#include "llama-model.h" #include "llama-impl.h" #include "llama-mmap.h" #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model-loader.h" #include "llama-kv-cache.h" #include "ggml-cpp.h" #include #include #include #include #include #include #include #include #include #include #include const char * llm_type_name(llm_type type) { switch (type) { case LLM_TYPE_14M: return "14M"; case LLM_TYPE_17M: return "17M"; case LLM_TYPE_22M: return "22M"; case LLM_TYPE_33M: return "33M"; case LLM_TYPE_60M: return "60M"; case LLM_TYPE_70M: return "70M"; case LLM_TYPE_80M: return "80M"; case LLM_TYPE_109M: return "109M"; case LLM_TYPE_137M: return "137M"; case LLM_TYPE_160M: return "160M"; case LLM_TYPE_190M: return "190M"; case LLM_TYPE_220M: return "220M"; case LLM_TYPE_250M: return "250M"; case LLM_TYPE_270M: return "270M"; case LLM_TYPE_335M: return "335M"; case LLM_TYPE_410M: return "410M"; case LLM_TYPE_450M: return "450M"; case LLM_TYPE_770M: return "770M"; case LLM_TYPE_780M: return "780M"; case LLM_TYPE_0_5B: return "0.5B"; case LLM_TYPE_1B: return "1B"; case LLM_TYPE_1_3B: return "1.3B"; case LLM_TYPE_1_4B: return "1.4B"; case LLM_TYPE_1_5B: return "1.5B"; case LLM_TYPE_1_6B: return "1.6B"; case LLM_TYPE_1_8B: return "1.8B"; case LLM_TYPE_2B: return "2B"; case LLM_TYPE_2_8B: return "2.8B"; case LLM_TYPE_2_9B: return "2.9B"; case LLM_TYPE_3B: return "3B"; case LLM_TYPE_4B: return "4B"; case LLM_TYPE_6B: return "6B"; case LLM_TYPE_6_9B: return "6.9B"; case LLM_TYPE_7B: return "7B"; case LLM_TYPE_8B: return "8B"; case LLM_TYPE_9B: return "9B"; case LLM_TYPE_11B: return "11B"; case LLM_TYPE_12B: return "12B"; case LLM_TYPE_13B: return "13B"; case LLM_TYPE_14B: return "14B"; case LLM_TYPE_15B: return "15B"; case LLM_TYPE_16B: return "16B"; case LLM_TYPE_20B: return "20B"; case LLM_TYPE_30B: return "30B"; case LLM_TYPE_32B: return "32B"; case LLM_TYPE_34B: return "34B"; case LLM_TYPE_35B: return "35B"; case LLM_TYPE_40B: return "40B"; case LLM_TYPE_65B: return "65B"; case LLM_TYPE_70B: return "70B"; case LLM_TYPE_236B: return "236B"; case LLM_TYPE_314B: return "314B"; case LLM_TYPE_671B: return "671B"; case LLM_TYPE_SMALL: return "0.1B"; case LLM_TYPE_MEDIUM: return "0.4B"; case LLM_TYPE_LARGE: return "0.8B"; case LLM_TYPE_XL: return "1.5B"; case LLM_TYPE_A1_7B: return "A1.7B"; case LLM_TYPE_A2_7B: return "A2.7B"; case LLM_TYPE_8x7B: return "8x7B"; case LLM_TYPE_8x22B: return "8x22B"; case LLM_TYPE_16x12B: return "16x12B"; case LLM_TYPE_16x3_8B: return "16x3.8B"; case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B"; case LLM_TYPE_57B_A14B: return "57B.A14B"; case LLM_TYPE_27B: return "27B"; case LLM_TYPE_290B: return "290B"; case LLM_TYPE_17B_16E: return "17Bx16E (Scout)"; case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)"; default: return "?B"; } } static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) { switch (type) { case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax"; case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid"; default: return "unknown"; } } static const std::map LLAMA_ROPE_SCALING_TYPES = { { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" }, }; static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { return (llama_rope_scaling_type) kv.first; } } return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } // checks if the weight tensor can be used with the specified buffer type and device static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) { GGML_ASSERT(w != nullptr); if (op == GGML_OP_NONE) { return true; } ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx_ptr { ggml_init(params) }; if (!ctx_ptr) { throw std::runtime_error(format("failed to create ggml context")); } ggml_context * ctx = ctx_ptr.get(); ggml_tensor * op_tensor = nullptr; switch (op) { case GGML_OP_GET_ROWS: { ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); op_tensor = ggml_get_rows(ctx, w, b); } break; case GGML_OP_MUL_MAT: { ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]); op_tensor = ggml_mul_mat(ctx, w, b); } break; case GGML_OP_MUL_MAT_ID: { int n_expert_used = hparams.n_expert_used; ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512); ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512); op_tensor = ggml_mul_mat_id(ctx, w, b, ids); } break; case GGML_OP_ADD: { ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]); op_tensor = ggml_add(ctx, a, w); } break; case GGML_OP_MUL: { ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]); op_tensor = ggml_mul(ctx, a, w); } break; case GGML_OP_DIV: { ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]); op_tensor = ggml_div(ctx, a, w); } break; case GGML_OP_ROPE: { int n_embd_head = hparams.n_embd_head_v; int n_head = hparams.n_head(); ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512); ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); op_tensor = ggml_rope_ext( ctx, a, b, w, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } break; case GGML_OP_SSM_CONV: { // FIXME ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789); op_tensor = ggml_ssm_conv(ctx, conv_x, w); } break; case GGML_OP_SSM_SCAN: { // FIXME const int64_t d_state = w->ne[0]; const int64_t d_inner = w->ne[1]; const int64_t n_seq_tokens = 512; const int64_t n_seqs = 1; ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs); ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs); ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs); ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs); ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs); op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C); } break; case GGML_OP_RWKV_WKV6: { // FIXME const int64_t S = 123; const int64_t H = 123; const int64_t n_tokens = 123; const int64_t n_seqs = 123; ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * tf = w; ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens); ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H); op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state); } break; case GGML_OP_IM2COL: { const int n_embd = hparams.n_embd; ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1); op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16); } break; default: GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name); } // create a temporary dummy buffer for the weight so that supports_op can check the buffer type GGML_ASSERT(w->buffer == nullptr); w->buffer = ggml_backend_buft_alloc_buffer(buft, 0); bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); ggml_backend_buffer_free(w->buffer); w->buffer = nullptr; return op_supported; } // lists of buffer types used for each layer using buft_list_t = std::vector>; // find the first buffer type in the list that can use the tensor static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) { GGML_ASSERT(!buft_list.empty()); for (const auto & cur : buft_list) { ggml_backend_dev_t cur_dev = cur.first; ggml_backend_buffer_type_t cur_buft = cur.second; if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) { return cur_buft; } } return nullptr; } // CPU: ACCEL -> GPU host -> CPU extra -> CPU static buft_list_t make_cpu_buft_list(const std::vector & devices) { buft_list_t buft_list; // add ACCEL buffer types for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { auto * buft = ggml_backend_dev_buffer_type(dev); // skip if (buft != ggml_backend_cpu_buffer_type()) { buft_list.emplace_back(dev, buft); } } } // add a host buffer type // storing the tensors in a host buffer is useful when the processing of large batches // is offloaded to a GPU device, since it reduces the time spent on data transfers // generally, this will be done using the first device in the list // a better approach would be to handle this on a weight-by-weight basis using the offload_op // function of the device to determine if it would benefit from being stored in a host buffer for (auto * dev : devices) { ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev); if (buft) { buft_list.emplace_back(dev, buft); break; } } // add extra buffer types, only if no GPU device is present // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094 auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts"); if (ggml_backend_dev_get_extra_bufts_fn) { ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev); while (extra_bufts && *extra_bufts) { buft_list.emplace_back(cpu_dev, *extra_bufts); ++extra_bufts; } } // add the CPU buffer type for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); } } return buft_list; } // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) { buft_list_t buft_list; // add the device split buffer type if requested and available if (split_mode == LLAMA_SPLIT_MODE_ROW) { ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type"); if (ggml_backend_split_buffer_type_fn) { size_t dev_index = [&]() { auto * reg = ggml_backend_dev_backend_reg(dev); for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) { if (ggml_backend_reg_dev_get(reg, i) == dev) { return i; } } throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev))); }(); auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split); if (buft != nullptr) { buft_list.emplace_back(dev, buft); } } } // add the device default buffer type buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); return buft_list; } struct llama_model::impl { impl() {} ~impl() {} uint64_t n_elements = 0; size_t n_bytes = 0; std::string desc_str; // model memory mapped files llama_mmaps mappings; // objects representing data potentially being locked in memory llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; // contexts where the model tensors metadata is stored std::vector ctxs; // the model memory buffers for the tensor data std::vector bufs; buft_list_t cpu_buft_list; std::map gpu_buft_list; struct layer_dev { ggml_backend_dev_t dev; buft_list_t * buft_list; }; layer_dev dev_input = {}; layer_dev dev_output = {}; std::vector dev_layer; bool has_tensor_overrides; }; llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique()) { pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern; } llama_model::~llama_model() {} void llama_model::load_stats(llama_model_loader & ml) { pimpl->n_elements = ml.n_elements; pimpl->n_bytes = ml.n_bytes; } void llama_model::load_arch(llama_model_loader & ml) { arch = ml.get_arch(); if (arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } void llama_model::load_hparams(llama_model_loader & ml) { const gguf_context * ctx = ml.meta.get(); // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { gguf_type type = gguf_get_kv_type(ctx, i); if (type == GGUF_TYPE_ARRAY) { continue; } const char * name = gguf_get_key(ctx, i); const std::string value = gguf_kv_to_str(ctx, i); gguf_kv.emplace(name, value); } // get general kv ml.get_key(LLM_KV_GENERAL_NAME, name, false); // everything past this point is not vocab-related if (hparams.vocab_only) { return; } ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); if (arch == LLM_ARCH_WAVTOKENIZER_DEC) { ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features); ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd); ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer); ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd); ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer); } GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); } else { GGML_ASSERT(hparams.n_expert_used == 0); } // zero-out the array hparams std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0); std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0); std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); // n_head_kv is optional, default to n_head hparams.n_head_kv_arr = hparams.n_head_arr; ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false); bool rope_finetuned = false; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; hparams.n_ctx_orig_yarn = hparams.n_ctx_train; ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { // try the old key name ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train; hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train; ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); // non-transformer models do not have attention heads if (hparams.n_head() > 0) { // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim hparams.n_embd_head_k = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); hparams.n_embd_head_v = hparams.n_embd / hparams.n_head(); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); // sanity check for n_rot (optional) hparams.n_rot = hparams.n_embd_head_k; ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } } } else { hparams.n_rot = 0; hparams.n_embd_head_k = 0; hparams.n_embd_head_v = 0; } // for differentiating model types uint32_t n_vocab = 0; ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false); // arch-specific KVs switch (arch) { case LLM_ARCH_LLAMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 8) { switch (hparams.n_layer) { case 32: type = LLM_TYPE_8x7B; break; case 56: type = LLM_TYPE_8x22B; break; default: type = LLM_TYPE_UNKNOWN; } } else { switch (hparams.n_layer) { case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B case 22: type = LLM_TYPE_1B; break; case 26: type = LLM_TYPE_3B; break; case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B // granite uses a vocab with len 49152 case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break; case 36: type = LLM_TYPE_8B; break; // granite case 40: type = LLM_TYPE_13B; break; case 48: type = LLM_TYPE_34B; break; case 60: type = LLM_TYPE_30B; break; case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } } break; case LLM_ARCH_LLAMA4: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step); hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later switch (hparams.n_expert) { case 16: type = LLM_TYPE_17B_16E; break; case 128: type = LLM_TYPE_17B_128E; break; default: type = LLM_TYPE_UNKNOWN; } if (type == LLM_TYPE_17B_128E) { hparams.use_kq_norm = false; } } break; case LLM_ARCH_DECI: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 80: type = LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale); ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); switch (hparams.n_layer) { case 52: type = LLM_TYPE_1B; break; case 40: type = LLM_TYPE_2B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MINICPM3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); switch (hparams.n_layer) { case 62: type = LLM_TYPE_4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GROK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 64: type = LLM_TYPE_314B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_FALCON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 60: type = LLM_TYPE_40B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } if (type == LLM_TYPE_13B) { // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } } break; case LLM_ARCH_STARCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 36: type = LLM_TYPE_3B; break; case 42: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_15B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_1B; break; default: type = LLM_TYPE_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: type = LLM_TYPE_17M; break; // bge-micro case 6: type = LLM_TYPE_22M; break; // MiniLM-L6 case 12: switch (hparams.n_embd) { case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small case 768: type = LLM_TYPE_109M; break; // bge-base default: type = LLM_TYPE_UNKNOWN; } break; case 24: type = LLM_TYPE_335M; break; // bge-large default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_JINA_BERT_V2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); hparams.f_max_alibi_bias = 8.0f; switch (hparams.n_layer) { case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_NOMIC_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { type = LLM_TYPE_137M; } } break; case LLM_ARCH_BLOOM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 30: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_30B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_STABLELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_12B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN2VL: { ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true); } // fall through case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break; case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break; case 32: type = LLM_TYPE_7B; break; case 36: type = LLM_TYPE_3B; break; case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break; case 48: type = LLM_TYPE_14B; break; case 64: type = LLM_TYPE_32B; break; case 80: type = LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN2MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_A2_7B; break; case 28: type = LLM_TYPE_57B_A14B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_QWEN3MOE: { ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PHI3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_14B; break; default: type = LLM_TYPE_UNKNOWN; } // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931 if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) { // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct hparams.n_swa = 2047; } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) { // default value for Phi-3-mini-128k-instruct // note: this seems incorrect because the window is bigger than the