#include "ssm-conv.cuh" template static __global__ void ssm_conv_f32(const float * __restrict__ src0, const float * __restrict__ src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, const int64_t n_t) { GGML_UNUSED(src0_nb0); const int tid = threadIdx.x; const int bidx = blockIdx.x; const int bidy = blockIdx.y; const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1); const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1); float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidy * split_d_inner * dst_nb0); const int stride_x = src0_nb1 / sizeof(float); const int stride_w = src1_nb1 / sizeof(float); const int stride_y = dst_nb1 / sizeof(float); float x[d_conv] = { 0.0f }; float w[d_conv] = { 0.0f }; #pragma unroll for (size_t j = 0; j < d_conv; j++) { w[j] = w_block[tid * stride_w + j]; } for (int64_t i = 0; i < n_t; i++) { float sumf = 0.0f; if (i == 0) { for (size_t j = 0; j < d_conv; j++) { x[j] = x_block[tid * stride_x + j]; } } else { x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; } #pragma unroll for (size_t j = 0; j < d_conv; j++) { sumf += x[(i + j) % d_conv] * w[j]; } y_block[i * stride_y + tid] = sumf; } } template static __global__ void ssm_conv_long_token_f32(const float * __restrict__ src0, const float * __restrict__ src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * __restrict__ dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, const int64_t n_t) { const int tid = threadIdx.x; const int bidx = blockIdx.x; const int bidy = blockIdx.y; const int bidz = blockIdx.z; const float * x_block = (const float *) ((const char *) src0 + bidx * src0_nb2 + bidy * split_d_inner * src0_nb1 + bidz * split_n_t * src0_nb0); const float * w_block = (const float *) ((const char *) src1 + bidy * split_d_inner * src1_nb1); float * y_block = (float *) ((char *) dst + bidx * dst_nb2 + bidz * split_n_t * dst_nb1 + bidy * split_d_inner * dst_nb0); const int stride_x = src0_nb1 / sizeof(float); const int stride_w = src1_nb1 / sizeof(float); const int stride_y = dst_nb1 / sizeof(float); float x[d_conv] = { 0.0f }; float w[d_conv] = { 0.0f }; #pragma unroll for (size_t j = 0; j < d_conv; j++) { w[j] = w_block[tid * stride_w + j]; } #pragma unroll for (int64_t i = 0; i < split_n_t; i++) { if (bidz * split_n_t + i < n_t) { float sumf = 0.0f; if (i == 0) { for (size_t j = 0; j < d_conv; j++) { x[j] = x_block[tid * stride_x + j]; } } else { x[(i - 1) % d_conv] = x_block[tid * stride_x + i + d_conv - 1]; } #pragma unroll for (size_t j = 0; j < d_conv; j++) { sumf += x[(i + j) % d_conv] * w[j]; } y_block[i * stride_y + tid] = sumf; } } } static void ssm_conv_f32_cuda(const float * src0, const float * src1, const int src0_nb0, const int src0_nb1, const int src0_nb2, const int src1_nb1, float * dst, const int dst_nb0, const int dst_nb1, const int dst_nb2, const int64_t nc, const int64_t nr, const int64_t n_t, const int64_t n_s, cudaStream_t stream) { const int threads = 128; GGML_ASSERT(nr % threads == 0); if (n_t <= 32) { const dim3 blocks(n_s, (nr + threads - 1) / threads, 1); if (nc == 4) { ssm_conv_f32<<>>(src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t); } else { GGML_ABORT("Only support kernel size = 4 now."); } } else { if (nc == 4) { const int64_t split_n_t = 32; dim3 blocks(n_s, (nr + threads - 1) / threads, (n_t + split_n_t - 1) / split_n_t); ssm_conv_long_token_f32<<>>( src0, src1, src0_nb0, src0_nb1, src0_nb2, src1_nb1, dst, dst_nb0, dst_nb1, dst_nb2, n_t); } else { GGML_ABORT("Only support kernel size = 4 right now."); } } } void ggml_cuda_op_ssm_conv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; // conv_x const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight const int64_t nc = src1->ne[0]; // d_conv const int64_t nr = src0->ne[1]; // d_inner const int64_t n_t = dst->ne[1]; // tokens per sequence const int64_t n_s = dst->ne[2]; // number of sequences in the batch GGML_ASSERT(dst->ne[0] == nr); GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(src1->nb[0] == sizeof(float)); GGML_ASSERT(src0->nb[1] == src0->ne[0] * sizeof(float)); const float * src0_d = (const float *) src0->data; const float * src1_d = (const float *) src1->data; float * dst_d = (float *) dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); ssm_conv_f32_cuda(src0_d, src1_d, src0->nb[0], src0->nb[1], src0->nb[2], src1->nb[1], dst_d, dst->nb[0], dst->nb[1], dst->nb[2], nc, nr, n_t, n_s, stream); }