#pragma once #include "llama-batch.h" #include "llama-graph.h" #include "llama-memory.h" #include #include // // llama_memory_recurrent // // TODO: extract the cache state used for graph computation into llama_memory_recurrent_state_i // see the implementation of llama_kv_cache_unified_state_i for an example how to do it class llama_memory_recurrent : public llama_memory_i { public: // this callback is used to filter out layers that should not be included in the cache using layer_filter_cb = std::function; llama_memory_recurrent( const llama_model & model, layer_filter_cb && filter, ggml_type type_r, ggml_type type_s, bool offload, uint32_t mem_size, uint32_t n_seq_max); ~llama_memory_recurrent() = default; // // llama_memory_i // llama_memory_state_ptr init_batch( llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) override; llama_memory_state_ptr init_full() override; llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override; void clear(bool data) override; bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; void seq_keep(llama_seq_id seq_id) override; void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; llama_pos seq_pos_min(llama_seq_id seq_id) const override; llama_pos seq_pos_max(llama_seq_id seq_id) const override; bool prepare(const std::vector & ubatches); // find a contiguous slot of memory cells and emplace the ubatch there bool find_slot(const llama_ubatch & ubatch); bool get_can_shift() const override; // state write/load void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot()) uint32_t size = 0; // total number of cells, shared across all sequences uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; // first zero-ed state int32_t rs_z = -1; // TODO: optimize for recurrent state needs struct mem_cell { llama_pos pos = -1; int32_t src = -1; // used to know where states should be copied from int32_t src0 = -1; // like src, but only used when setting the inputs (allowing to copy once) int32_t tail = -1; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const mem_cell & other) const { return seq_id == other.seq_id; } }; std::vector cells; // per layer std::vector r_l; std::vector s_l; private: //const llama_model & model; const llama_hparams & hparams; const uint32_t n_seq_max = 1; std::vector ctxs; std::vector bufs; size_t total_size() const; size_t size_r_bytes() const; size_t size_s_bytes() const; void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); bool state_read_data(llama_io_read_i & io, uint32_t cell_count); }; class llama_memory_recurrent_state : public llama_memory_state_i { public: // used for errors llama_memory_recurrent_state(llama_memory_status status); // used to create a full-cache state llama_memory_recurrent_state( llama_memory_recurrent * mem); // used to create a state from a batch llama_memory_recurrent_state( llama_memory_recurrent * mem, std::vector ubatches); virtual ~llama_memory_recurrent_state(); // // llama_memory_state_i // bool next() override; bool apply() override; llama_memory_status get_status() const override; const llama_ubatch & get_ubatch() const override; // // llama_memory_recurrent_state specific API // uint32_t get_n_rs() const; uint32_t get_head() const; int32_t get_rs_z() const; uint32_t get_size() const; ggml_tensor * get_r_l(int32_t il) const; ggml_tensor * get_s_l(int32_t il) const; int32_t s_copy(int i) const; private: const llama_memory_status status; llama_memory_recurrent * mem; size_t i_next = 0; std::vector ubatches; // // data needed for building the compute graph for the current ubatch: // TODO: extract all the state like `head` and `n` here // const bool is_full = false; };