train context? hparams.n_swa = 262144; } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) { // default value for Phi-3-medium-128k-instruct // note: this seems incorrect because the window is equal to the train context? hparams.n_swa = 131072; } bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); if (!found_swa && hparams.n_swa == 0) { throw std::runtime_error("invalid value for sliding_window"); } } break; case LLM_ARCH_PHIMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_16x3_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PLAMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_13B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GPT2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 12: type = LLM_TYPE_SMALL; break; case 24: type = LLM_TYPE_MEDIUM; break; case 36: type = LLM_TYPE_LARGE; break; case 48: type = LLM_TYPE_XL; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_CODESHELL: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 42: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_ORION: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_14B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_INTERNLM2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: type = LLM_TYPE_2B; break; case 28: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA2: { hparams.n_swa = 4096; // default value of gemma 2 hparams.n_swa_pattern = 2; hparams.attn_soft_cap = true; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false); ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false); switch (hparams.n_layer) { case 26: type = LLM_TYPE_2B; break; case 42: type = LLM_TYPE_9B; break; case 46: type = LLM_TYPE_27B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GEMMA3: { hparams.n_swa_pattern = 6; hparams.rope_freq_base_train_swa = 10000.0f; hparams.rope_freq_scale_train_swa = 1.0f; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 26: type = LLM_TYPE_1B; break; case 34: type = LLM_TYPE_4B; break; case 48: type = LLM_TYPE_12B; break; case 62: type = LLM_TYPE_27B; break; default: type = LLM_TYPE_UNKNOWN; } hparams.f_attention_scale = type == LLM_TYPE_27B ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0))) : 1.0f / std::sqrt(float(hparams.n_embd_head_k)); } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 30: type = LLM_TYPE_3B; break; case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_15B; break; case 52: type = LLM_TYPE_20B; break; // granite case 88: type = LLM_TYPE_34B; break; // granite default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_MAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: type = LLM_TYPE_SMALL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_MEDIUM; break; case 1536: type = LLM_TYPE_LARGE; break; case 2048: type = LLM_TYPE_XL; break; default: type = LLM_TYPE_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_XVERSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; case 80: type = LLM_TYPE_65B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_COMMAND_R: { ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_35B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_COHERE2: { hparams.n_swa_pattern = 4; ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DBRX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); switch (hparams.n_layer) { case 40: type = LLM_TYPE_16x12B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); switch (hparams.n_layer) { case 22: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_7B; break; case 80: type = LLM_TYPE_70B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMO2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: type = LLM_TYPE_1B; break; case 32: type = LLM_TYPE_7B; break; case 40: type = LLM_TYPE_13B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OLMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: type = LLM_TYPE_A1_7B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_OPENELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 16: type = LLM_TYPE_270M; break; case 20: type = LLM_TYPE_450M; break; case 28: type = LLM_TYPE_1B; break; case 36: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GPTNEOX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); switch (hparams.n_layer) { case 6: switch (hparams.n_ff()) { case 512: type = LLM_TYPE_14M; break; case 2048: type = LLM_TYPE_70M; break; default: type = LLM_TYPE_UNKNOWN; } break; case 12: switch (hparams.n_ff()) { case 3072: type = LLM_TYPE_160M; break; default: type = LLM_TYPE_UNKNOWN; } break; case 16: switch (hparams.n_ff()) { case 8192: type = LLM_TYPE_1B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: type = LLM_TYPE_410M; break; case 8192: type = LLM_TYPE_1_4B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 32: switch (hparams.n_ff()) { case 10240: type = LLM_TYPE_2_8B; break; case 16384: type = LLM_TYPE_6_9B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 36: switch (hparams.n_ff()) { case 20480: type = LLM_TYPE_12B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 44: switch (hparams.n_ff()) { case 24576: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_ARCTIC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 128) { switch (hparams.n_layer) { case 35: type = LLM_TYPE_10B_128x3_66B; break; default: type = LLM_TYPE_UNKNOWN; } } else { type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); switch (hparams.n_layer) { case 28: type = LLM_TYPE_20B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); if (!is_lite) { ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); } ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false); ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) { // for compatibility with existing DeepSeek V2 and V2.5 GGUFs // that have no expert_gating_func model parameter set hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX; } ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); switch (hparams.n_layer) { case 27: type = LLM_TYPE_16B; break; case 60: type = LLM_TYPE_236B; break; case 61: type = LLM_TYPE_671B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_PLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); switch (hparams.n_layer) { case 32: type = LLM_TYPE_1_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_CHATGLM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 28: { if (hparams.n_head(0) == 16) { type = LLM_TYPE_1_5B; } else { type = LLM_TYPE_6B; } } break; case 40: { if (hparams.n_head(0) == 24) { type = LLM_TYPE_4B; } else { type = LLM_TYPE_9B; } } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GLM4: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: type = LLM_TYPE_9B; break; case 61: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_BITNET: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 26: type = LLM_TYPE_3B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_T5: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); uint32_t dec_start_token_id; if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) { hparams.dec_start_token_id = dec_start_token_id; } switch (hparams.n_layer) { case 6: type = LLM_TYPE_60M; break; // t5-small case 8: type = LLM_TYPE_80M; break; // flan-t5-small case 12: switch (hparams.n_ff()) { case 3072: type = LLM_TYPE_220M; break; // t5-base case 2048: type = LLM_TYPE_250M; break; // flan-t5-base default: type = LLM_TYPE_UNKNOWN; } break; case 24: switch (hparams.n_ff()) { case 4096: type = LLM_TYPE_770M; break; // t5-large case 2816: type = LLM_TYPE_780M; break; // flan-t5-large case 16384: type = LLM_TYPE_3B; break; // t5-3b case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl case 65536: type = LLM_TYPE_11B; break; // t5-11b case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl default: type = LLM_TYPE_UNKNOWN; } break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_T5ENCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); type = LLM_TYPE_UNKNOWN; } break; case LLM_ARCH_JAIS: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1_3B; break; case 40: type = LLM_TYPE_13B; break; /* TODO: add variants */ default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_NEMOTRON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_4B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_EXAONE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: type = LLM_TYPE_8B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false); ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim); ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim); ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false); ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false); switch (hparams.n_layer) { case 24: type = LLM_TYPE_1_6B; break; case 32: switch (hparams.n_embd) { case 2560: type = LLM_TYPE_3B; break; case 4096: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 61: type = LLM_TYPE_14B; break; case 64: type = LLM_TYPE_32B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false); ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay); ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr); ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix); ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false); ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false); switch (hparams.n_layer) { case 12: type = LLM_TYPE_190M; break; case 24: switch (hparams.n_embd) { case 1024: type = LLM_TYPE_450M; break; case 2048: type = LLM_TYPE_1_5B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 28: switch (hparams.n_embd) { case 1536: type = LLM_TYPE_1_5B; break; case 3584: type = LLM_TYPE_7B; break; default: type = LLM_TYPE_UNKNOWN; } break; case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale); ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale); ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); switch (hparams.n_layer) { case 32: type = LLM_TYPE_3B; break; case 40: type = LLM_TYPE_3B; break; // Add additional layer/vocab/etc checks here for other model sizes default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_CHAMELEON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm); switch (hparams.n_layer) { case 32: type = LLM_TYPE_7B; break; case 48: type = LLM_TYPE_34B; break; default: type = LLM_TYPE_UNKNOWN; } } break; case LLM_ARCH_WAVTOKENIZER_DEC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps); ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); } break; case LLM_ARCH_BAILINGMOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); switch (hparams.n_layer) { case 28: type = LLM_TYPE_16B; break; case 88: type = LLM_TYPE_290B; break; default: type = LLM_TYPE_UNKNOWN; } } break; default: throw std::runtime_error("unsupported model architecture"); } pimpl->n_bytes = ml.n_bytes; pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name(); if (hparams.f_max_alibi_bias > 0.0f) { hparams.use_alibi = true; } hparams.rope_type = llama_model_rope_type(this); } void llama_model::load_vocab(llama_model_loader & ml) { const auto kv = LLM_KV(arch); vocab.load(ml, kv); } bool llama_model::load_tensors(llama_model_loader & ml) { const auto & split_mode = params.split_mode; const auto & n_gpu_layers = params.n_gpu_layers; const auto & use_mlock = params.use_mlock; const auto & tensor_split = params.tensor_split; const int n_layer = hparams.n_layer; const bool use_mmap_buffer = true; LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false"); // build a list of buffer types for the CPU and GPU devices pimpl->cpu_buft_list = make_cpu_buft_list(devices); for (auto * dev : devices) { buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split); // add CPU buffer types as a fallback buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end()); pimpl->gpu_buft_list.emplace(dev, std::move(buft_list)); } // calculate the split points bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; }); std::vector splits(n_devices()); if (all_zero) { // default split, by free memory for (size_t i = 0; i < n_devices(); ++i) { ggml_backend_dev_t dev = devices[i]; size_t total; size_t free; ggml_backend_dev_memory(dev, &free, &total); splits[i] = free; } } else { std::copy(tensor_split, tensor_split + n_devices(), splits.begin()); } // sum and normalize the splits to get the split points float split_sum = 0.0f; for (size_t i = 0; i < n_devices(); ++i) { split_sum += splits[i]; splits[i] = split_sum; } for (size_t i = 0; i < n_devices(); ++i) { splits[i] /= split_sum; } ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0); const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1); auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev { const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il); if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) { LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa); return {cpu_dev, &pimpl->cpu_buft_list}; } const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin(); auto * dev = devices.at(layer_gpu); LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa); return {dev, &pimpl->gpu_buft_list.at(dev)}; }; // assign the input layer // there is very little benefit to offloading the input layer, so always keep it on the CPU pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list }; // assign the repeating layers to the devices according to the splits pimpl->dev_layer.resize(n_layer); for (int il = 0; il < n_layer; ++il) { pimpl->dev_layer[il] = get_layer_buft_list(il); } // assign the output layer pimpl->dev_output = get_layer_buft_list(n_layer); // one ggml context per buffer type int max_n_tensors = ml.n_tensors; max_n_tensors += 1; // duplicated output tensor max_n_tensors += n_layer*2; // duplicated rope freq tensors const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors; std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { throw std::runtime_error(format("failed to create ggml context")); } ctx_map[buft] = ctx; pimpl->ctxs.emplace_back(ctx); return ctx; } return it->second; }; const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED; const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED; // create tensors for the weights { // note: cast to int64_t since we will use these for the tensor dimensions const int64_t n_head = hparams.n_head(); const int64_t n_head_kv = hparams.n_head_kv(); const int64_t n_embd = hparams.n_embd; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_head_v = hparams.n_embd_head_v; const int64_t n_ff = hparams.n_ff(); const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_vocab = vocab.n_tokens(); const int64_t n_token_types = vocab.n_token_types(); const int64_t n_rot = hparams.n_rot; const int64_t n_expert = hparams.n_expert; const int64_t n_expert_used = hparams.n_expert_used; const int64_t n_ctx_train = hparams.n_ctx_train; if (n_expert > 0 && hparams.n_expert_used == 0) { throw std::runtime_error("model has expert layers but no expert layers are used"); } int n_moved_tensors = 0; ggml_tensor * first_moved_tensor = nullptr; ggml_backend_buffer_type_t first_moved_from_buft = nullptr; ggml_backend_buffer_type_t first_moved_to_buft = nullptr; auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list & ne, int flags) -> ggml_tensor * { ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str()); if (!t_meta) { if (flags & TENSOR_NOT_REQUIRED) { return nullptr; } throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str())); } // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops // the tensor is duplicated // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor llm_tensor tn_tensor = tn.tensor; if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) { tn_tensor = LLM_TENSOR_OUTPUT; } llm_tensor_info info; try { info = llm_tensor_info_for(tn_tensor); } catch (const std::out_of_range & e) { throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str())); } // skip unused tensors if (info.op == GGML_OP_NONE) { const size_t nbytes = ggml_nbytes(t_meta); LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes); ml.size_data -= nbytes; ml.n_created++; return nullptr; } // tensors with "bias" suffix are always used with GGML_OP_ADD ggml_op op; bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0; if (bias) { op = GGML_OP_ADD; } else { op = info.op; } // sanity checks if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) { if (tn.bid != -1) { GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str()); } } else { if (tn.bid == -1) { GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str()); } } // select the buffer type for this tensor buft_list_t * buft_list; switch (info.layer) { case LLM_TENSOR_LAYER_INPUT: buft_list = pimpl->dev_input.buft_list; break; case LLM_TENSOR_LAYER_OUTPUT: buft_list = pimpl->dev_output.buft_list; break; case LLM_TENSOR_LAYER_REPEATING: buft_list = pimpl->dev_layer.at(tn.bid).buft_list; break; default: GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str()); } ggml_backend_buffer_type_t buft = nullptr; // check overrides if (ml.tensor_buft_overrides) { std::string tensor_name = tn.str(); for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) { std::regex pattern(overrides->pattern); if (std::regex_search(tensor_name, pattern)) { LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft)); buft = overrides->buft; break; } } } if (!buft) { buft = select_weight_buft(hparams, t_meta, op, *buft_list); if (!buft) { throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str())); } } // avoid