#include "ggml-rpc.h" #include "ggml.h" #include "ggml-backend-impl.h" #include <cinttypes> #include <string> #include <vector> #include <memory> #include <mutex> #include <unordered_map> #include <unordered_set> #ifdef _WIN32 # define WIN32_LEAN_AND_MEAN # ifndef NOMINMAX # define NOMINMAX # endif # include <windows.h> # include <winsock2.h> #else # include <arpa/inet.h> # include <sys/socket.h> # include <sys/types.h> # include <netinet/in.h> # include <netinet/tcp.h> # include <netdb.h> # include <unistd.h> #endif #include <string.h> #define UNUSED GGML_UNUSED #define GGML_DEBUG 0 #if (GGML_DEBUG >= 1) #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) #else #define GGML_PRINT_DEBUG(...) #endif #ifdef _WIN32 typedef SOCKET sockfd_t; using ssize_t = __int64; #else typedef int sockfd_t; #endif // cross-platform socket struct socket_t { sockfd_t fd; socket_t(sockfd_t fd) : fd(fd) {} ~socket_t() { GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd); #ifdef _WIN32 closesocket(this->fd); #else close(this->fd); #endif } }; // ggml_tensor is serialized into rpc_tensor #pragma pack(push, 1) struct rpc_tensor { uint64_t id; uint32_t type; uint64_t buffer; uint32_t ne[GGML_MAX_DIMS]; uint32_t nb[GGML_MAX_DIMS]; uint32_t op; int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)]; int32_t flags; uint64_t src[GGML_MAX_SRC]; uint64_t view_src; uint64_t view_offs; uint64_t data; char name[GGML_MAX_NAME]; }; #pragma pack(pop) // RPC commands enum rpc_cmd { ALLOC_BUFFER = 0, GET_ALIGNMENT, GET_MAX_SIZE, BUFFER_GET_BASE, FREE_BUFFER, BUFFER_CLEAR, SET_TENSOR, GET_TENSOR, COPY_TENSOR, GRAPH_COMPUTE, GET_DEVICE_MEMORY, }; // RPC data structures static ggml_guid_t ggml_backend_rpc_guid() { static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03}; return &guid; } struct ggml_backend_rpc_buffer_type_context { std::string endpoint; std::string name; size_t alignment; size_t max_size; }; struct ggml_backend_rpc_context { std::string endpoint; std::string name; }; struct ggml_backend_rpc_buffer_context { std::shared_ptr<socket_t> sock; std::unordered_map<ggml_backend_buffer_t, void *> base_cache; uint64_t remote_ptr; std::string name; }; // RPC helper functions static std::shared_ptr<socket_t> make_socket(sockfd_t fd) { #ifdef _WIN32 if (fd == INVALID_SOCKET) { return nullptr; } #else if (fd < 0) { return nullptr; } #endif return std::make_shared<socket_t>(fd); } static bool set_no_delay(sockfd_t sockfd) { int flag = 1; // set TCP_NODELAY to disable Nagle's algorithm int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int)); return ret == 0; } static bool set_reuse_addr(sockfd_t sockfd) { int flag = 1; int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int)); return ret == 0; } static std::shared_ptr<socket_t> socket_connect(const char * host, int port) { struct sockaddr_in addr; auto sockfd = socket(AF_INET, SOCK_STREAM, 0); auto sock_ptr = make_socket(sockfd); if (sock_ptr == nullptr) { return nullptr; } if (!set_no_delay(sockfd)) { fprintf(stderr, "Failed to set TCP_NODELAY\n"); return nullptr; } addr.sin_family = AF_INET; addr.sin_port = htons(port); struct hostent * server = gethostbyname(host); if (server == NULL) { fprintf(stderr, "Cannot resolve host '%s'\n", host); return nullptr; } memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length); if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) { return nullptr; } return sock_ptr; } static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) { auto client_socket_fd = accept(srv_sockfd, NULL, NULL); auto client_socket = make_socket(client_socket_fd); if (client_socket == nullptr) { return nullptr; } if (!set_no_delay(client_socket_fd)) { fprintf(stderr, "Failed to set TCP_NODELAY\n"); return nullptr; } return client_socket; } static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) { auto sockfd = socket(AF_INET, SOCK_STREAM, 0); auto sock = make_socket(sockfd); if (sock == nullptr) { return nullptr; } if (!set_reuse_addr(sockfd)) { fprintf(stderr, "Failed to set SO_REUSEADDR\n"); return nullptr; } struct sockaddr_in serv_addr; serv_addr.sin_family = AF_INET; serv_addr.sin_addr.s_addr = inet_addr(host); serv_addr.sin_port = htons(port); if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) { return nullptr; } if (listen(sockfd, 1) < 0) { return nullptr; } return sock; } static bool send_data(sockfd_t sockfd, const void * data, size_t size) { size_t bytes_sent = 0; while (bytes_sent < size) { ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0); if (n < 0) { return false; } bytes_sent += n; } return true; } static bool recv_data(sockfd_t sockfd, void * data, size_t size) { size_t bytes_recv = 0; while (bytes_recv < size) { ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0); if (n <= 0) { return false; } bytes_recv += n; } return true; } static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) { size_t pos = endpoint.find(':'); if (pos == std::string::npos) { return false; } host = endpoint.substr(0, pos); port = std::stoi(endpoint.substr(pos + 1)); return true; } // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) | // RPC response: | response_size (8 bytes) | response_data (response_size bytes) | static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { uint8_t cmd_byte = cmd; if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) { return false; } uint64_t input_size = input.size(); if (!send_data(sock->fd, &input_size, sizeof(input_size))) { return false; } if (!send_data(sock->fd, input.data(), input.size())) { return false; } uint64_t output_size; if (!recv_data(sock->fd, &output_size, sizeof(output_size))) { return false; } if (output_size == 0) { output.clear(); return true; } output.resize(output_size); if (!recv_data(sock->fd, output.data(), output_size)) { return false; } return true; } // RPC client-side implementation static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) { static std::mutex mutex; std::lock_guard<std::mutex> lock(mutex); static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets; static bool initialized = false; auto it = sockets.find(endpoint); if (it != sockets.end()) { if (auto sock = it->second.lock()) { return sock; } } std::string host; int port; if (!parse_endpoint(endpoint, host, port)) { return nullptr; } #ifdef _WIN32 if (!initialized) { WSADATA wsaData; int res = WSAStartup(MAKEWORD(2, 2), &wsaData); if (res != 0) { return nullptr; } initialized = true; } #else UNUSED(initialized); #endif auto sock = socket_connect(host.c_str(), port); if (sock == nullptr) { return nullptr; } GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd); sockets[endpoint] = sock; return sock; } GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; return ctx->name.c_str(); } GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | remote_ptr (8 bytes) | std::vector<uint8_t> input(sizeof(uint64_t), 0); uint64_t remote_ptr = ctx->remote_ptr; memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output); GGML_ASSERT(status); GGML_ASSERT(output.empty()); delete ctx; } GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) { return ctx->base_cache[buffer]; } // input serialization format: | remote_ptr (8 bytes) | std::vector<uint8_t> input(sizeof(uint64_t), 0); uint64_t remote_ptr = ctx->remote_ptr; memcpy(input.data(), &remote_ptr, sizeof(remote_ptr)); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | base_ptr (8 bytes) | uint64_t base_ptr; memcpy(&base_ptr, output.data(), sizeof(base_ptr)); void * base = reinterpret_cast<void *>(base_ptr); ctx->base_cache[buffer] = base; return base; } static rpc_tensor serialize_tensor(const ggml_tensor * tensor) { rpc_tensor result; result.id = reinterpret_cast<uint64_t>(tensor); result.type = tensor->type; if (tensor->buffer) { ggml_backend_buffer_t buffer = tensor->buffer; ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; result.buffer = ctx->remote_ptr; } else { result.buffer = 0; } for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { result.ne[i] = tensor->ne[i]; result.nb[i] = tensor->nb[i]; } result.op = tensor->op; for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { result.op_params[i] = tensor->op_params[i]; } result.flags = tensor->flags; for (uint32_t i = 0; i < GGML_MAX_SRC; i++) { result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]); } result.view_src = reinterpret_cast<uint64_t>(tensor->view_src); result.view_offs = tensor->view_offs; result.data = reinterpret_cast<uint64_t>(tensor->data); snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name); return result; } GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { UNUSED(buffer); if (ggml_is_quantized(tensor->type)) { // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor"); } } GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size; std::vector<uint8_t> input(input_size, 0); rpc_tensor rpc_tensor = serialize_tensor(tensor); memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor)); memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output); GGML_ASSERT(status); } GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t); std::vector<uint8_t> input(input_size, 0); rpc_tensor rpc_tensor = serialize_tensor(tensor); memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor)); memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset)); memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size)); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == size); // output serialization format: | data (size bytes) | memcpy(data, output.data(), size); } GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { // check if src and dst are on the same server ggml_backend_buffer_t src_buffer = src->buffer; ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context; ggml_backend_buffer_t dst_buffer = dst->buffer; ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context; if (src_ctx->sock != dst_ctx->sock) { return false; } ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // input serialization format: | rpc_tensor src | rpc_tensor dst | int input_size = 2*sizeof(rpc_tensor); std::vector<uint8_t> input(input_size, 