#define CUB_IGNORE_DEPRECATED_CPP_DIALECT #include "whisper-mel-cuda.hpp" #include "whisper.h" #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4324) // added padding #endif namespace { static const char* cufftGetErrorString(cufftResult_t res) { switch (res) { case CUFFT_SUCCESS: return "The cuFFT operation was successful"; case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle"; case CUFFT_ALLOC_FAILED: return "cuFFT failed to allocate GPU or CPU memory"; case CUFFT_INVALID_TYPE: return "No longer used"; case CUFFT_INVALID_VALUE: return "User specified an invalid pointer or parameter"; case CUFFT_INTERNAL_ERROR: return "Driver or internal cuFFT library error"; case CUFFT_EXEC_FAILED: return "Failed to execute an FFT on the GPU"; case CUFFT_SETUP_FAILED: return "The cuFFT library failed to initialize"; case CUFFT_INVALID_SIZE: return "User specified an invalid transform size"; case CUFFT_UNALIGNED_DATA: return "No longer used"; case CUFFT_INCOMPLETE_PARAMETER_LIST: return "Missing parameters in call"; case CUFFT_INVALID_DEVICE: return "Execution of a plan was on different GPU than plan creation"; case CUFFT_PARSE_ERROR: return "Internal plan database error"; case CUFFT_NO_WORKSPACE: return "No workspace has been provided prior to plan execution"; case CUFFT_NOT_IMPLEMENTED: return "Function does not implement functionality for parameters given."; case CUFFT_LICENSE_ERROR: return "Used in previous versions."; case CUFFT_NOT_SUPPORTED: return "Operation is not supported for parameters given."; default: return "Unknown error"; } } #define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString) __global__ void k_fill_stft_input( const float * padded_samples, const int n_frames, const float * hann_window, float * stft_in ) { auto y = blockIdx.y * blockDim.y + threadIdx.y; // if (y >= n_frames) return; auto x = blockIdx.x * blockDim.x + threadIdx.x; // if (x >= WHISPER_N_FFT) return; auto line = padded_samples + y * WHISPER_HOP_LENGTH; auto outLine = stft_in + y * WHISPER_N_FFT; outLine[x] = line[x] * hann_window[x]; } __global__ void k_calc_magnitudes( const cuComplex * stft_out, const int n_frames, float * magnitudes ) { auto y = blockIdx.y * blockDim.y + threadIdx.y; // if (y >= n_frames) return; auto x = blockIdx.x * blockDim.x + threadIdx.x; // if (x >= WHISPER_N_FFT_HALF) return; auto idx = y * WHISPER_N_FFT_HALF + x; auto r = stft_out[idx].x; auto i = stft_out[idx].y; magnitudes[idx] = r * r + i * i; } __global__ void k_calc_log_mel( const float * mel_data, const int n_mel, const float * max_val, float * log_mel ) { auto x = blockIdx.x * blockDim.x + threadIdx.x; if (x >= n_mel) return; float val = mel_data[x]; constexpr float e = 1e-10f; if (val < e) val = e; val = log10(val); const float max = log10(*max_val) - 8.f; if (val < max) val = max; log_mel[x] = (val + 4) / 4; } void fill_stft_input( const float * padded_samples, int n_frames, const float * hann_window, float * stft_in, cudaStream_t stream ) { dim3 block(WHISPER_N_FFT, 1); dim3 grid(1, n_frames); k_fill_stft_input<<>>(padded_samples, n_frames, hann_window, stft_in); } void calc_magnitudes( const cuComplex * stft_out, int n_frames, float * magnitudes, cudaStream_t stream ) { dim3 block(WHISPER_N_FFT_HALF, 1); dim3 grid(1, n_frames); k_calc_magnitudes<<>>(stft_out, n_frames, magnitudes); } constexpr auto LOG_MEL_PREFIX_SIZE = 256; void calc_log_mel( const float * mel_data, int n_mel, void * tempStorage, int tempStorageSize, float * log_mel, cudaStream_t stream ) { float * max_val = reinterpret_cast(tempStorage); void * maxTemp = reinterpret_cast(tempStorage) + LOG_MEL_PREFIX_SIZE; size_t