import argparse import torch import torch.nn.functional as F import coremltools as ct from torch import Tensor from torch import nn from typing import Dict from typing import Optional from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase from coremltools.models.neural_network.quantization_utils import quantize_weights from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions from whisper import load_model # Use for changing dim of input in encoder and decoder embeddings def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """ Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights """ for k in state_dict: is_attention = all(substr in k for substr in ['attn', '.weight']) is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']) if (is_attention or is_mlp) and len(state_dict[k].shape) == 2: state_dict[k] = state_dict[k][:, :, None, None] def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight'] return state_dict class LayerNormANE(LayerNormANEBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._register_load_state_dict_pre_hook( correct_for_bias_scale_order_inversion) class MultiHeadAttentionANE(MultiHeadAttention): def __init__(self, n_state: int, n_head: int): super().__init__(n_state, n_head) self.query = nn.Conv2d(n_state, n_state, kernel_size=1) self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False) self.value = nn.Conv2d(n_state, n_state, kernel_size=1) self.out = nn.Conv2d(n_state, n_state, kernel_size=1) def forward(self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv, qk = self.qkv_attention_ane(q, k, v, mask) return self.out(wv), qk def qkv_attention_ane(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): _, dim, _, seqlen = q.size() dim_per_head = dim // self.n_head scale = float(dim_per_head)**-0.5 q = q * scale mh_q = q.split(dim_per_head, dim=1) mh_k = k.transpose(1,3).split(dim_per_head, dim=3) mh_v = v.split(dim_per_head, dim=1) mh_qk = [ torch.einsum('bchq,bkhc->bkhq', [qi, ki]) for qi, ki in zip(mh_q, mh_k) ] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads if mask is not None: for head_idx in range(self.n_head): mh_qk[head_idx] = mh_qk[head_idx] + mask[:, :seqlen, :, :seqlen] attn_weights = [aw.softmax(dim=1) for aw in mh_qk] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads attn = [torch.einsum('bkhq,bchk->bchq', wi, vi) for wi, vi in zip(attn_weights, mh_v)] # (batch_size, dim_per_head, 1, max_seq_length) * n_heads attn = torch.cat(attn, dim=1) # (batch_size, dim, 1, max_seq_length) return attn, torch.cat(mh_qk, dim=1).float().detach() class ResidualAttentionBlockANE(ResidualAttentionBlock): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): super().__init__(n_state, n_head, cross_attention) self.attn = MultiHeadAttentionANE(n_state, n_head) self.attn_ln = LayerNormANE(n_state) self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential( nn.Conv2d(n_state, n_mlp, kernel_size=1), nn.GELU(), nn.Conv2d(n_mlp, n_state, kernel_size=1) ) self.mlp_ln = LayerNormANE(n_state) class AudioEncoderANE(AudioEncoder): def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__(n_mels, n_ctx, n_state, n_head, n_layer) self.blocks = nn.ModuleList( [ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)] ) self.ln_post = LayerNormANE(n_state) def forward(self, x: Tensor): """ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) assert x.shape[1:] == self.positional_embedding.shape[::-1], "incorrect audio shape" # Add positional embedding and add dummy dim for ANE x = (x + self.positional_embedding.transpose(0,1)).to(x.dtype).unsqueeze(2) for block in self.blocks: x = block(x) x = self.ln_post(x) x = x.squeeze(2).transpose(1, 2) return x class TextDecoderANE(TextDecoder): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer) self.blocks= nn.ModuleList( [ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)] ) self.ln= LayerNormANE(n_state) def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): """ x : torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx) the encoded audio features to be attended on """ offset = next(iter(kv_cache.values())).shape[3] if kv_cache else 0 x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] x = x.to(xa.dtype) # Reformat for ANE mask = self.mask[None, None, :, :].permute(0,3,1,2) x = x.transpose(1,2).unsqueeze(2) for block in self.blocks: x = block(x, xa, mask=mask, kv_cache=kv_cache) x = self.ln(x) # Reformat back from ANE x = x.permute(0,2,3,1).squeeze(0) # ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks if self.token_embedding.weight.shape[0] >= 51865: # split in 11 chunks - 4715 each splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0) logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1) else: # split in 12 chunks - 4322 each assert(self.token_embedding.weight.shape[0] == 51864) splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//12, dim=0) logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1) return logits class WhisperANE(Whisper): def __init__(self, dims: ModelDimensions): super().__init__(dims) self.encoder = AudioEncoderANE( self.dims.n_mels, self.dims.n_audio_ctx, self.dims.n_audio_state, self.dims.n_audio_head, self.dims.n_audio_layer, ) self.decoder = TextDecoderANE( self.dims.n_vocab, self.dims.n_text_ctx, self.dims.n_text_state, self.dims.n_text_head, self.dims.n_text_layer, ) self._register_load_state_dict_pre_hook(linear_to_conv2d_map) def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]: return self.decoder(tokens, self.encoder(mel)) def install_kv_cache_hooks(self, cache: Optional[dict] = None): cache = {**cache} if cache is not None else {} hooks = [] def save_to_cache(module, _, output): if module not in cache or output.shape[3] > self.decoder.positional_embedding.shape[0]: cache[module] = output # save as-is, for the first token or cross attention else: cache[module] = torch.cat([cache[module], output], dim=3).detach() return cache[module] def install_hooks(layer: nn.Module): if isinstance(layer, MultiHeadAttentionANE): hooks.append(layer.key.register_forward_hook(save_to_cache)) hooks.append(layer.value.register_forward_hook(save_to_cache)) self.decoder.apply(install_hooks) return cache, hooks def convert_encoder(hparams, model, quantize=False): model.eval() input_shape = (1, hparams.n_mels, 3000) input_data = torch.randn(input_shape) traced_model = torch.jit.trace(model, input_data) model = ct.convert( traced_model, convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why inputs=[ct.TensorType(name="logmel_data", shape=input_shape)], outputs=[ct.TensorType(name="output")], compute_units=ct.ComputeUnit.ALL ) if quantize: model = quantize_weights(model, nbits=16) return model def convert_decoder(hparams, model, quantize=False): model.eval() tokens_shape = (1, 1) audio_shape = (1, hparams.n_audio_state, 1, 1500) audio_data = torch.randn(audio_shape) token_data = torch.randint(50257, tokens_shape).long() traced_model = torch.jit.trace(model, (token_data, audio_data)) model = ct.convert( traced_model, convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why inputs=[ ct.TensorType(name="token_data", shape=tokens_shape, dtype=int), ct.TensorType(name="audio_data", shape=audio_shape) ] ) if quantize: model = quantize_weights(model, nbits=16) return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, large-v3-turbo)", required=True) parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False) parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False) parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False) args = parser.parse_args() if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "small.en-tdrz", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]: raise ValueError("Invalid model name") whisper = load_model(args.model).cpu() hparams = whisper.dims print(hparams) if args.optimize_ane: whisperANE = WhisperANE(hparams).eval() whisperANE.load_state_dict(whisper.state_dict()) encoder = whisperANE.encoder decoder = whisperANE.decoder else: encoder = whisper.encoder decoder = whisper.decoder # Convert encoder encoder = convert_encoder(hparams, encoder, quantize=args.quantize) encoder.save(f"models/coreml-encoder-{args.model}.mlpackage") if args.encoder_only is False: # Convert decoder decoder = convert_decoder(hparams, decoder, quantize=args.quantize) decoder.save(f"models/coreml-decoder-{args.model}.mlpackage") print("done converting")