0); rpc_tensor rpc_src = serialize_tensor(src); rpc_tensor rpc_dst = serialize_tensor(dst); memcpy(input.data(), &rpc_src, sizeof(rpc_src)); memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst)); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output); GGML_ASSERT(status); // output serialization format: | result (1 byte) | GGML_ASSERT(output.size() == 1); return output[0]; } GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; // serialization format: | bufptr (8 bytes) | value (1 byte) | int input_size = sizeof(uint64_t) + sizeof(uint8_t); std::vector<uint8_t> input(input_size, 0); memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr)); memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value)); std::vector<uint8_t> output; bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output); GGML_ASSERT(status); } static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = { /* .get_name = */ ggml_backend_rpc_buffer_get_name, /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer, /* .get_base = */ ggml_backend_rpc_buffer_get_base, /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor, /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor, /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor, /* .clear = */ ggml_backend_rpc_buffer_clear, /* .reset = */ NULL, }; GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->name.c_str(); } GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; // input serialization format: | size (8 bytes) | int input_size = sizeof(uint64_t); std::vector<uint8_t> input(input_size, 0); memcpy(input.data(), &size, sizeof(size)); std::vector<uint8_t> output; auto sock = get_socket(buft_ctx->endpoint); bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | uint64_t remote_ptr; memcpy(&remote_ptr, output.data(), sizeof(remote_ptr)); size_t remote_size; memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size)); if (remote_ptr != 0) { ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, ggml_backend_rpc_buffer_interface, new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"}, remote_size); return buffer; } else { return nullptr; } } static size_t get_alignment(const std::shared_ptr<socket_t> & sock) { // input serialization format: | 0 bytes | std::vector<uint8_t> input; std::vector<uint8_t> output; bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | alignment (8 bytes) | uint64_t alignment; memcpy(&alignment, output.data(), sizeof(alignment)); return alignment; } GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->alignment; } static size_t get_max_size(const std::shared_ptr<socket_t> & sock) { // input serialization format: | 0 bytes | std::vector<uint8_t> input; std::vector<uint8_t> output; bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == sizeof(uint64_t)); // output serialization format: | max_size (8 bytes) | uint64_t max_size; memcpy(&max_size, output.data(), sizeof(max_size)); return max_size; } GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; return buft_ctx->max_size; } GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { UNUSED(buft); return ggml_nbytes(tensor); } GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { if (!ggml_backend_is_rpc(backend)) { return false; } ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; return buft_ctx->endpoint == rpc_ctx->endpoint; } static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { /* .get_name = */ ggml_backend_rpc_buffer_type_name, /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_rpc_get_max_size, /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size, /* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend, /* .is_host = */ NULL, }; GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; return rpc_ctx->name.c_str(); } GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; delete rpc_ctx; delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str()); } GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { UNUSED(backend); // this is no-op because we don't have any async operations } static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) { if (tensor == nullptr) { return; } if (visited.find(tensor) != visited.end()) { return; } visited.insert(tensor); for (int i = 0; i < GGML_MAX_SRC; i++) { add_tensor(tensor->src[i], tensors, visited); } add_tensor(tensor->view_src, tensors, visited); tensors.push_back(serialize_tensor(tensor)); } static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) { uint32_t n_nodes = cgraph->n_nodes; std::vector<rpc_tensor> tensors; std::unordered_set<ggml_tensor*> visited; for (uint32_t i = 0; i < n_nodes; i++) { add_tensor(cgraph->nodes[i], tensors, visited); } // serialization format: // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) | uint32_t n_tensors = tensors.size(); int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor); output.resize(output_size, 0); memcpy(output.data(), &n_nodes, sizeof(n_nodes)); uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes)); for (uint32_t i = 0; i < n_nodes; i++) { out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]); } uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t)); *out_ntensors = n_tensors; rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t)); memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor)); } GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; std::vector<uint8_t> input; serialize_graph(cgraph, input); std::vector<uint8_t> output; auto sock = get_socket(rpc_ctx->endpoint); bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 1); return (enum ggml_status)output[0]; } GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) { UNUSED(backend); UNUSED(op); GGML_ASSERT(false && "not implemented"); return false; } static ggml_backend_i ggml_backend_rpc_interface = { /* .get_name = */ ggml_backend_rpc_name, /* .free = */ ggml_backend_rpc_free, /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ ggml_backend_rpc_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_rpc_graph_compute, /* .supports_op = */ ggml_backend_rpc_supports_op, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .event_synchronize = */ NULL, }; GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { static std::mutex mutex; std::lock_guard<std::mutex> lock(mutex); // NOTE: buffer types are allocated and never freed; this is by design static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map; auto it = buft_map.find(endpoint); if (it != buft_map.end()) { return it->second; } auto sock = get_socket(endpoint); if (sock == nullptr) { return nullptr; } size_t alignment = get_alignment(sock); size_t max_size = get_max_size(sock); ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context { /* .endpoint = */ endpoint, /* .name = */ "RPC[" + std::string(endpoint) + "]", /* .alignment = */ alignment, /* .max_size = */ max_size }; ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type { /* .iface = */ ggml_backend_rpc_buffer_type_interface, /* .context = */ buft_ctx }; buft_map[endpoint] = buft; return buft; } GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context { /* .endpoint = */ endpoint, /* .name = */ "RPC[" + std::string(endpoint) + "]", }; ggml_backend_t backend = new ggml_backend { /* .guid = */ ggml_backend_rpc_guid(), /* .interface = */ ggml_backend_rpc_interface, /* .context = */ ctx }; return backend; } GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid()); } static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) { // input serialization format: | 0 bytes | std::vector<uint8_t> input; std::vector<uint8_t> output; bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); // output serialization format: | free (8 bytes) | total (8 bytes) | uint64_t free_mem; memcpy(&free_mem, output.data(), sizeof(free_mem)); uint64_t total_mem; memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem)); *free = free_mem; *total = total_mem; } GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { auto sock = get_socket(endpoint); if (sock == nullptr) { *free = 0; *total = 0; return; } get_device_memory(sock, free, total); } // RPC server-side implementation class rpc_server { public: rpc_server(ggml_backend_t backend) : backend(backend) {} ~rpc_server(); bool alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output); void get_alignment(std::vector<uint8_t> & output); void get_max_size(std::vector<uint8_t> & output); bool buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output); bool free_buffer(const std::vector<uint8_t> & input); bool buffer_clear(const std::vector<uint8_t> & input); bool set_tensor(const std::vector<uint8_t> & input); bool get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output); bool copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output); bool graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output); private: ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor); ggml_tensor * create_node(uint64_t id, struct ggml_context * ctx, const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs, std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map); ggml_backend_t backend; std::unordered_set<ggml_backend_buffer_t> buffers; }; bool rpc_server::alloc_buffer(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { // input serialization format: | size (8 bytes) | if (input.size() != sizeof(uint64_t)) { return false; } uint64_t size; memcpy(&size, input.data(), sizeof(size)); ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); uint64_t remote_ptr = 0; uint64_t remote_size = 0; if (buffer != nullptr) { remote_ptr = reinterpret_cast<uint64_t>(buffer); remote_size = buffer->size; GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size); buffers.insert(buffer); } else { GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size); } // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | output.resize(2*sizeof(uint64_t), 0); memcpy(output.data(), &remote_ptr, sizeof(remote_ptr)); memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size)); return true; } void rpc_server::get_alignment(std::vector<uint8_t> & output) { ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); size_t