// Talk with AI // #include "common-sdl.h" #include "common.h" #include "whisper.h" #include "llama.h" #include #include #include #include #include #include #include #include #include static std::vector llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { auto * model = llama_get_model(ctx); // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), 0, false); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } // command-line parameters struct whisper_params { int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t voice_ms = 10000; int32_t capture_id = -1; int32_t max_tokens = 32; int32_t audio_ctx = 0; int32_t n_gpu_layers = 999; float vad_thold = 0.6f; float freq_thold = 100.0f; bool translate = false; bool print_special = false; bool print_energy = false; bool no_timestamps = true; bool verbose_prompt = false; bool use_gpu = true; bool flash_attn = false; std::string person = "Georgi"; std::string bot_name = "LLaMA"; std::string wake_cmd = ""; std::string heard_ok = ""; std::string language = "en"; std::string model_wsp = "models/ggml-base.en.bin"; std::string model_llama = "models/ggml-llama-7B.bin"; std::string speak = "./examples/talk-llama/speak"; std::string speak_file = "./examples/talk-llama/to_speak.txt"; std::string prompt = ""; std::string fname_out; std::string path_session = ""; // path to file for saving/loading model eval state }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-ngl" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(argv[++i]); } else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } else if (arg == "-tr" || arg == "--translate") { params.translate = true; } else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; } else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; } else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; } else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; } else if (arg == "--session") { params.path_session = argv[++i]; } else if (arg == "-w" || arg == "--wake-command") { params.wake_cmd = argv[++i]; } else if (arg == "-ho" || arg == "--heard-ok") { params.heard_ok = argv[++i]; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; } else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; } else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; } else if (arg == "-sf" || arg == "--speak-file") { params.speak_file = argv[++i]; } else if (arg == "--prompt-file") { std::ifstream file(argv[++i]); std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help [default] show this help message and exit\n"); fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms); fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers); fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false"); fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true"); fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false"); fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str()); fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str()); fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str()); fprintf(stderr, " -ho TEXT, --heard-ok TEXT [%-7s] said by TTS before generating reply\n", params.heard_ok.c_str()); fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str()); fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str()); fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str()); fprintf(stderr, " -sf FILE, --speak-file [%-7s] file to pass to TTS\n", params.speak_file.c_str()); fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", ""); fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n"); fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); fprintf(stderr, "\n"); } static std::string transcribe( whisper_context * ctx, const whisper_params & params, const std::vector & pcmf32, const std::string prompt_text, float & prob, int64_t & t_ms) { const auto t_start = std::chrono::high_resolution_clock::now(); prob = 0.0f; t_ms = 0; std::vector prompt_tokens; whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); prompt_tokens.resize(1024); prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size())); wparams.print_progress = false; wparams.print_special = params.print_special; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = true; wparams.single_segment = true; wparams.max_tokens = params.max_tokens; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data(); wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size(); wparams.audio_ctx = params.audio_ctx; if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { return ""; } int prob_n = 0; std::string result; const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); result += text; const int n_tokens = whisper_full_n_tokens(ctx, i); for (int j = 0; j < n_tokens; ++j) { const auto token = whisper_full_get_token_data(ctx, i, j); prob += token.p; ++prob_n; } } if (prob_n > 0) { prob /= prob_n; } const auto t_end = std::chrono::high_resolution_clock::now(); t_ms = std::chrono::duration_cast(t_end - t_start).count(); return result; } static std::vector get_words(const std::string &txt) { std::vector words; std::istringstream iss(txt); std::string word; while (iss >> word) { words.push_back(word); } return words; } const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)"; const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}. {1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision. There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other. The transcript only includes text, it does not include markup like HTML and Markdown. {1} responds with short and concise answers. {0}{4} Hello, {1}! {1}{4} Hello {0}! How may I help you today? {0}{4} What time is