using a host buffer when using mmap auto * buft_dev = ggml_backend_buft_get_device(buft); if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) { auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); buft = ggml_backend_dev_buffer_type(cpu_dev); } if (buft != buft_list->front().second) { n_moved_tensors++; if (!first_moved_tensor) { first_moved_tensor = t_meta; first_moved_from_buft = buft_list->front().second; first_moved_to_buft = buft; } } ggml_context * ctx = ctx_for_buft(buft); // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one if (flags & TENSOR_DUPLICATED) { ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str()); if (t) { return t; } } return ml.create_tensor(ctx, tn, ne, flags); }; layers.resize(n_layer); // TODO: move to a separate function const auto tn = LLM_TN(arch); switch (arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } else { layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } if (n_expert == 0) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } } break; case LLM_ARCH_LLAMA4: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0"); for (int i = 0; i < n_layer; ++i) { bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0; auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); if (is_moe_layer) { int n_ff_exp = hparams.n_ff_exp; layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); // Shared expert const int64_t n_ff_shexp = n_ff_exp; layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); } else { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } } break; case LLM_ARCH_DECI: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); const int64_t n_ff = hparams.n_ff(i); const int64_t n_head = hparams.n_head(i); const int64_t n_head_kv = hparams.n_head_kv(i); if (n_head_kv == 0 && n_head > 0) { // linear attention for DeciLMCausalModel layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); } else if (n_head_kv > 0) { layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); } // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } else { layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_MINICPM3: { const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const int64_t q_lora_rank = hparams.n_lora_q; const int64_t kv_lora_rank = hparams.n_lora_kv; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0); layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_GROK: { if (n_expert == 0) { throw std::runtime_error("Grok model cannot have zero experts"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_DBRX: { if (n_expert == 0) { throw std::runtime_error("DBRX model cannot have zero experts"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_BAICHUAN: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_FALCON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_STARCODER: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output { output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { // needs to be on GPU output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); if (arch == LLM_ARCH_BERT) { pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED); cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED); } tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; if (arch == LLM_ARCH_BERT) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } else { layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); if (arch == LLM_ARCH_BERT) { layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); } else { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); } layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_JINA_BERT_V2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // JinaBertLayer layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_BLOOM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_MPT: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); if (!output) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); // AWQ ScaleActivation layer layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_STABLELM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors, present in Stable LM 2 1.6B layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); // optional q and k layernorms, present in StableLM 2 12B layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED); // optional FFN norm, not present in StableLM 2 12B which uses parallel residual layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0); } } break; case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2VL: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN2MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0 for QWEN2MOE"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE"); } // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff; layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); } } break; case LLM_ARCH_QWEN3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN3MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0 for QWEN3MOE"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE"); } // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); } } break; case LLM_ARCH_PHI2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_PHI3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PHIMOE: { const int64_t n_embd_head = n_embd / n_head; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PLAMO: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GPT2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CODESHELL: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if tok embd is NULL, init from output if (tok_embd == NULL) { tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ORION: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_INTERNLM2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GEMMA: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); } } break; case LLM_ARCH_GEMMA2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_GEMMA3: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_STARCODER2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional bias tensors layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0); } } break; case LLM_ARCH_MAMBA: { const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; // only an expansion factor of 2 is supported for now if (2 * n_embd != d_inner) { throw std::runtime_error("only an expansion factor of 2 is supported for now"); } tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; // norm layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0); layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0); layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0); layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0); layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0); layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0); // no "weight" suffix for these layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0); layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0); // out_proj layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } } break; case LLM_ARCH_XVERSE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_COMMAND_R: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (n_layer >= 64){ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); } layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_COHERE2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); } } break; case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_OLMO2: { const int64_t n_embd_head = n_embd / n_head; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_OLMOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_OPENELM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // init output from the input tok embed output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { const int64_t n_head = hparams.n_head(i); const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head; const int64_t n_ff = hparams.n_ff(i); auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GPTNEOX: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ARCTIC: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0); layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_DEEPSEEK: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_DEEPSEEK2: { const bool is_lite = (hparams.n_layer == 27); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k; const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v; const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; const int64_t q_lora_rank = hparams.n_lora_q; const int64_t kv_lora_rank = hparams.n_lora_kv; const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (!is_lite) { layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); } layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); if (!is_lite) { layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0); } else { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0); } layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0); // note: only old legacy GGUF files will have the unsplit wkv_b tensor in if (is_mla) { layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0); layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0); } else { layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } // MoE branch layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_PLM: { const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const int64_t kv_lora_rank = hparams.n_lora_kv; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_BITNET: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_T5: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0); // this tensor seems to be unused in HF transformers implementation layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_T5ENCODER: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED); layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_JAIS: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CHATGLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); } } break; case LLM_ARCH_GLM4: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_NEMOTRON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED); layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_EXAONE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_RWKV6: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // Block 0, LN0 tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int time_mix_extra_dim = hparams.time_mix_extra_dim; const int time_decay_extra_dim = hparams.time_decay_extra_dim; const int head_size = hparams.wkv_head_size; const int attn_hidden_size = n_embd; const int ffn_size = hparams.n_ff_arr[0]; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0); layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0); layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED); GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL)); layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0); layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0); layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0); layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0); layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0); layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0); } } break; case LLM_ARCH_RWKV6QWEN2: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int time_mix_extra_dim = hparams.time_mix_extra_dim; const int time_decay_extra_dim = hparams.time_decay_extra_dim; const int head_size = hparams.wkv_head_size; const int attn_hidden_size = n_embd; const int n_head_kv = hparams.n_head_kv(); int attn_key_value_size; if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) { attn_key_value_size = attn_hidden_size; } else { attn_key_value_size = n_head_kv * head_size; } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0); layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0); layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED); layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0); layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0); layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0); // optional bias tensors layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED); layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED); layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_RWKV7: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // Block 0, LN0 tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int n_lora_decay = hparams.n_lora_decay; const int n_lora_iclr = hparams.n_lora_iclr; const int n_lora_value_res_mix = hparams.n_lora_value_res_mix; const int n_lora_gate = hparams.n_lora_gate; const int attn_hidden_size = n_embd; const int ffn_size = hparams.n_ff_arr[0]; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0); layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0); layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0); layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0); layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0); if (i == 0) { // actually not used layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0); } else { layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0); } layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0); layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0); layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0); layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0); layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0); layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0); } } break; case LLM_ARCH_ARWKV7: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int n_lora_decay = hparams.n_lora_decay; const int n_lora_iclr = hparams.n_lora_iclr; const int n_lora_value_res_mix = hparams.n_lora_value_res_mix; const int n_lora_gate = hparams.n_lora_gate; const int attn_hidden_size = n_embd; for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0); layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0); layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0); layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0); layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0); if (i == 0) { // actually not used layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0); } else { layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0); layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0); layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0); } layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED); layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED); try { layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0); } catch(std::runtime_error & e) { // ARWKV models may not have gate tensors layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0); } layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0); layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0); layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED); layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_CHAMELEON: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED); // if output is NULL, init from the input tok embed if (output == NULL) { output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED); layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_WAVTOKENIZER_DEC: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0); conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0); conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0); // posnet { const int64_t n_embd = hparams.posnet.n_embd; for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) { auto & layer = layers[i].posnet; // posnet: // // - resnet // - resnet // - attn // - resnet // - resnet // - norm // switch (i) { case 0: case 1: case 3: case 4: { layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0); layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0); layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0); layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0); layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0); layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0); layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0); layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0); } break; case 2: { layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0); layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0); layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0); layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0); layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0); } break; case 5: { layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0); layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0); } break; default: GGML_ABORT("unknown posnet layer"); }; } } GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd); tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0); tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0); // convnext { const int64_t n_embd = hparams.convnext.n_embd; for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) { auto & layer = layers[i].convnext; layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0); layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0); layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0); layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0); layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0); layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0); layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0); layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0); layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0); } // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); } output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0); output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0); } break; case