alignment = ggml_backend_buft_get_alignment(buft); GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment); // output serialization format: | alignment (8 bytes) | output.resize(sizeof(uint64_t), 0); memcpy(output.data(), &alignment, sizeof(alignment)); } void rpc_server::get_max_size(std::vector<uint8_t> & output) { ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); size_t max_size = ggml_backend_buft_get_max_size(buft); GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size); // output serialization format: | max_size (8 bytes) | output.resize(sizeof(uint64_t), 0); memcpy(output.data(), &max_size, sizeof(max_size)); } bool rpc_server::buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { // input serialization format: | remote_ptr (8 bytes) | if (input.size() != sizeof(uint64_t)) { return false; } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr); if (buffers.find(buffer) == buffers.end()) { GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); return false; } void * base = ggml_backend_buffer_get_base(buffer); // output serialization format: | base_ptr (8 bytes) | uint64_t base_ptr = reinterpret_cast<uint64_t>(base); output.resize(sizeof(uint64_t), 0); memcpy(output.data(), &base_ptr, sizeof(base_ptr)); return true; } bool rpc_server::free_buffer(const std::vector<uint8_t> & input) { // input serialization format: | remote_ptr (8 bytes) | if (input.size() != sizeof(uint64_t)) { return false; } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr); if (buffers.find(buffer) == buffers.end()) { GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); return false; } ggml_backend_buffer_free(buffer); buffers.erase(buffer); return true; } bool rpc_server::buffer_clear(const std::vector<uint8_t> & input) { // input serialization format: | remote_ptr (8 bytes) | value (1 byte) | if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) { return false; } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); uint8_t value; memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value); ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr); if (buffers.find(buffer) == buffers.end()) { GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); return false; } ggml_backend_buffer_clear(buffer, value); return true; } ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) { ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { result->nb[i] = tensor->nb[i]; } result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer); if (result->buffer && buffers.find(result->buffer) == buffers.end()) { return nullptr; } result->op = (ggml_op) tensor->op; for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { result->op_params[i] = tensor->op_params[i]; } result->flags = tensor->flags; result->data = reinterpret_cast<void *>(tensor->data); ggml_set_name(result, tensor->name); return result; } bool rpc_server::set_tensor(const std::vector<uint8_t> & input) { // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) { return false; } const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); uint64_t offset; memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset); struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; struct ggml_context * ctx = ggml_init(params); ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); if (tensor == nullptr) { GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__); ggml_free(ctx); return false; } GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset); ggml_backend_tensor_set(tensor, data, offset, size); ggml_free(ctx); return true; } bool rpc_server::get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) { return false; } const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); uint64_t offset; memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); uint64_t size; memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size)); struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; struct ggml_context * ctx = ggml_init(params); ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); if (tensor == nullptr) { GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__); ggml_free(ctx); return false; } GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); // output serialization format: | data (size bytes) | output.resize(size, 0); ggml_backend_tensor_get(tensor, output.data(), offset, size); ggml_free(ctx); return true; } bool rpc_server::copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { // serialization format: | rpc_tensor src | rpc_tensor dst | if (input.size() != 2*sizeof(rpc_tensor)) { return false; } const rpc_tensor * rpc_src = (const rpc_tensor *)input.data(); const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src)); struct ggml_init_params params { /*.mem_size =*/ 2*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; struct ggml_context * ctx = ggml_init(params); ggml_tensor * src = deserialize_tensor(ctx, rpc_src); ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst); if (src == nullptr || dst == nullptr) { GGML_PRINT_DEBUG("[%s] error