it? {1}{4} It is {2} o'clock. {0}{4} What year is it? {1}{4} We are in {3}. {0}{4} What is a cat? {1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae. {0}{4} Name a color. {1}{4} Blue {0}{4})"; int main(int argc, char ** argv) { whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } // whisper init struct whisper_context_params cparams = whisper_context_default_params(); cparams.use_gpu = params.use_gpu; cparams.flash_attn = params.flash_attn; struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams); if (!ctx_wsp) { fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw \n"); return 1; } // llama init llama_backend_init(); auto lmparams = llama_model_default_params(); if (!params.use_gpu) { lmparams.n_gpu_layers = 0; } else { lmparams.n_gpu_layers = params.n_gpu_layers; } struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams); if (!model_llama) { fprintf(stderr, "No llama.cpp model specified. Please provide using -ml \n"); return 1; } llama_context_params lcparams = llama_context_default_params(); // tune these to your liking lcparams.n_ctx = 2048; lcparams.n_threads = params.n_threads; lcparams.flash_attn = params.flash_attn; struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams); // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx_wsp)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); fprintf(stderr, "\n"); } // init audio audio_async audio(30*1000); if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { fprintf(stderr, "%s: audio.init() failed!\n", __func__); return 1; } audio.resume(); bool is_running = true; bool force_speak = false; float prob0 = 0.0f; const std::string chat_symb = ":"; std::vector pcmf32_cur; std::vector pcmf32_prompt; const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", params.bot_name); // construct the initial prompt for LLaMA inference std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt; // need to have leading ' ' prompt_llama.insert(0, 1, ' '); prompt_llama = ::replace(prompt_llama, "{0}", params.person); prompt_llama = ::replace(prompt_llama, "{1}", params.bot_name); { // get time string std::string time_str; { time_t t = time(0); struct tm * now = localtime(&t); char buf[128]; strftime(buf, sizeof(buf), "%H:%M", now); time_str = buf; } prompt_llama = ::replace(prompt_llama, "{2}", time_str); } { // get year string std::string year_str; { time_t t = time(0); struct tm * now = localtime(&t); char buf[128]; strftime(buf, sizeof(buf), "%Y", now); year_str = buf; } prompt_llama = ::replace(prompt_llama, "{3}", year_str); } prompt_llama = ::replace(prompt_llama, "{4}", chat_symb); llama_batch batch = llama_batch_init(llama_n_ctx(ctx_llama), 0, 1); // init sampler const float top_k = 5; const float top_p = 0.80f; const float temp = 0.30f; const int seed = 0; auto sparams = llama_sampler_chain_default_params(); llama_sampler * smpl = llama_sampler_chain_init(sparams); if (temp > 0.0f) { llama_sampler_chain_add(smpl, llama_sampler_init_top_k(top_k)); llama_sampler_chain_add(smpl, llama_sampler_init_top_p(top_p, 1)); llama_sampler_chain_add(smpl, llama_sampler_init_temp (temp)); llama_sampler_chain_add(smpl, llama_sampler_init_dist (seed)); } else { llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); } // init session std::string path_session = params.path_session; std::vector session_tokens; auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true); if (!path_session.empty()) { fprintf(stderr, "%s: attempting to load saved session from %s\n", __func__, path_session.c_str()); // fopen to check for existing session FILE * fp = std::fopen(path_session.c_str(), "rb"); if (fp != NULL) { std::fclose(fp); session_tokens.resize(llama_n_ctx(ctx_llama)); size_t n_token_count_out = 0; if (!llama_state_load_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); return 1; } session_tokens.resize(n_token_count_out); for (size_t i = 0; i < session_tokens.size(); i++) { embd_inp[i] = session_tokens[i]; } fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size()); } else { fprintf(stderr, "%s: session file does not exist, will create\n", __func__); } } // evaluate the initial prompt printf("\n"); printf("%s : initializing - please wait ...\n", __func__); // prepare batch { batch.n_tokens = embd_inp.size(); for (int i = 0; i < batch.n_tokens; i++) { batch.token[i] = embd_inp[i]; batch.pos[i] = i; batch.n_seq_id[i] = 1; batch.seq_id[i][0] = 0; batch.logits[i] = i == batch.n_tokens - 1; } } if (llama_decode(ctx_llama, batch)) { fprintf(stderr, "%s : failed to decode\n", __func__); return 1; } if (params.verbose_prompt) { fprintf(stdout, "\n"); fprintf(stdout, "%s", prompt_llama.c_str()); fflush(stdout); } // debug message about similarity of saved session, if applicable size_t n_matching_session_tokens = 0; if (session_tokens.size()) { for (llama_token id : session_tokens) { if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { break; } n_matching_session_tokens++; } if (n_matching_session_tokens >= embd_inp.size()) { fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__); } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", __func__, n_matching_session_tokens, embd_inp.size()); } else { fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n", __func__, n_matching_session_tokens, embd_inp.size()); } } // HACK - because session saving incurs a non-negligible delay, for now skip re-saving session // if we loaded a session with at least 75% similarity. It's currently just used to speed up the // initial prompt so it doesn't need to be an exact match. