type); io.write(&v_size_el, sizeof(v_size_el)); // Write GQA embedding size io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); // For each row, we get the element values of each cell for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { // Read each range of cells of v_size_el length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; const size_t buf_size = range_size * v_size_el; io.write_tensor(v_l[il], src_offset, buf_size); } } } } } bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { if (dest_seq_id != -1) { // single sequence seq_rm(dest_seq_id, -1, -1); llama_sbatch sbatch; llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); batch.n_tokens = cell_count; batch.n_seq_tokens = cell_count; batch.n_seqs = 1; for (uint32_t i = 0; i < cell_count; ++i) { llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id != 0) { LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); return false; } batch.pos[i] = pos; } batch.n_seq_id[0] = 1; batch.seq_id[0] = &dest_seq_id; if (!find_slot(batch)) { LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); return false; } commit(); // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) // Assume that this is one contiguous block of cells GGML_ASSERT(head + cell_count <= size); GGML_ASSERT(cells[head].pos == batch.pos[0]); GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); } else { // whole KV cache restore if (cell_count > size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); return false; } clear(); for (uint32_t i = 0; i < cell_count; ++i) { kv_cell & cell = cells[i]; llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); cell.pos = pos; for (uint32_t j = 0; j < n_seq_id; ++j) { llama_seq_id seq_id; io.read_to(&seq_id, sizeof(seq_id)); // TODO: llama_kv_cache_recurrent should have a notion of max sequences //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { if (seq_id < 0) { //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); return false; } cell.seq_id.insert(seq_id); int32_t & tail = cells[seq_id].tail; if (tail != -1) { LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); return false; } tail = i; } } head = 0; used = cell_count; } for (uint32_t i = 0; i < cell_count; ++i) { uint32_t cell_id = head + i; // make sure the recurrent states will keep their restored state cells[cell_id].src = cell_id; } return true; } bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { uint32_t v_trans; uint32_t n_layer; io.read_to(&v_trans, sizeof(v_trans)); io.read_to(&n_layer, sizeof(n_layer)); if (n_layer != hparams.n_layer) { LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); return false; } if (cell_count > size) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); return false; } if (false != (bool) v_trans) { LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); return false; } // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Read type of key int32_t k_type_i_ref; io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); const int32_t k_type_i = (int32_t) k_l[il]->type; if (k_type_i != k_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); return false; } // Read row size of key uint64_t k_size_row_ref; io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); if (k_size_row != k_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); return false; } if (cell_count) { // Read and set the keys for the whole cell range ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); } } if (!v_trans) { for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read row size of value uint64_t v_size_row_ref; io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); if (v_size_row != v_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); return false; } if (cell_count) { // Read and set the values for the whole cell range ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); } } } else { // For each layer, read the values for each cell (transposed) for (uint32_t il = 0; il < n_layer; ++il) { const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)v_l[il]->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read element size of value uint32_t v_size_el_ref; io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); const size_t v_size_el = ggml_type_size(v_l[il]->type); if (v_size_el != v_size_el_ref) { LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); return false; } // Read GQA embedding size uint32_t n_embd_v_gqa_ref; io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); if (n_embd_v_gqa != n_embd_v_gqa_ref) { LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); return false; } if (cell_count) { // For each row in the transposed matrix, read the values for the whole cell range for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { const size_t dst_offset = (head + j * size) * v_size_el; ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); } } } } return true; } // // kv cache view // llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max) { llama_kv_cache_view result = { /*.n_cells = */ 0, /*.n_seq_max = */ n_seq_max, /*.token_count = */ 0, /*.used_cells = */ kv.get_used_cells(), /*.max_contiguous = */ 0, /*.max_contiguous_idx = */ -1, /*.cells = */ nullptr, /*.cells_sequences = */ nullptr, }; return result; } void llama_kv_cache_view_free(llama_kv_cache_view * view) { if (view->cells != nullptr) { free(view->cells); view->cells = nullptr; } if (view->cells_sequences != nullptr) { free(view->cells_sequences); view->cells_sequences = nullptr; } } void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv) { // TODO: rework this in the future, for now quick hack const llama_kv_cache_unified * kvu = dynamic_cast(kv); if (kvu == nullptr) { LLAMA_LOG_ERROR("%s: the kv_cache_view currently works only with llama_kv_cache_unified\n", __func__); return; } if (uint32_t(view->n_cells) < kvu->size || view->cells == nullptr) { view->n_cells = int32_t(kvu->size); void * p = realloc(view->cells, sizeof(llama_kv_cache_view_cell) * view->n_cells); GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); view->cells = (llama_kv_cache_view_cell *)p; p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); view->cells_sequences = (llama_seq_id *)p; } const std::vector & kv_cells = kvu->cells; llama_kv_cache_view_cell * c_curr = view->cells; llama_seq_id * cs_curr = view->cells_sequences; int32_t used_cells = 0; int32_t token_count = 0; int32_t curr_contig_idx = -1; uint32_t max_contig = 0; int32_t max_contig_idx = -1; for (int32_t i = 0; i < int32_t(kvu->size); i++, c_curr++, cs_curr += view->n_seq_max) { const size_t curr_size = kv_cells[i].seq_id.size(); token_count += curr_size; c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; if (curr_size > 0) { if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { max_contig = i - curr_contig_idx; max_contig_idx = curr_contig_idx; } curr_contig_idx = -1; } else if (curr_contig_idx < 0) { curr_contig_idx = i; } int seq_idx = 0; for (const llama_seq_id it : kv_cells[i].seq_id) { if (seq_idx >= view->n_seq_max) { break; } cs_curr[seq_idx] = it; seq_idx++; } if (seq_idx != 0) { used_cells++; } for (; seq_idx < view->n_seq_max; seq_idx++) { cs_curr[seq_idx] = -1; } } if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { max_contig_idx = curr_contig_idx; max_contig = kv_cells.size() - curr_contig_idx; } view->max_contiguous = max_contig; view->max_contiguous_idx = max_contig_idx; view->token_count = token_count; view->used_cells = used_cells; if (uint32_t(used_cells) != kvu->used) { LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", __func__, kvu->used, used_cells); } }