LLM_ARCH_BAILINGMOE: { const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0); layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0); layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0); layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); if (n_expert == 0) { throw std::runtime_error("n_expert must be > 0"); } if (n_expert_used == 0) { throw std::runtime_error("n_expert_used must be > 0"); } layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } break; default: throw std::runtime_error("unknown architecture"); } if (n_moved_tensors > 0) { LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n", __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1, ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft)); } } ml.done_getting_tensors(); ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr); pimpl->mappings.reserve(ml.mappings.size()); // create the backend buffers std::vector> ctx_bufs; ctx_bufs.reserve(ctx_map.size()); // Ensure we have enough capacity for the maximum backend buffer we will potentially create const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); pimpl->bufs.reserve(n_max_backend_buffer); for (auto & it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; // skip contexts without tensors if (ggml_get_first_tensor(ctx) == nullptr) { continue; } llama_buf_map buf_map; buf_map.reserve(n_max_backend_buffer); // check if it is possible to use buffer_from_host_ptr with this buffer type ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft); if (!dev) { // FIXME: workaround for CPU backend buft having a NULL device dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); } ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr; bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev); if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size void * addr = nullptr; size_t first, last; // NOLINT ml.get_mapping_range(&first, &last, &addr, idx, ctx); if (first >= last) { continue; } const size_t max_size = ggml_get_max_tensor_size(ctx); ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } pimpl->bufs.emplace_back(buf); buf_map.emplace(idx, buf); } } else { ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } pimpl->bufs.emplace_back(buf); if (use_mlock && ggml_backend_buffer_is_host(buf)) { pimpl->mlock_bufs.emplace_back(new llama_mlock); auto & mlock_buf = pimpl->mlock_bufs.back(); mlock_buf->init (ggml_backend_buffer_get_base(buf)); mlock_buf->grow_to(ggml_backend_buffer_get_size(buf)); } for (uint32_t idx = 0; idx < ml.files.size(); idx++) { buf_map.emplace(idx, buf); } } if (pimpl->bufs.empty()) { throw std::runtime_error("failed to allocate buffer"); } for (auto & buf : buf_map) { // indicate that this buffer contains weights // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); } ctx_bufs.emplace_back(ctx, buf_map); } if (llama_supports_gpu_offload()) { const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__); } const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); } // print memory requirements per buffer type for (auto & buf : pimpl->bufs) { LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0); } // populate tensors_by_name for (auto & ctx : pimpl->ctxs) { for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) { tensors_by_name.emplace_back(ggml_get_name(cur), cur); } } // load tensor data for (auto & it : ctx_bufs) { ggml_context * ctx = it.first; auto & bufs = it.second; if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) { return false; } } if (use_mmap_buffer) { for (auto & mapping : ml.mappings) { pimpl->mappings.emplace_back(std::move(mapping)); } } return true; } std::string llama_model::arch_name() const { return llm_arch_name(arch); } std::string llama_model::type_name() const { return llm_type_name(type); } std::string llama_model::desc() const { return pimpl->desc_str; } size_t llama_model::size() const { return pimpl->n_bytes; } size_t llama_model::n_tensors() const { return tensors_by_name.size(); } size_t llama_model::n_devices() const { return devices.size(); } uint64_t llama_model::n_elements() const { return pimpl->n_elements; } void llama_model::print_info() const { const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train); auto print_f = [](const std::function & f, uint32_t n) { bool is_var = false; std::vector v; for (uint32_t i = 0; i < n; ++i) { v.push_back(f(i)); if (v[i] != v[0]) { is_var = true; } } std::stringstream ss; if (is_var) { ss << "["; for (uint32_t i = 0; i < n; ++i) { ss << v[i]; if (i < n - 1) { ss << ", "; } } ss << "]"; } else { ss << v[0]; } return ss.str(); }; // hparams LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str()); LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only); if (!hparams.vocab_only) { LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa); LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern); LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale); LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale); LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn); LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms); } LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str()); if (pimpl->n_elements >= 1e12) { LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12); } else if (pimpl->n_elements >= 1e9) { LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9); } else if (pimpl->n_elements >= 1e6) { LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6); } else { LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3); } // general kv LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str()); if (arch == LLM_ARCH_DEEPSEEK) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); } if (arch == LLM_ARCH_DEEPSEEK2) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv); LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla); LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func)); LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); } if (arch == LLM_ARCH_QWEN2MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } if (arch == LLM_ARCH_QWEN3MOE) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); } if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) { LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); } if (arch == LLM_ARCH_BAILINGMOE) { LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm); } vocab.print_info(); } ggml_backend_dev_t llama_model::dev_layer(int il) const { return pimpl->dev_layer.at(il).dev; } ggml_backend_dev_t llama_model::dev_output() const { return pimpl->dev_output.dev; } template static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx { ggml_init(params) }; if (!ctx) { throw std::runtime_error(format("failed to create ggml context")); } ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) }; ggml_tensor * op_tensor = fn(ctx.get()); for (int i = 0; i < GGML_MAX_SRC; i++) { if (op_tensor->src[i] != nullptr) { assert(op_tensor->src[i]->buffer == nullptr); op_tensor->src[i]->buffer = buf.get(); } } bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); return op_supported; } template static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) { for (const auto & cur : buft_list) { ggml_backend_dev_t cur_dev = cur.first; ggml_backend_buffer_type_t cur_buft = cur.second; if (buft_supported(cur_buft, cur_dev, fn)) { return cur_buft; } } throw std::runtime_error(format("no suitable buffer type found")); } ggml_backend_buffer_type_t llama_model::select_buft(int il) const { return ::select_buft( *pimpl->dev_layer.at(il).buft_list, [&](ggml_context * ctx) { ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); return ggml_add(ctx, cur, layer_dir); }); } bool llama_model::has_tensor_overrides() const { return pimpl->has_tensor_overrides; } const ggml_tensor * llama_model::get_tensor(const char * name) const { auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(), [name](const std::pair & it) { return it.first == name; }); if (it == tensors_by_name.end()) { return nullptr; } return it->second; } struct llm_build_llama : public llm_graph_context { llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); // temperature tuning ggml_tensor * inp_attn_scale = nullptr; if (arch == LLM_ARCH_LLAMA4) { inp_attn_scale = build_inp_attn_scale(); } auto * inp_attn = build_attn_inp_kv_unified(); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; bool use_rope = arch == LLM_ARCH_LLAMA4 ? (il + 1) % hparams.n_no_rope_layer_step != 0 : true; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // rope freq factors for llama3; may return nullptr for llama2 and other models ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); if (use_rope) { Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); } else if (inp_attn_scale) { Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) { // Llama4TextL2Norm Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps); Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps); cb(Qcur, "Qcur_normed", il); cb(Kcur, "Kcur_normed", il); } cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // For Granite architecture if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network (non-MoE) if (model.layers[il].ffn_gate_inp == nullptr) { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else if (arch == LLM_ARCH_LLAMA4) { // llama4 MoE ggml_tensor * ffn_inp_normed = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il); // Shared experts ggml_tensor * shexp_out = build_ffn(ffn_inp_normed, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(shexp_out, "ffn_moe_shexp", il); cur = ggml_add(ctx0, moe_out, shexp_out); cb(cur, "ffn_moe_out_merged", il); } else { // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); } // For Granite architecture if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); // For Granite architecture if (hparams.f_logit_scale) { cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_deci : public llm_graph_context { llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_head = hparams.n_head(il); if (n_head == 0) { // attention-free layer of Llama-3_1-Nemotron-51B cur = inpL; } else { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); } if (n_head > 0 && n_head_kv == 0) { // "linear attention" of Llama-3_1-Nemotron-51B cur = build_lora_mm(model.layers[il].wo, cur); cb(cur, "wo", il); } else if (n_head > 0) { // self-attention // rope freq factors for llama3; may return nullptr for llama2 and other models ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // For Granite architecture if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } // modified to support attention-free layer of Llama-3_1-Nemotron-51B ggml_tensor * ffn_inp = cur; if (n_head > 0) { ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); } // feed-forward network if (model.layers[il].ffn_gate_inp == nullptr) { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } // For Granite architecture if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); // For Granite architecture if (hparams.f_logit_scale) { cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_baichuan : public llm_graph_context { llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr; auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); switch (model.type) { case LLM_TYPE_7B: Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); break; case LLM_TYPE_13B: break; default: GGML_ABORT("fatal error"); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_xverse : public llm_graph_context { llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_falcon : public llm_graph_context { llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * attn_norm; attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(attn_norm, "attn_norm", il); // self-attention { if (model.layers[il].attn_norm_2) { // Falcon-40B cur = build_norm(inpL, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il); cb(cur, "attn_norm_2", il); } else { cur = attn_norm; } cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids); } ggml_tensor * ffn_inp = cur; // feed forward { cur = build_ffn(attn_norm, // !! use the attn norm, not the result model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = ggml_add(ctx0, cur, inpL); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; // norm cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_grok : public llm_graph_context { llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // multiply by embedding_multiplier_scale of 78.38367176906169 inpL = ggml_scale(ctx0, inpL, 78.38367176906169f); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // Grok // if attn_out_norm is present then apply it before adding the input if (model.layers[il].attn_out_norm) { cur = build_norm(cur, model.layers[il].attn_out_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_out_norm", il); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_GELU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); // Grok // if layer_out_norm is present then apply it before adding the input // Idea: maybe ffn_out_norm is a better name if (model.layers[il].layer_out_norm) { cur = build_norm(cur, model.layers[il].layer_out_norm, NULL, LLM_NORM_RMS, il); cb(cur, "layer_out_norm", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); // Grok // multiply logits by output_multiplier_scale of 0.5773502691896257 cur = ggml_scale(ctx0, cur, 0.5773502691896257f); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_dbrx : public llm_graph_context { llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(cur, "wqkv_clamped", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network // MoE branch cur = build_norm(ffn_inp, model.layers[il].attn_out_norm, NULL, LLM_NORM, il); cb(cur, "attn_out_norm", il); cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_starcoder : public llm_graph_context { llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_refact : public llm_graph_context { llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_bert : public llm_graph_context { llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; ggml_tensor * inp_pos = nullptr; if (model.arch != LLM_ARCH_JINA_BERT_V2) { inp_pos = build_inp_pos(); } // construct input embeddings (token, type, position) inpL = build_inp_embd(model.tok_embd); // token types are hardcoded to zero ("Sentence A") ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); inpL = ggml_add(ctx0, inpL, type_row0); if (model.arch == LLM_ARCH_BERT) { inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); } cb(inpL, "inp_embd", -1); // embed layer norm inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); cb(inpL, "inp_norm", -1); auto * inp_attn = build_attn_inp_no_cache(); // iterate layers for (int il = 0; il < n_layer; ++il) { ggml_tensor * cur = inpL; ggml_tensor * Qcur; ggml_tensor * Kcur; ggml_tensor * Vcur; // self-attention if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) { Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq); if (model.layers[il].attn_q_norm) { Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); } Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk); if (model.layers[il].attn_k_norm) { Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); } Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); } else { // compute Q and K and RoPE them cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cb(cur, "kqv_out", il); if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // re-add the layer input cur = ggml_add(ctx0, cur, inpL); // attention layer norm cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il); if (model.layers[il].attn_norm_2 != nullptr) { cur = ggml_add(ctx0, cur, inpL); // re-add the layer input cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il); } ggml_tensor * ffn_inp = cur; cb(ffn_inp, "ffn_inp", il); // feed-forward network if (model.arch == LLM_ARCH_BERT) { cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); } else if (model.arch == LLM_ARCH_JINA_BERT_V2) { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); } else { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); } cb(cur, "ffn_out", il); // attentions bypass the intermediate layer cur = ggml_add(ctx0, cur, ffn_inp); // output layer norm cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il); // input for next layer inpL = cur; } cur = inpL; cb(cur, "result_embd", -1); res->t_embd = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_bloom : public llm_graph_context { llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); auto * inp_attn = build_attn_inp_kv_unified(); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); cb(inpL, "inp_norm", -1); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // Add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_mpt : public llm_graph_context { llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * pos; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); auto * inp_attn = build_attn_inp_kv_unified(); if (model.pos_embd) { // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); } for (int il = 0; il < n_layer; ++il) { ggml_tensor * attn_norm; attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(attn_norm, "attn_norm", il); // self-attention { cur = attn_norm; cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); if (model.layers[il].bqkv){ cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } if (hparams.f_clamp_kqv > 0.0f) { cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(cur, "wqkv_clamped", il); } ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // Q/K Layernorm if (model.layers[il].attn_q_norm) { Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); cb(Qcur, "Qcur", il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); cb(Kcur, "Kcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // Add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // feed forward { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_stablelm : public llm_graph_context { llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); ggml_tensor * inpSA = cur; // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); if (model.layers[il].attn_q_norm) { Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM, il); cb(Qcur, "Qcur", il); } if (model.layers[il].attn_k_norm) { Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM, il); cb(Kcur, "Kcur", il); } Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // feed-forward network { if (model.layers[il].ffn_norm) { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); } else { // parallel residual cur = inpSA; } cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen : public llm_graph_context { llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward forward { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen2 : public llm_graph_context { llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen2vl : public llm_graph_context { llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); int sections[4]; std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_multi( ctx0, Qcur, inp_pos, nullptr, n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_multi( ctx0, Kcur, inp_pos, nullptr, n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen2moe : public llm_graph_context { llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); // FFN shared expert { ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur); cb(cur_gate_inp, "ffn_shexp_gate_inp", il); // sigmoid ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); cb(cur_gate, "ffn_shexp_gate", il); ggml_tensor * cur_ffn = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur_ffn, "ffn_shexp", il); ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); cb(ffn_shexp_out, "ffn_shexp_out", il); moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); cb(moe_out, "ffn_out", il); cur = moe_out; } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen3 : public llm_graph_context { llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_qwen3moe : public llm_graph_context { llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); cur = moe_out; cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_phi2 : public llm_graph_context { llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * attn_norm_output; ggml_tensor * ffn_output; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { attn_norm_output = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(attn_norm_output, "attn_norm", il); // self-attention { ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; if (model.layers[il].wqkv) { cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); } else { Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq); Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk); Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // with phi2, we scale the Q to avoid precision issues // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); } // FF { ffn_output = build_ffn(attn_norm_output, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(ffn_output, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_output); cur = ggml_add(ctx0, cur, inpL); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output_no_bias", -1); cur = ggml_add(ctx0, cur, model.output_b); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_phi3 : public llm_graph_context { llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { auto * residual = inpL; // self-attention { // rope freq factors for 128k context ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); ggml_tensor* attn_norm_output = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM_RMS, il); cb(attn_norm_output, "attn_norm", il); ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; if (model.layers[il].wqkv) { cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output); cb(cur, "wqkv", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa))); } else { Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq); Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk); Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); cb(Qcur, "Qcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor* inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); residual = ggml_get_rows(ctx0, residual, inp_out_ids); } cur = ggml_add(ctx0, cur, residual); residual = cur; cur = build_norm(cur, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network if (model.layers[il].ffn_gate_inp == nullptr) { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } else { // MoE branch cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); } cur = ggml_add(ctx0, residual, cur); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); if (model.output_b != nullptr) { cb(cur, "result_output_no_bias", -1); cur = ggml_add(ctx0, cur, model.output_b); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_plamo : public llm_graph_context { llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); ggml_tensor * attention_norm = cur; // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } ggml_tensor * sa_out = cur; cur = attention_norm; if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // feed-forward network { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, sa_out); cur = ggml_add(ctx0, cur, inpL); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_gpt2 : public llm_graph_context { llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * pos; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_codeshell : public llm_graph_context { llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_orion : public llm_graph_context { llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); // if (model.layers[il].bq) { // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); // cb(Qcur, "Qcur", il); // } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); // if (model.layers[il].bk) { // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); // cb(Kcur, "Kcur", il); // } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); // if (model.layers[il].bv) { // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); // cb(Vcur, "Vcur", il); // } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_internlm2 : public llm_graph_context { llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_minicpm3 : public llm_graph_context { llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { //TODO: if the model varies, these parameters need to be read from the model const int64_t n_embd_base = 256; const float scale_embd = 12.0f; const float scale_depth = 1.4f; const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k)); const uint32_t n_embd_head_qk_rope = hparams.n_rot; const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const uint32_t kv_lora_rank = hparams.n_lora_kv; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // scale the input embeddings inpL = ggml_scale(ctx0, inpL, scale_embd); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { ggml_tensor * q = NULL; // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens} q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); cb(q, "q", il); q = build_norm(q, model.layers[il].attn_q_a_norm, NULL, LLM_NORM_RMS, il); cb(q, "q", il); // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens} q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); cb(q, "q", il); // split into {n_head * n_embd_head_qk_nope, n_tokens} ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, hparams.n_embd_head_k), ggml_row_size(q->type, hparams.n_embd_head_k * n_head), 0); cb(q_nope, "q_nope", il); // and {n_head * n_embd_head_qk_rope, n_tokens} ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, hparams.n_embd_head_k), ggml_row_size(q->type, hparams.n_embd_head_k * n_head), ggml_row_size(q->type, n_embd_head_qk_nope)); cb(q_pe, "q_pe", il); // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); cb(kv_pe_compresseed, "kv_pe_compresseed", il); // split into {kv_lora_rank, n_tokens} ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, kv_pe_compresseed->nb[1], 0); cb(kv_compressed, "kv_compressed", il); // and {n_embd_head_qk_rope, n_tokens} ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, kv_pe_compresseed->nb[1], kv_pe_compresseed->nb[1], ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); cb(k_pe, "k_pe", il); // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont kv_compressed = ggml_cont(ctx0, kv_compressed); kv_compressed = build_norm(kv_compressed, model.layers[il].attn_kv_a_norm, NULL, LLM_NORM_RMS, il); cb(kv_compressed, "kv_compressed", il); // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); cb(kv, "kv", il); // split into {n_head * n_embd_head_qk_nope, n_tokens} ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), 0); cb(k_nope, "k_nope", il); // and {n_head * n_embd_head_v, n_tokens} ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), ggml_row_size(kv->type, (n_embd_head_qk_nope))); cb(v_states, "v_states", il); v_states = ggml_cont(ctx0, v_states); cb(v_states, "v_states", il); v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, ggml_row_size(kv->type, hparams.n_embd_head_v * n_head), 0); cb(v_states, "v_states", il); q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this q_pe = ggml_rope_ext( ctx0, q_pe, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(q_pe, "q_pe", il); // shared RoPE key k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this k_pe = ggml_rope_ext( ctx0, k_pe, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(k_pe, "k_pe", il); ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); cb(q_states, "q_states", il); ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); cb(k_states, "k_states", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, q_states, k_states, v_states, nullptr, nullptr, kq_scale, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // scale_res - scale the hidden states for residual connection const float scale_res = scale_depth/sqrtf(float(n_layer)); cur = ggml_scale(ctx0, cur, scale_res); cb(cur, "hidden_scaled", il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } // scale the hidden states for residual connection cur = ggml_scale(ctx0, cur, scale_res); cb(cur, "hidden_scaled_ffn", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head scaling const float scale_lmhead = float(n_embd_base)/float(n_embd); cur = ggml_scale(ctx0, cur, scale_lmhead); cb(cur, "lmhead_scaling", -1); // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_gemma : public llm_graph_context { llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); cb(Qcur, "Qcur_scaled", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, sa_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_gemma2 : public llm_graph_context { llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_k; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e switch (model.type) { case LLM_TYPE_2B: case LLM_TYPE_9B: case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break; default: GGML_ABORT("fatal error"); }; cb(Qcur, "Qcur_scaled", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "ffn_post_norm", -1); cur = ggml_add(ctx0, cur, sa_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); // final logit soft-capping cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping); cur = ggml_tanh(ctx0, cur); cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_gemma3 : public llm_graph_context { llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_k; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings) if (ubatch.token) { inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); } // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); // TODO: is causal == true correct? might need some changes auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { const bool is_swa = hparams.is_swa(il); const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base; const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il); } cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "ffn_post_norm", -1); cur = ggml_add(ctx0, cur, sa_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; // TODO: move up next to build_starcoder struct llm_build_starcoder2 : public llm_graph_context { llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_mamba : public llm_graph_context { const llama_model & model; llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) { ggml_tensor * cur; ggml_tensor * inpL; // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); ggml_tensor * state_copy = build_inp_s_copy(); ggml_tensor * state_mask = build_inp_s_mask(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il); cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il); if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // residual cur = ggml_add(ctx0, cur, inpL); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } // final rmsnorm cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } // TODO: split ggml_tensor * build_mamba_layer( ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il) const { const llama_kv_cache_unified * kv_self = static_cast(memory); const auto kv_head = kv_self->head; const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; const int64_t n_seqs = ubatch.n_seqs; // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers) const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms; // Use the same RMS norm as the final layer norm const float norm_rms_eps = hparams.f_norm_rms_eps; const int64_t n_seq_tokens = ubatch.n_seq_tokens; GGML_ASSERT(n_seqs != 0); GGML_ASSERT(ubatch.equal_seqs); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); ggml_tensor * conv_states_all = kv_self->k_l[il]; ggml_tensor * ssm_states_all = kv_self->v_l[il]; // (ab)using the KV cache to store the states ggml_tensor * conv = build_copy_mask_state( gf, conv_states_all, state_copy, state_mask, hparams.n_embd_k_s(), n_seqs); conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs); ggml_tensor * ssm = build_copy_mask_state( gf, ssm_states_all, state_copy, state_mask, hparams.n_embd_v_s(), n_seqs); ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs); // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs} cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs); // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs} ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur); // split the above in two // => {d_inner, n_seq_tokens, n_seqs} ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0); ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz)); // conv { // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs} ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0); // copy last (d_conv - 1) columns back into the state cache ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0])); ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv, ggml_view_1d(ctx0, conv_states_all, (d_conv - 1)*(d_inner)*(n_seqs), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all)))); // 1D convolution // The equivalent is to make a self-overlapping view of conv_x // over d_conv columns at each stride in the 3rd dimension, // then element-wise multiply that with the conv1d weight, // then sum the elements of each row, // (the last two steps are a dot product over rows (also doable with mul_mat)) // then permute away the ne[0] dimension, // and then you're left with the resulting x tensor. // For simultaneous sequences, all sequences need to have the same length. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d); // bias x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); x = ggml_silu(ctx0, x); } // ssm { // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs} ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x); // split ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0); ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank); ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state)); // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers if (ssm_dt_b_c_rms) { dt = ggml_rms_norm(ctx0, dt, norm_rms_eps); B = ggml_rms_norm(ctx0, B, norm_rms_eps); C = ggml_rms_norm(ctx0, C, norm_rms_eps); } // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs} dt = build_lora_mm(model.layers[il].ssm_dt, dt); dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); // Custom operator to optimize the parallel associative scan // as described in the Annex D of the Mamba paper. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs} ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C); // store last states ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]), ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all)))); ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0); // TODO: skip computing output earlier for unused tokens // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs} y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z))); // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs} cur = build_lora_mm(model.layers[il].ssm_out, y); } // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens} cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs); //cb(cur, "mamba_out", il); return cur; } }; struct llm_build_command_r : public llm_graph_context { llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); const float f_logit_scale = hparams.f_logit_scale; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il); cb(cur, "attn_norm", il); ggml_tensor * ffn_inp = cur; // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); if (model.layers[il].attn_q_norm) { Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM, il); cb(Qcur, "Qcur", il); } Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); if (model.layers[il].attn_k_norm) { Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM, il); cb(Kcur, "Kcur", il); } Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); } ggml_tensor * attn_out = cur; // feed-forward network { cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } // add together residual + FFN + self-attention cur = ggml_add(ctx0, cur, inpL); cur = ggml_add(ctx0, cur, attn_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); if (f_logit_scale) { cur = ggml_scale(ctx0, cur, f_logit_scale); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_cohere2 : public llm_graph_context { llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); const float f_logit_scale = hparams.f_logit_scale; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { const bool is_swa = hparams.is_swa(il); // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il); cb(cur, "attn_norm", il); ggml_tensor * ffn_inp = cur; // self-attention { // rope freq factors for 128k context ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); if (is_swa) { Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); } ggml_tensor * attn_out = cur; // feed-forward network { cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } // add together residual + FFN + self-attention cur = ggml_add(ctx0, cur, inpL); cur = ggml_add(ctx0, cur, attn_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); if (f_logit_scale) { cur = ggml_scale(ctx0, cur, f_logit_scale); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; // ref: https://allenai.org/olmo // based on the original build_llama() function, changes: // * non-parametric layer norm // * clamp qkv // * removed bias // * removed MoE struct llm_build_olmo : public llm_graph_context { llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, NULL, NULL, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (hparams.f_clamp_kqv > 0.0f) { Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (hparams.f_clamp_kqv > 0.0f) { Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (hparams.f_clamp_kqv > 0.0f) { Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, NULL, NULL, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, NULL, NULL, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_olmo2 : public llm_graph_context { llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = inpL; // self_attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "ffn_post_norm", -1); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; // based on the build_qwen2moe() function, changes: // * removed shared experts // * removed bias // * added q, k norm struct llm_build_olmoe : public llm_graph_context { llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_openelm : public llm_graph_context { llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { const int64_t n_head = hparams.n_head(il); const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_head_qkv = 2*n_head_kv + n_head; cur = inpL; ggml_tensor * residual = cur; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0)); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head)); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv))); cb(Vcur, "Vcur", il); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur", il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur", il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Qcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); residual = ggml_get_rows(ctx0, residual, inp_out_ids); cur = ggml_get_rows(ctx0, cur, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); inpL = cur; } cur = inpL; // norm cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_gptneox : public llm_graph_context { llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // ffn if (hparams.use_par_res) { // attention and ffn are computed in parallel // x = x + attn(ln1(x)) + ffn(ln2(x)) ggml_tensor * attn_out = cur; cur = build_norm(inpL, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, inpL); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, attn_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } else { // attention and ffn are computed sequentially // x = x + attn(ln1(x)) // x = x + ffn(ln2(x)) ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_arctic : public llm_graph_context { llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp); cb(ffn_out, "ffn_out", il); // MoE cur = build_norm(inpSA, model.layers[il].ffn_norm_exps, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm_exps", il); cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(cur, "ffn_moe_out", il); cur = ggml_add(ctx0, cur, ffn_out); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_deepseek : public llm_graph_context { llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // rope freq factors for llama3; may return nullptr for llama2 and other models ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); if ((uint32_t) il < hparams.n_layer_dense_lead) { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { // MoE branch ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, false, false, hparams.expert_weights_scale, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); // FFN shared expert { ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_deepseek2 : public llm_graph_context { llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { bool is_lite = (hparams.n_layer == 27); const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0); // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k; const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v; const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope; const uint32_t kv_lora_rank = hparams.n_lora_kv; // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale)); const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k)); const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)); ggml_tensor * cur; ggml_tensor * inpL; // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { ggml_tensor * q = NULL; if (!is_lite) { q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); cb(q, "q", il); q = build_norm(q, model.layers[il].attn_q_a_norm, nullptr, LLM_NORM_RMS, il); cb(q, "q", il); q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); cb(q, "q", il); } else { q = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(q, "q", il); } // split into {n_embd_head_qk_nope, n_head, n_tokens} ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k), ggml_row_size(q->type, n_embd_head_k) * n_head, 0); cb(q_nope, "q_nope", il); // and {n_embd_head_qk_rope, n_head, n_tokens} ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k), ggml_row_size(q->type, n_embd_head_k) * n_head, ggml_row_size(q->type, n_embd_head_qk_nope)); cb(q_pe, "q_pe", il); ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); cb(kv_cmpr_pe, "kv_cmpr_pe", il); // split into {kv_lora_rank, n_tokens} ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens, ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0); cb(kv_cmpr, "kv_cmpr", il); // and {n_embd_head_qk_rope, 1, n_tokens} ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens, ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), ggml_row_size(kv_cmpr_pe->type, kv_lora_rank)); cb(k_pe, "k_pe", il); q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(q_pe, "q_pe", il); k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(k_pe, "k_pe", il); kv_cmpr = build_norm(kv_cmpr, model.layers[il].attn_kv_a_norm, nullptr, LLM_NORM_RMS, il); cb(kv_cmpr, "kv_cmpr", il); if (is_mla) { // {n_embd_head_qk_nope, n_tokens, n_head} q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3); cb(q_nope, "q_nope_perm", il); // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head} ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope); cb(q_nope_absorbed, "q_nope_absorbed", il); // {kv_lora_rank, n_head, n_tokens} q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3); cb(q_nope_absorbed, "q_nope_absorbed_perm", il); // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens} // note: rope must go first for in-place context shifting in build_rope_shift() ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0); cb(Qcur, "Qcur", il); kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens); cb(kv_cmpr, "kv_cmpr_reshape", il); // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens} ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0); cb(Kcur, "Kcur", il); // {kv_lora_rank, 1, n_tokens} ggml_tensor * Vcur = kv_cmpr; cb(Vcur, "Vcur", il); // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group) cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il); } else { ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr); cb(kv, "kv", il); // split into {n_embd_head_qk_nope, n_head, n_tokens} ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v), ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head, 0); cb(k_nope, "k_nope_view", il); // and {n_embd_head_v, n_head, n_tokens} ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v), ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head, ggml_row_size(kv->type, n_embd_head_qk_nope)); cb(Vcur, "Vcur_view", il); Vcur = ggml_cont(ctx0, Vcur); cb(Vcur, "Vcur_cont", il); // note: rope must go first for in-place context shifting in build_rope_shift() ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0); cb(Kcur, "Kcur", il); // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups) cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il); } } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); if ((uint32_t) il < hparams.n_layer_dense_lead) { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { // MoE branch ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, hparams.expert_weights_norm, true, hparams.expert_weights_scale, (llama_expert_gating_func_type) hparams.expert_gating_func, il); cb(moe_out, "ffn_moe_out", il); // FFN shared expert { ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_bitnet : public llm_graph_context { llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); if (model.layers[il].wq_scale) { Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale); } cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } // B1.K ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); if (model.layers[il].wk_scale) { Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale); } cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } // B1.V ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); if (model.layers[il].wv_scale) { Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale); } cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, NULL, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cur = build_norm(cur, model.layers[il].attn_sub_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_sub_norm", il); cur = build_lora_mm(model.layers[il].wo, cur); if (model.layers[il].wo_scale) { cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale); } if (model.layers[il].bo) { cur = ggml_add(ctx0, cur, model.layers[il].bo); } cb(cur, "attn_o_out", il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward forward cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale, NULL, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_sub_out", il); cur = build_norm(cur, model.layers[il].ffn_sub_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_sub_norm", il); cur = build_lora_mm(model.layers[il].ffn_down, cur); if (model.layers[il].ffn_down_scale) { cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale); } cb(cur, "ffn_down", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head // FIXME: do not use model.tok_embd directly, duplicate as model.output cur = build_lora_mm(model.tok_embd, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_t5_enc : public llm_graph_context { llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc(); auto * inp_attn = build_attn_inp_no_cache(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm_enc, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b); cur = build_attn(inp_attn, gf, model.layers[il].wo_enc, nullptr, Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il); cb(cur, "kqv_out", il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm_enc, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // T5 uses relu, flan-T5 uses gelu-gated cur = build_ffn(cur, model.layers[il].ffn_up_enc, NULL, NULL, model.layers[il].ffn_gate_enc, NULL, NULL, model.layers[il].ffn_down_enc, NULL, NULL, NULL, model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cb(cur, "result_embd", -1); cur = build_norm(cur, model.output_norm_enc, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_t5_dec : public llm_graph_context { llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; //const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * embd_enc = build_inp_cross_embd(); ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec(); const int64_t n_outputs_enc = embd_enc->ne[1]; auto * inp_attn_self = build_attn_inp_kv_unified(); auto * inp_attn_cross = build_attn_inp_cross(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b); cur = build_attn(inp_attn_self, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il); cb(cur, "kqv_out", il); } cur = ggml_add(ctx0, cur, inpSA); cb(cur, "cross_inp", il); ggml_tensor * inpCA = cur; // norm cur = build_norm(cur, model.layers[il].attn_norm_cross, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm_cross", il); // cross-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc); cur = build_attn(inp_attn_cross, gf, model.layers[il].wo_cross, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); cb(cur, "kqv_out", il); //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); //cb(kq, "kq", il); //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); //cb(kq, "kq_soft_max_ext", il); //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); //cb(v, "v", il); //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); //cb(kqv, "kqv", il); //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); //cb(kqv_merged, "kqv_merged", il); //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); //cb(cur, "kqv_merged_cont", il); //ggml_build_forward_expand(gf, cur); //cur = build_lora_mm(model.layers[il].wo_cross, cur); //cb(cur, "kqv_out", il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // T5 uses relu, flan-T5 uses gelu-gated cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cb(cur, "result_embd", -1); cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_jais : public llm_graph_context { llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd))); ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd))); ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = build_norm(inpL, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_chatglm : public llm_graph_context { llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; if (model.layers[il].wqkv == nullptr) { Qcur = build_lora_mm(model.layers[il].wq, cur); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); } Kcur = build_lora_mm(model.layers[il].wk, cur); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); } Vcur = build_lora_mm(model.layers[il].wv, cur); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); } } else { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); if (model.layers[il].bqkv) { cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // Add the input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // FF { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_glm4 : public llm_graph_context { llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // Pre-attention norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; if (model.layers[il].wqkv == nullptr) { Qcur = build_lora_mm(model.layers[il].wq, cur); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); } Kcur = build_lora_mm(model.layers[il].wk, cur); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); } Vcur = build_lora_mm(model.layers[il].wv, cur); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); } } else { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); if (model.layers[il].bqkv) { cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // Post-attention norm (new!) cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "post_attn_norm", il); // Add the input (residual