#include "llama-memory-hybrid.h" #include "llama-impl.h" #include "llama-model.h" #include "llama-context.h" // // llama_memory_hybrid // llama_memory_hybrid::llama_memory_hybrid( const llama_model & model, /* attn */ ggml_type type_k, ggml_type type_v, bool v_trans, uint32_t kv_size, uint32_t n_pad, uint32_t n_swa, llama_swa_type swa_type, /* recurrent */ ggml_type type_r, ggml_type type_s, uint32_t rs_size, /* common */ uint32_t n_seq_max, bool offload, /* layer filters */ layer_filter_cb && filter_attn, layer_filter_cb && filter_recr) : hparams(model.hparams), mem_attn(new llama_kv_cache_unified( model, filter_attn == nullptr ? [&](int32_t il) { return !hparams.is_recurrent(il); } : filter_attn, type_k, type_v, v_trans, offload, kv_size, n_seq_max, n_pad, n_swa, swa_type )), mem_recr(new llama_memory_recurrent( model, filter_recr == nullptr ? [&](int32_t il) { return hparams.is_recurrent(il); } : filter_recr, type_r, type_s, offload, rs_size, n_seq_max )) {} llama_memory_state_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) { do { balloc.split_reset(); // follow the recurrent pattern for creating the ubatch splits std::vector ubatches; while (true) { llama_ubatch ubatch; if (embd_all) { // if all tokens are output, split by sequence ubatch = balloc.split_seq(n_ubatch); } else { ubatch = balloc.split_equal(n_ubatch); } if (ubatch.n_tokens == 0) { break; } ubatches.push_back(std::move(ubatch)); // NOLINT } // prepare the recurrent batches first if (!mem_recr->prepare(ubatches)) { // TODO: will the recurrent cache be in an undefined state at this point? LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__); return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); } // prepare the attention cache auto heads_attn = mem_attn->prepare(ubatches); if (heads_attn.empty()) { LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__); return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); } return std::make_unique( this, std::move(heads_attn), std::move(ubatches)); } while(false); return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); } llama_memory_state_ptr llama_memory_hybrid::init_full() { return std::make_unique(this); } llama_memory_state_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) { return std::make_unique(this, lctx, optimize); } bool llama_memory_hybrid::get_can_shift() const { // Shifting is trivially supported for recurrent return mem_attn->get_can_shift(); } void llama_memory_hybrid::clear(bool data) { mem_attn->clear(data); mem_recr->clear(data); } bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { // Try removing from the recurrent cache first since it may fail. If it does // fail, the cache will not have been mutated. if (!mem_recr->seq_rm(seq_id, p0, p1)) { return false; } return mem_attn->seq_rm(seq_id, p0, p1); } void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1); mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1); } void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) { mem_attn->seq_keep(seq_id); mem_recr->seq_keep(seq_id); } void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { mem_attn->seq_add(seq_id, p0, p1, shift); mem_recr->seq_add(seq_id, p0, p1, shift); } void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { mem_attn->seq_div(seq_id, p0, p1, d); mem_recr->seq_div(seq_id, p0, p1, d); } llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const { // the min of the total cache is the max of the two caches' min values return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id)); } llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const { // the max of the total cache is the min of the two caches' max values return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id)); } void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { mem_attn->state_write(io, seq_id); mem_recr->state_write(io, seq_id); } void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) { mem_attn->state_read(io, seq_id); mem_recr->state_read(io, seq_id); } llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const { return mem_attn.get(); } llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const { return mem_recr.get(); } llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_status status) : status(status) {} llama_memory_hybrid_state::llama_memory_hybrid_state(llama_memory_hybrid * mem) : state_attn(mem->get_mem_attn()->init_full()), state_recr(mem->get_mem_recr()->init_full()), status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) { } llama_memory_hybrid_state::llama_memory_hybrid_state( llama_memory_hybrid * mem, llama_context * lctx, bool optimize) : state_attn(mem->get_mem_attn()->init_update(lctx, optimize)), state_recr(mem->get_mem_recr()->init_update(lctx, optimize)), status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) { } llama_memory_hybrid_state::llama_memory_hybrid_state( llama_memory_hybrid * mem, std::vector heads_attn, std::vector ubatches) : ubatches(std::move(ubatches)), // note: here we copy the ubatches. not sure if this is ideal state_attn(new llama_kv_cache_unified_state(mem->get_mem_attn(), std::move(heads_attn), this->ubatches)), state_recr(new llama_memory_recurrent_state(mem->get_mem_recr(), this->ubatches)), status(llama_memory_status_combine(state_attn->get_status(), state_recr->get_status())) { } bool llama_memory_hybrid_state::next() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); state_attn->next(); state_recr->next(); if (++i_next >= ubatches.size()) { return false; } return true; } bool llama_memory_hybrid_state::apply() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); bool res = true; res = res & state_attn->apply(); res = res & state_recr->apply(); return res; } llama_memory_status llama_memory_hybrid_state::get_status() const { return status; } const llama_ubatch & llama_memory_hybrid_state::get_ubatch() const { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); return ubatches[i_next]; } const llama_kv_cache_unified_state * llama_memory_hybrid_state::get_state_attn() const { return static_cast(state_attn.get()); } const llama_memory_recurrent_state * llama_memory_hybrid_state::get_state_recr() const { return static_cast(state_recr.get()); }