nbytes = size_t(tempStorageSize - LOG_MEL_PREFIX_SIZE); cub::DeviceReduce::Max(maxTemp, nbytes, mel_data, max_val, n_mel, stream); int block = 256; int grid = (n_mel + block - 1) / block; k_calc_log_mel<<>>(mel_data, n_mel, max_val, log_mel); } class mel_calc_cuda : public whisper_mel_calc { const int m_n_mel; ggml_backend_t m_backend = nullptr; int m_device = -1; cudaStream_t m_stream = nullptr; cublasHandle_t m_cublas_handle = nullptr; float * m_hann_window = nullptr; float * m_filters = nullptr; // max samples for which we have allocated memory for the temp working areas below (cufft, log_mel) int m_n_max_samples = 0; size_t m_cufft_workspace_size = 0; void * m_cufft_workspace = nullptr; size_t m_log_mel_temp_storage_size = 0; void * m_log_mel_temp_storage = nullptr; public: mel_calc_cuda(ggml_backend_t backend, const whisper_filters & filters) : m_n_mel(filters.n_mel) , m_backend(backend) { ggml_backend_cuda_context* cuda_ctx = (ggml_backend_cuda_context*)m_backend->context; m_device = cuda_ctx->device; if (ggml_cuda_info().devices[m_device].cc < 600) { // we've only tesed on 6.0 and higher and we've had reports of crashes on 5.0: // https://github.com/ggerganov/whisper.cpp/issues/2230 // to be safe forbid anything below 6.0 throw std::runtime_error("CUDA compute capability 6.0 or higher is required"); } ggml_cuda_set_device(m_device); if (filters.n_fft != WHISPER_N_FFT_HALF) { throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF"); } assert(filters.data.size() == filters.n_mel * WHISPER_N_FFT_HALF); CUDA_CHECK(cudaStreamCreate(&m_stream)); CUBLAS_CHECK(cublasCreate(&m_cublas_handle)); CUBLAS_CHECK(cublasSetMathMode(m_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH)); CUBLAS_CHECK(cublasSetStream(m_cublas_handle, m_stream)); // create Hann window { auto hw = whisper_mel_calc::hann_window(); CUDA_CHECK(cudaMallocAsync(&m_hann_window, hw.len * sizeof(float), m_stream)); CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream)); } // fill filters { auto& f = filters.data; CUDA_CHECK(cudaMallocAsync(&m_filters, f.size() * sizeof(float), m_stream)); CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream)); } // preallocate working areas enough for the most common cases (<= 30s) ensure_working_areas(WHISPER_N_SAMPLES); } ~mel_calc_cuda() { ggml_cuda_set_device(m_device); CUDA_CHECK(cudaStreamSynchronize(m_stream)); CUDA_CHECK(cudaStreamDestroy(m_stream)); CUDA_CHECK(cudaFree(m_hann_window)); CUDA_CHECK(cudaFree(m_cufft_workspace)); CUDA_CHECK(cudaFree(m_filters)); CUDA_CHECK(cudaFree(m_log_mel_temp_storage)); } void ensure_working_areas(int n_samples) { if (n_samples <= m_n_max_samples) { return; } const auto max_padded_samples = n_samples + WHISPER_N_SAMPLES + WHISPER_N_FFT; const auto max_frames = 1 + (max_padded_samples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH; // cufft workspace { if (m_cufft_workspace) { CUDA_CHECK(cudaFree(m_cufft_workspace)); m_cufft_workspace_size = 0; m_cufft_workspace = nullptr; } CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, max_frames, &m_cufft_workspace_size)); CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream)); } // device reduce working area { if (m_log_mel_temp_storage) { CUDA_CHECK(cudaFree(m_log_mel_temp_storage)); m_log_mel_temp_storage_size = 0; m_log_mel_temp_storage = nullptr; } const auto max_mels = 160; size_t nbytes = 0; float* temp = nullptr; cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, max_frames * max_mels); m_log_mel_temp_storage_size = nbytes + LOG_MEL_PREFIX_SIZE; CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream)); } m_n_max_samples = n_samples; } virtual whisper_mel calculate(whisper_span samples, int /*n_threads*/) override { ggml_cuda_set_device(m_device); ensure_working_areas(samples.len); const size_t mirror_pad = WHISPER_N_FFT / 2; const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT; // pad std::vector padded_samples(padded_size); std::reverse_copy(samples.data + 1, samples.data + 1 + mirror_pad, padded_samples.begin()); // reflect std::copy(samples.data, samples.data + samples.len, padded_samples.begin() + mirror_pad); // copy // fill the rest of the data // it should canonically be mirrored at the end as well, // but we just assume the last MEL_FRAME_SIZE/2 samples are zeros std::fill(padded_samples.begin() + mirror_pad + samples.len, padded_samples.end(), 0.f); const auto n_frames = 1 + (padded_samples.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH; float * cu_padded_samples = nullptr; CUDA_CHECK(cudaMallocAsync(&cu_padded_samples, padded_samples.size() * sizeof(float), m_stream)); CUDA_CHECK(cudaMemcpyAsync(cu_padded_samples, padded_samples.data(), padded_samples.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream)); float * stft_in = nullptr; // contiguous buffer for stft input CUDA_CHECK(cudaMallocAsync(&stft_in, n_frames * WHISPER_N_FFT * sizeof(float), m_stream)); fill_stft_input(cu_padded_samples, int(n_frames), m_hann_window, stft_in, m_stream); cufftComplex* stft_out; CUDA_CHECK(cudaMallocAsync(&stft_out, n_frames * WHISPER_N_FFT_HALF * sizeof(cufftComplex), m_stream)); cufftHandle plan; CUFFT_CHECK(cufftCreate(&plan)); CUFFT_CHECK(cufftSetAutoAllocation(plan, 0)); { size_t waSize; CUFFT_CHECK(cufftMakePlan1d(plan, WHISPER_N_FFT, CUFFT_R2C, int(n_frames), &waSize)); assert(waSize <= m_cufft_workspace_size); CUFFT_CHECK(cufftSetWorkArea(plan, m_cufft_workspace)); CUFFT_CHECK(cufftSetStream(plan, m_stream)); } CUFFT_CHECK(cufftExecR2C(plan, stft_in, stft_out)); const auto n_mag_frames = n_frames - 1; // drop last frame float * magnitudes; CUDA_CHECK(cudaMallocAsync(&magnitudes, n_mag_frames * WHISPER_N_FFT_HALF * sizeof(float), m_stream)); calc_magnitudes(stft_out, int(n_mag_frames), magnitudes, m_stream); float * mel_data = nullptr; CUDA_CHECK(cudaMallocAsync(&mel_data, m_n_mel * n_mag_frames * sizeof(float), m_stream)); const float fone = 1.0f, fzero = 0.0f; CUBLAS_CHECK(cublasSgemm(m_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, int(n_mag_frames), m_n_mel, WHISPER_N_FFT_HALF, &fone, magnitudes, WHISPER_N_FFT_HALF, m_filters, WHISPER_N_FFT_HALF, &fzero, mel_data, int(n_mag_frames))); whisper_mel ret; // Calculate semi-padded sample length to ensure compatibility int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH; whisper_mel_init(ret, m_backend, int(n_mag_frames), n_len_org, m_n_mel); assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float)); float* log_mels = reinterpret_cast(ret.tensor->data); calc_log_mel( mel_data, int(m_n_mel * n_mag_frames), m_log_mel_temp_storage , int(m_log_mel_temp_storage_size), log_mels, m_stream); CUDA_CHECK(cudaStreamSynchronize(m_stream)); // cleanup CUFFT_CHECK(cufftDestroy(plan)); CUDA_CHECK(cudaFreeAsync(mel_data, m_stream)); CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream)); CUDA_CHECK(cudaFreeAsync(stft_out, m_stream)); CUDA_CHECK(cudaFreeAsync(stft_in, m_stream)); CUDA_CHECK(cudaFreeAsync(cu_padded_samples, m_stream)); return ret; } }; } whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) { try { return new mel_calc_cuda(backend, filters); } catch (...) { // TODO: log error (but for this we would have to expose the log state to be accessible here) return nullptr; } }