connection after post-attention norm) ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // FF { // Pre-MLP norm cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // MLP cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); // Post-MLP norm cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "post_mlp_norm", il); } // Add residual connection after post-MLP norm inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } // Final norm cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // Output projection cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_nemotron : public llm_graph_context { llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); //GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_exaone : public llm_graph_context { llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // rope freq factors for llama3; may return nullptr for llama2 and other models ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_rwkv6_base : public llm_graph_context { const llama_model & model; llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) { } ggml_tensor * build_rwkv6_channel_mix( const llama_layer * layer, ggml_tensor * cur, ggml_tensor * x_prev, llm_arch arch) const { ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur); switch (arch) { case LLM_ARCH_RWKV6: { ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur); ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur); ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr)); ggml_tensor * k = ggml_sqr( ctx0, ggml_relu( ctx0, build_lora_mm(layer->channel_mix_key, xk) ) ); cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k)); } break; default: GGML_ABORT("fatal error"); } return cur; } ggml_tensor * build_rwkv6_time_mix( ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, ggml_tensor * state_copy, ggml_tensor * state_mask, const llama_ubatch & ubatch, int il) const { const llama_kv_cache_unified * kv_self = static_cast(memory); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_embd = hparams.n_embd; const auto head_size = hparams.wkv_head_size; const auto n_head = n_embd / head_size; const auto n_head_kv = hparams.n_head_kv(il); const auto kv_head = kv_self->head; const auto & layer = model.layers[il]; bool is_qrwkv = layer.time_mix_first == nullptr; ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur); sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens); cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur); xxx = ggml_reshape_4d( ctx0, ggml_tanh( ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xxx) ), layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens ); xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2)); xxx = ggml_mul_mat( ctx0, ggml_reshape_4d( ctx0, layer.time_mix_w2, layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5 ), xxx ); ggml_tensor *xw, *xk, *xv, *xr, *xg; if (layer.time_mix_lerp_fused) { // fusing these weights makes some performance improvement sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens); cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens); xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur); xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0); xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float)); xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float)); xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float)); xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float)); } else { // for backward compatibility xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0); xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float)); xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float)); xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float)); xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float)); xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur); xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur); xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur); xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur); xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur); } ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr); ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk); ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv); if (layer.time_mix_receptance_b) { r = ggml_add(ctx0, r, layer.time_mix_receptance_b); } if (layer.time_mix_key_b) { k = ggml_add(ctx0, k, layer.time_mix_key_b); } if (layer.time_mix_value_b) { v = ggml_add(ctx0, v, layer.time_mix_value_b); } ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg); if (is_qrwkv) { g = ggml_sigmoid(ctx0, g); } else { g = ggml_silu(ctx0, g); } if (n_head_kv != 0 && n_head_kv != n_head) { GGML_ASSERT(n_head % n_head_kv == 0); k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens); v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens); ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens); k = ggml_repeat(ctx0, k, tmp); v = ggml_repeat(ctx0, v, tmp); } k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens); v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens); r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens); ggml_tensor * w = ggml_mul_mat( ctx0, layer.time_mix_decay_w2, ggml_tanh( ctx0, ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw) ) ); w = ggml_add(ctx0, w, layer.time_mix_decay); w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w))); w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens); if (is_qrwkv) { // k = k * (1 - w) k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w)); } ggml_tensor * wkv_state = build_copy_mask_state( gf, kv_self->v_l[il], state_copy, state_mask, hparams.n_embd_v_s(), n_seqs); ggml_tensor * wkv_output; if (is_qrwkv) { wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f)); } else { wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state); } cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0); wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float)); ggml_build_forward_expand( gf, ggml_cpy( ctx0, wkv_state, ggml_view_1d( ctx0, kv_self->v_l[il], hparams.n_embd_v_s() * n_seqs, hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il]) ) ) ); if (!is_qrwkv) { // group norm with head_count groups cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens); cur = ggml_norm(ctx0, cur, 64e-5f); // Convert back to regular vectors. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b); } else { cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); } cur = ggml_mul(ctx0, cur, g); cur = build_lora_mm(layer.time_mix_output, cur); return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs); } }; struct llm_build_rwkv6 : public llm_build_rwkv6_base { llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) { GGML_ASSERT(hparams.token_shift_count == 2); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); ggml_tensor * state_copy = build_inp_s_copy(); ggml_tensor * state_mask = build_inp_s_mask(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_seqs = ubatch.n_seqs; for (int il = 0; il < n_layer; ++il) { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); ggml_tensor * token_shift = build_rwkv_token_shift_load( gf, state_copy, state_mask, ubatch, il ); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il); cb(att_norm, "attn_norm", il); ggml_tensor * x_prev = ggml_concat( ctx0, att_shift, ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1 ); cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il); cb(ffn_norm, "ffn_norm", il); x_prev = ggml_concat( ctx0, ffn_shift, ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1 ); token_shift = ggml_concat(ctx0, ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)), ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)), 1 ); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids); ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids); x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids); cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids); } cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6); cur = ggml_add(ctx0, cur, ffn_inp); if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) { cur = ggml_scale(ctx0, cur, 0.5F); } cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base { llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) { GGML_ASSERT(n_embd == hparams.n_embd_k_s()); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * state_copy = build_inp_s_copy(); ggml_tensor * state_mask = build_inp_s_mask(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_seqs = ubatch.n_seqs; for (int il = 0; il < n_layer; ++il) { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); ggml_tensor * token_shift = build_rwkv_token_shift_load( gf, state_copy, state_mask, ubatch, il ); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); ggml_tensor * x_prev = ggml_concat( ctx0, token_shift, ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1 ); cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids); ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids); } // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_rwkv7_base : public llm_graph_context { const llama_model & model; llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) { } ggml_tensor * build_rwkv7_channel_mix( const llama_layer * layer, ggml_tensor * cur, ggml_tensor * x_prev, llm_arch arch) const { ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur); switch (arch) { case LLM_ARCH_RWKV7: { ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur); ggml_tensor * k = ggml_sqr( ctx0, ggml_relu( ctx0, build_lora_mm(layer->channel_mix_key, xk) ) ); cur = build_lora_mm(layer->channel_mix_value, k); } break; default: GGML_ABORT("fatal error"); } return cur; } ggml_tensor * build_rwkv7_time_mix( ggml_cgraph * gf, ggml_tensor * cur, ggml_tensor * x_prev, ggml_tensor * state_copy, ggml_tensor * state_mask, ggml_tensor *& first_layer_value, const llama_ubatch & ubatch, int il) const { const llama_kv_cache_unified * kv_self = static_cast(memory); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; const auto n_embd = hparams.n_embd; const auto head_size = hparams.wkv_head_size; const auto head_count = n_embd / head_size; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto kv_head = kv_self->head; const auto & layer = model.layers[il]; bool has_gating = layer.time_mix_g1 && layer.time_mix_g2; ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur); ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5); sx = ggml_repeat(ctx0, sx, dummy); ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur); ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0); ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float)); ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float)); ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float)); ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float)); ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr; ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr); ggml_tensor * w = ggml_add( ctx0, ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))), layer.time_mix_w0 ); w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531)); ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk); ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv); if (first_layer_value == nullptr) { first_layer_value = v; } else { // Add the first layer value as a residual connection. v = ggml_add(ctx0, v, ggml_mul(ctx0, ggml_sub(ctx0, first_layer_value, v), ggml_sigmoid(ctx0, ggml_add(ctx0, ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)), layer.time_mix_v0 ) ) ) ); } ggml_tensor * g = nullptr; if (layer.time_mix_g1 && layer.time_mix_g2) { g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg))); } ggml_tensor * a = ggml_sigmoid(ctx0, ggml_add( ctx0, ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)), layer.time_mix_a0 ) ); ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens); kk = ggml_l2_norm(ctx0, kk, 1e-12); ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a); k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka)); r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens); w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens); k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens); v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens); a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens); ggml_tensor * wkv_state = build_copy_mask_state( gf, kv_self->v_l[il], state_copy, state_mask, hparams.n_embd_v_s(), n_seqs); ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state); cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0); wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float)); ggml_build_forward_expand( gf, ggml_cpy( ctx0, wkv_state, ggml_view_1d( ctx0, kv_self->v_l[il], hparams.n_embd_v_s() * n_seqs, hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il]) ) ) ); if (layer.time_mix_ln && layer.time_mix_ln_b) { // group norm with head_count groups cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens); cur = ggml_norm(ctx0, cur, 64e-5f); // Convert back to regular vectors. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b); } else { cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); } ggml_tensor * rk = ggml_sum_rows(ctx0, ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count))); cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens)); if (has_gating) { cur = ggml_mul(ctx0, cur, g); } cur = build_lora_mm(layer.time_mix_output, cur); return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs); } }; struct llm_build_rwkv7 : public llm_build_rwkv7_base { llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) { GGML_ASSERT(hparams.token_shift_count == 2); ggml_tensor * cur; ggml_tensor * inpL; ggml_tensor * v_first = nullptr; inpL = build_inp_embd(model.tok_embd); inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); ggml_tensor * state_copy = build_inp_s_copy(); ggml_tensor * state_mask = build_inp_s_mask(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_seqs = ubatch.n_seqs; for (int il = 0; il < n_layer; ++il) { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); ggml_tensor * token_shift = build_rwkv_token_shift_load( gf, state_copy, state_mask, ubatch, il ); ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il); cb(att_norm, "attn_norm", il); ggml_tensor * x_prev = ggml_concat( ctx0, att_shift, ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1 ); cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il); cb(ffn_norm, "ffn_norm", il); x_prev = ggml_concat( ctx0, ffn_shift, ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1 ); token_shift = ggml_concat(ctx0, ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)), ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)), 1 ); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids); ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids); x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids); } cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_arwkv7 : public llm_build_rwkv7_base { llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) { GGML_ASSERT(n_embd == hparams.n_embd_k_s()); ggml_tensor * cur; ggml_tensor * inpL; ggml_tensor * v_first = nullptr; inpL = build_inp_embd(model.tok_embd); ggml_tensor * state_copy = build_inp_s_copy(); ggml_tensor * state_mask = build_inp_s_mask(); const auto n_embd = hparams.n_embd; const auto n_seq_tokens = ubatch.n_seq_tokens; const auto n_seqs = ubatch.n_seqs; for (int il = 0; il < n_layer; ++il) { const llama_layer * layer = &model.layers[il]; inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); ggml_tensor * token_shift = build_rwkv_token_shift_load( gf, state_copy, state_mask, ubatch, il ); ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il); cb(att_norm, "attn_norm", il); ggml_tensor * x_prev = ggml_concat( ctx0, token_shift, ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1 ); cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il); token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)); ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids); ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids); } // feed-forward network cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; // ref: https://github.com/facebookresearch/chameleon // based on the original build_llama() function, changes: // * qk-norm // * swin-norm // * removed bias // * removed MoE struct llm_build_chameleon : public llm_graph_context { llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm if (hparams.swin_norm) { cur = inpL; } else { cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); } // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].attn_q_norm) { Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens, ggml_element_size(Qcur) * n_embd_head, ggml_element_size(Qcur) * n_embd_head * n_head, 0); cb(Qcur, "Qcur", il); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); cb(Qcur, "Qcur", il); } if (model.layers[il].attn_k_norm) { Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens, ggml_element_size(Kcur) * n_embd_head, ggml_element_size(Kcur) * n_embd_head * n_head_kv, 0); cb(Kcur, "Kcur", il); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); cb(Kcur, "Kcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); if (hparams.swin_norm) { cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); } } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network