deserializing tensors\n", __func__); ggml_free(ctx); return false; } GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer); bool result = ggml_backend_buffer_copy_tensor(src, dst); // output serialization format: | result (1 byte) | output.resize(1, 0); output[0] = result; ggml_free(ctx); return true; } ggml_tensor * rpc_server::create_node(uint64_t id, struct ggml_context * ctx, const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs, std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) { if (id == 0) { return nullptr; } if (tensor_map.find(id) != tensor_map.end()) { return tensor_map[id]; } const rpc_tensor * tensor = tensor_ptrs.at(id); struct ggml_tensor * result = deserialize_tensor(ctx, tensor); if (result == nullptr) { return nullptr; } tensor_map[id] = result; for (int i = 0; i < GGML_MAX_SRC; i++) { result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map); } result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map); result->view_offs = tensor->view_offs; return result; } bool rpc_server::graph_compute(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) { // serialization format: // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) | if (input.size() < sizeof(uint32_t)) { return false; } uint32_t n_nodes; memcpy(&n_nodes, input.data(), sizeof(n_nodes)); if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) { return false; } const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes)); uint32_t n_tensors; memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors)); if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) { return false; } const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors)); GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors); static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false); struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; struct ggml_context * ctx = ggml_init(params); struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false); graph->n_nodes = n_nodes; std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs; for (uint32_t i = 0; i < n_tensors; i++) { tensor_ptrs[tensors[i].id] = &tensors[i]; } std::unordered_map<uint64_t, ggml_tensor*> tensor_map; for (uint32_t i = 0; i < n_nodes; i++) { graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map); } ggml_status status = ggml_backend_graph_compute(backend, graph); // output serialization format: | status (1 byte) | output.resize(1, 0); output[0] = status; ggml_free(ctx); return true; } rpc_server::~rpc_server() { for (auto buffer : buffers) { ggml_backend_buffer_free(buffer); } } static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) { rpc_server server(backend); while (true) { uint8_t cmd; if (!recv_data(sockfd, &cmd, 1)) { break; } std::vector<uint8_t> input; std::vector<uint8_t> output; uint64_t input_size; if (!recv_data(sockfd, &input_size, sizeof(input_size))) { break; } input.resize(input_size); if (!recv_data(sockfd, input.data(), input_size)) { break; } bool ok = true; switch (cmd) { case ALLOC_BUFFER: { ok = server.alloc_buffer(input, output); break; } case GET_ALIGNMENT: { server.get_alignment(output); break; } case GET_MAX_SIZE: { server.get_max_size(output); break; } case BUFFER_GET_BASE: { ok = server.buffer_get_base(input, output); break; } case FREE_BUFFER: { ok = server.free_buffer(input); break; } case BUFFER_CLEAR: { ok = server.buffer_clear(input); break; } case SET_TENSOR: { ok = server.set_tensor(input); break; } case GET_TENSOR: { ok = server.get_tensor(input, output); break; } case COPY_TENSOR: { ok = server.copy_tensor(input, output); break; } case GRAPH_COMPUTE: { ok = server.graph_compute(input, output); break; } case GET_DEVICE_MEMORY: { // output serialization format: | free (8 bytes) | total (8 bytes) | output.resize(2*sizeof(uint64_t), 0); memcpy(output.data(), &free_mem, sizeof(free_mem)); memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem)); break; } default: { fprintf(stderr, "Unknown command: %d\n", cmd); ok = false; } } if (!ok) { break; } uint64_t output_size = output.size(); if (!send_data(sockfd, &output_size, sizeof(output_size))) { break; } if (!send_data(sockfd, output.data(), output_size)) { break; } } } void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) { std::string host; int port; if (!parse_endpoint(endpoint, host, port)) { return; } #ifdef _WIN32 { WSADATA wsaData; int res = WSAStartup(MAKEWORD(2, 2), &wsaData); if (res != 0) { fprintf(stderr, "WSAStartup failed: %d\n", res); return; } } #endif auto server_socket = create_server_socket(host.c_str(), port); if (server_socket == nullptr) { fprintf(stderr, "Failed to create server socket\n"); return; } while (true) { auto client_socket = socket_accept(server_socket->fd); if (client_socket == nullptr) { fprintf(stderr, "Failed to accept client connection\n"); return; } printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem); rpc_serve_client(backend, client_socket->fd, free_mem, total_mem); printf("Client connection closed\n"); } #ifdef _WIN32 WSACleanup(); #endif }