if (!hparams.swin_norm) { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); } cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); if (hparams.swin_norm) { cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output_with_img_logits", -1); // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs. // Needs to be removed once image outputs are supported. int img_token_end_idx = 8196; int img_token_start_idx = 4; int num_img_tokens = img_token_end_idx - img_token_start_idx; // creates 1d tensor of size num_img_tokens and values -FLT_MAX, // which ensures that text token values are always at least larger than image token values ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens); img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX); cb(img_logits, "img_logits", -1); cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_wavtokenizer_dec : public llm_graph_context { llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL)); cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1); cur = ggml_add(ctx0, cur, model.conv1d_b); // posnet for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) { const auto & layer = model.layers[il].posnet; inpL = cur; switch (il) { case 0: case 1: case 3: case 4: { cur = build_norm(cur, layer.norm1, layer.norm1_b, LLM_NORM_GROUP, 0); cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur); cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1); cur = ggml_add(ctx0, cur, layer.conv1_b); cur = build_norm(cur, layer.norm2, layer.norm2_b, LLM_NORM_GROUP, 0); cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur); cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1); cur = ggml_add(ctx0, cur, layer.conv2_b); cur = ggml_add(ctx0, cur, inpL); } break; case 2: { cur = build_norm(cur, layer.attn_norm, layer.attn_norm_b, LLM_NORM_GROUP, 0); ggml_tensor * q; ggml_tensor * k; ggml_tensor * v; q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1); k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1); v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1); q = ggml_add(ctx0, q, layer.attn_q_b); k = ggml_add(ctx0, k, layer.attn_k_b); v = ggml_add(ctx0, v, layer.attn_v_b); q = ggml_cont(ctx0, ggml_transpose(ctx0, q)); k = ggml_cont(ctx0, ggml_transpose(ctx0, k)); ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f); cur = ggml_mul_mat(ctx0, kq, v); cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1); cur = ggml_add(ctx0, cur, layer.attn_o_b); cur = ggml_add(ctx0, cur, inpL); } break; case 5: { cur = build_norm(cur, layer.norm, layer.norm_b, LLM_NORM_GROUP, 0); } break; default: GGML_ABORT("unknown posnet layer"); }; } cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); cur = build_norm(cur, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); inpL = cur; // convnext for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) { const auto & layer = model.layers[il].convnext; cur = inpL; cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1); cur = ggml_add(ctx0, cur, layer.dw_b); cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); cur = build_norm(cur, layer.norm, layer.norm_b, LLM_NORM, -1); cur = build_ffn(cur, layer.pw1, layer.pw1_b, NULL, NULL, NULL, NULL, layer.pw2, layer.pw2_b, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, il); cur = ggml_mul(ctx0, cur, layer.gamma); cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); inpL = ggml_add(ctx0, cur, inpL); } cur = inpL; cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur)); cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); // lm_head cur = build_lora_mm(model.output, cur); cur = ggml_add(ctx0, cur, model.output_b); cb(cur, "result_embd", -1); res->t_embd = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_plm : public llm_graph_context { llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k)); const uint32_t n_embd_head_qk_rope = hparams.n_rot; const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; const uint32_t kv_lora_rank = hparams.n_lora_kv; ggml_tensor * cur; ggml_tensor * inpL; // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { ggml_tensor * q = NULL; q = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(q, "q", il); // split into {n_head * n_embd_head_qk_nope, n_tokens} ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, hparams.n_embd_head_k), ggml_row_size(q->type, hparams.n_embd_head_k * n_head), 0); cb(q_nope, "q_nope", il); // and {n_head * n_embd_head_qk_rope, n_tokens} ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, hparams.n_embd_head_k), ggml_row_size(q->type, hparams.n_embd_head_k * n_head), ggml_row_size(q->type, n_embd_head_qk_nope)); cb(q_pe, "q_pe", il); // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); cb(kv_pe_compresseed, "kv_pe_compresseed", il); // split into {kv_lora_rank, n_tokens} ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, kv_pe_compresseed->nb[1], 0); cb(kv_compressed, "kv_compressed", il); // and {n_embd_head_qk_rope, n_tokens} ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, kv_pe_compresseed->nb[1], kv_pe_compresseed->nb[1], ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); cb(k_pe, "k_pe", il); kv_compressed = build_norm(kv_compressed, model.layers[il].attn_kv_a_norm, NULL, LLM_NORM_RMS, il); cb(kv_compressed, "kv_compressed", il); // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); cb(kv, "kv", il); // split into {n_head * n_embd_head_qk_nope, n_tokens} ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), 0); cb(k_nope, "k_nope", il); // and {n_head * n_embd_head_v, n_tokens} ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), ggml_row_size(kv->type, (n_embd_head_qk_nope))); cb(v_states, "v_states", il); v_states = ggml_cont(ctx0, v_states); cb(v_states, "v_states", il); v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, ggml_row_size(kv->type, hparams.n_embd_head_v * n_head), 0); cb(v_states, "v_states", il); q_pe = ggml_rope_ext( ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(q_pe, "q_pe", il); // shared RoPE key k_pe = ggml_rope_ext( ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(k_pe, "k_pe", il); ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); cb(q_states, "q_states", il); ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); cb(k_states, "k_states", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, q_states, k_states, v_states, nullptr, nullptr, kq_scale, il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; struct llm_build_bailingmoe : public llm_graph_context { llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) { ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_unified(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // rope freq factors for llama3; may return nullptr for llama2 and other models ggml_tensor * rope_factors = static_cast(memory)->cbs.get_rope_factors(n_ctx_per_seq, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il); } if (il == n_layer - 1) { // skip computing output for unused tokens ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, hparams.expert_weights_norm, false, hparams.expert_weights_scale, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); // FFN shared expert { ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } }; llama_memory_i * llama_model::create_memory() const { llama_memory_i * res; switch (arch) { case LLM_ARCH_MAMBA: case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: { res = new llama_kv_cache_unified(hparams, { /*.get_rope_factors =*/ nullptr }); } break; default: { res = new llama_kv_cache_unified(hparams, { /*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) { // choose long/short freq factors based on the context size if (layers[il].rope_freqs != nullptr) { return layers[il].rope_freqs; } if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) { return layers[il].rope_long; } return layers[il].rope_short; } }); } } return res; } llm_graph_result_ptr llama_model::build_graph( const llm_graph_params & params, ggml_cgraph * gf, llm_graph_type type) const { std::unique_ptr llm; switch (arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA4: case LLM_ARCH_MINICPM: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_DECI: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_BAICHUAN: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_FALCON: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GROK: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_STARCODER: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_REFACT: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_BERT: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_NOMIC_BERT: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_BLOOM: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_MPT: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_STABLELM: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN2VL: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN2MOE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN3: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_QWEN3MOE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_PHI2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_PHI3: case LLM_ARCH_PHIMOE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_PLAMO: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GPT2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_CODESHELL: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_ORION: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_INTERNLM2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_MINICPM3: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GEMMA: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GEMMA2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GEMMA3: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_STARCODER2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_MAMBA: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_XVERSE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_COMMAND_R: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_COHERE2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_DBRX: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_OLMO: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_OLMO2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_OLMOE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_OPENELM: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GPTNEOX: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_ARCTIC: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_DEEPSEEK: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_DEEPSEEK2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_CHATGLM: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_GLM4: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_BITNET: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_T5: { switch (type) { case LLM_GRAPH_TYPE_ENCODER: llm = std::make_unique(*this, params, gf); break; case LLM_GRAPH_TYPE_DEFAULT: case LLM_GRAPH_TYPE_DECODER: llm = std::make_unique(*this, params, gf); break; default: GGML_ABORT("invalid graph type"); }; } break; case LLM_ARCH_T5ENCODER: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_JAIS: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_NEMOTRON: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_EXAONE: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_RWKV6: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_RWKV6QWEN2: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_RWKV7: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_ARWKV7: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_CHAMELEON: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_WAVTOKENIZER_DEC: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_PLM: { llm = std::make_unique(*this, params, gf); } break; case LLM_ARCH_BAILINGMOE: { llm = std::make_unique(*this, params, gf); } break; default: GGML_ABORT("fatal error"); } // add on pooling layer llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b); return std::move(llm->res); } // // interface implementation // llama_model_params llama_model_default_params() { llama_model_params result = { /*.devices =*/ nullptr, /*.tensor_buft_overrides =*/ nullptr, /*.n_gpu_layers =*/ 0, /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.kv_overrides =*/ nullptr, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.check_tensors =*/ false, }; #ifdef GGML_USE_METAL // note: we usually have plenty of VRAM, so by default offload all layers to the GPU result.n_gpu_layers = 999; #endif return result; } const llama_vocab * llama_model_get_vocab(const llama_model * model) { return &model->vocab; } void llama_free_model(llama_model * model) { llama_model_free(model); } void llama_model_free(llama_model * model) { delete model; } int32_t llama_model_n_ctx_train(const llama_model * model) { return model->hparams.n_ctx_train; } int32_t llama_model_n_embd(const llama_model * model) { return model->hparams.n_embd; } int32_t llama_model_n_layer(const llama_model * model) { return model->hparams.n_layer; } int32_t llama_model_n_head(const llama_model * model) { return model->hparams.n_head(); } int32_t llama_model_n_head_kv(const llama_model * model) { return model->hparams.n_head_kv(); } // deprecated int32_t llama_n_ctx_train(const llama_model * model) { return llama_model_n_ctx_train(model); } // deprecated int32_t llama_n_embd(const llama_model * model) { return llama_model_n_embd(model); } // deprecated int32_t llama_n_layer(const llama_model * model) { return llama_model_n_layer(model); } // deprecated int32_t llama_n_head(const llama_model * model) { return llama_model_n_head(model); } llama_rope_type llama_model_rope_type(const llama_model * model) { switch (model->arch) { // these models do not use RoPE case LLM_ARCH_GPT2: case LLM_ARCH_GPTJ: case LLM_ARCH_MPT: case LLM_ARCH_REFACT: case LLM_ARCH_BLOOM: case LLM_ARCH_MAMBA: case LLM_ARCH_JINA_BERT_V2: case LLM_ARCH_T5: case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: case LLM_ARCH_RWKV6: case LLM_ARCH_RWKV6QWEN2: case LLM_ARCH_RWKV7: case LLM_ARCH_ARWKV7: case LLM_ARCH_WAVTOKENIZER_DEC: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA4: case LLM_ARCH_DECI: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: case LLM_ARCH_PLAMO: case LLM_ARCH_ORION: case LLM_ARCH_INTERNLM2: case LLM_ARCH_MINICPM: case LLM_ARCH_XVERSE: case LLM_ARCH_COMMAND_R: case LLM_ARCH_COHERE2: case LLM_ARCH_OLMO: case LLM_ARCH_ARCTIC: case LLM_ARCH_DEEPSEEK: case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_PLM: case LLM_ARCH_CHATGLM: case LLM_ARCH_GLM4: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: case LLM_ARCH_CHAMELEON: case LLM_ARCH_BAILINGMOE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 case LLM_ARCH_FALCON: case LLM_ARCH_GROK: case LLM_ARCH_DBRX: case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_STABLELM: case LLM_ARCH_BITNET: case LLM_ARCH_QWEN: case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN3: case LLM_ARCH_QWEN3MOE: case LLM_ARCH_OLMO2: case LLM_ARCH_OLMOE: case LLM_ARCH_PHI2: case LLM_ARCH_PHI3: case LLM_ARCH_PHIMOE: case LLM_ARCH_GEMMA: case LLM_ARCH_GEMMA2: case LLM_ARCH_GEMMA3: case LLM_ARCH_STARCODER2: case LLM_ARCH_OPENELM: case LLM_ARCH_GPTNEOX: case LLM_ARCH_CODESHELL: case LLM_ARCH_NEMOTRON: case LLM_ARCH_EXAONE: case LLM_ARCH_MINICPM3: return LLAMA_ROPE_TYPE_NEOX; case LLM_ARCH_QWEN2VL: return LLAMA_ROPE_TYPE_MROPE; // all model arches should be listed explicitly here case LLM_ARCH_UNKNOWN: GGML_ABORT("unknown architecture"); } return LLAMA_ROPE_TYPE_NONE; } float llama_model_rope_freq_scale_train(const llama_model * model) { return model->hparams.rope_freq_scale_train; } int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) { const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_meta_count(const llama_model * model) { return (int)model->gguf_kv.size(); } int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->first.c_str()); } int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s", model->desc().c_str()); } uint64_t llama_model_size(const llama_model * model) { return model->size(); } const char * llama_model_chat_template(const llama_model * model, const char * name) { const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N) : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE); const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { return nullptr; } return it->second.c_str(); } uint64_t llama_model_n_params(const llama_model * model) { return model->n_elements(); } bool llama_model_has_encoder(const llama_model * model) { switch (model->arch) { case LLM_ARCH_T5: return true; case LLM_ARCH_T5ENCODER: return true; default: return false; } } bool llama_model_has_decoder(const llama_model * model) { switch (model->arch) { case LLM_ARCH_T5ENCODER: return false; default: return true; } } llama_token llama_model_decoder_start_token(const llama_model * model) { return model->hparams.dec_start_token_id; } bool llama_model_is_recurrent(const llama_model * model) { switch (model->arch) { case LLM_ARCH_MAMBA: return true; case LLM_ARCH_RWKV6: return true; case LLM_ARCH_RWKV6QWEN2: return true; case LLM_ARCH_RWKV7: return true; case LLM_ARCH_ARWKV7: return true; default: return false; } } const std::vector> & llama_internal_get_tensor_map(const llama_model * model) { return model->tensors_by_name; }