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4); printf("%s : done! start speaking in the microphone\n", __func__); // show wake command if enabled const std::string wake_cmd = params.wake_cmd; const int wake_cmd_length = get_words(wake_cmd).size(); const bool use_wake_cmd = wake_cmd_length > 0; if (use_wake_cmd) { printf("%s : the wake-up command is: '%s%s%s'\n", __func__, "\033[1m", wake_cmd.c_str(), "\033[0m"); } printf("\n"); printf("%s%s", params.person.c_str(), chat_symb.c_str()); fflush(stdout); // clear audio buffer audio.clear(); // text inference variables const int voice_id = 2; const int n_keep = embd_inp.size(); const int n_ctx = llama_n_ctx(ctx_llama); int n_past = n_keep; int n_prev = 64; // TODO arg int n_session_consumed = !path_session.empty() && session_tokens.size() > 0 ? session_tokens.size() : 0; std::vector embd; // reverse prompts for detecting when it's time to stop speaking std::vector antiprompts = { params.person + chat_symb, }; // main loop while (is_running) { // handle Ctrl + C is_running = sdl_poll_events(); if (!is_running) { break; } // delay std::this_thread::sleep_for(std::chrono::milliseconds(100)); int64_t t_ms = 0; { audio.get(2000, pcmf32_cur); if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) { //fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); audio.get(params.voice_ms, pcmf32_cur); std::string all_heard; if (!force_speak) { all_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms)); } const auto words = get_words(all_heard); std::string wake_cmd_heard; std::string text_heard; for (int i = 0; i < (int) words.size(); ++i) { if (i < wake_cmd_length) { wake_cmd_heard += words[i] + " "; } else { text_heard += words[i] + " "; } } // check if audio starts with the wake-up command if enabled if (use_wake_cmd) { const float sim = similarity(wake_cmd_heard, wake_cmd); if ((sim < 0.7f) || (text_heard.empty())) { audio.clear(); continue; } } // optionally give audio feedback that the current text is being processed if (!params.heard_ok.empty()) { speak_with_file(params.speak, params.heard_ok, params.speak_file, voice_id); } // remove text between brackets using regex { std::regex re("\\[.*?\\]"); text_heard = std::regex_replace(text_heard, re, ""); } // remove text between brackets using regex { std::regex re("\\(.*?\\)"); text_heard = std::regex_replace(text_heard, re, ""); } // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); // take first line text_heard = text_heard.substr(0, text_heard.find_first_of('\n')); // remove leading and trailing whitespace text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); const std::vector tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false); if (text_heard.empty() || tokens.empty() || force_speak) { //fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__); audio.clear(); continue; } force_speak = false; text_heard.insert(0, 1, ' '); text_heard += "\n" + params.bot_name + chat_symb; fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m"); fflush(stdout); embd = ::llama_tokenize(ctx_llama, text_heard, false); // Append the new input tokens to the session_tokens vector if (!path_session.empty()) { session_tokens.insert(session_tokens.end(), tokens.begin(), tokens.end()); } // text inference bool done = false; std::string text_to_speak; while (true) { // predict if (embd.size() > 0) { if (n_past + (int) embd.size() > n_ctx) { n_past = n_keep; // insert n_left/2 tokens at the start of embd from last_n_tokens embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end()); // stop saving session if we run out of context path_session = ""; //printf("\n---\n"); //printf("resetting: '"); //for (int i = 0; i < (int) embd.size(); i++) { // printf("%s", llama_token_to_piece(ctx_llama, embd[i])); //} //printf("'\n"); //printf("\n---\n"); } // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) // REVIEW if (n_session_consumed < (int) session_tokens.size()) { size_t i = 0; for ( ; i < embd.size(); i++) { if (embd[i] != session_tokens[n_session_consumed]) { session_tokens.resize(n_session_consumed); break; } n_past++; n_session_consumed++; if (n_session_consumed >= (int) session_tokens.size()) { i++; break; } } if (i > 0) { embd.erase(embd.begin(), embd.begin() + i); } } if (embd.size() > 0 && !path_session.empty()) { session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); n_session_consumed = session_tokens.size(); } // prepare batch { batch.n_tokens = embd.size(); for (int i = 0; i < batch.n_tokens; i++) { batch.token[i] = embd[i]; batch.pos[i] = n_past + i; batch.n_seq_id[i] = 1; batch.seq_id[i][0] = 0; batch.logits[i] = i == batch.n_tokens - 1; } } if (llama_decode(ctx_llama, batch)) { fprintf(stderr, "%s : failed to decode\n", __func__); return 1; } } embd_inp.insert(embd_inp.end(), embd.begin(), embd.end()); n_past += embd.size(); embd.clear(); if (done) break; { // out of user input, sample next token if (!path_session.empty() && need_to_save_session) { need_to_save_session = false; llama_state_save_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size()); } const llama_token id = llama_sampler_sample(smpl, ctx_llama, -1); if (id != llama_token_eos(model_llama)) { // add it to the context embd.push_back(id); text_to_speak += llama_token_to_piece(ctx_llama, id); printf("%s", llama_token_to_piece(ctx_llama, id).c_str()); fflush(stdout); } } { std::string last_output; for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) { last_output += llama_token_to_piece(ctx_llama, embd_inp[i]); } last_output += llama_token_to_piece(ctx_llama, embd[0]); for (std::string & antiprompt : antiprompts) { if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { done = true; text_to_speak = ::replace(text_to_speak, antiprompt, ""); fflush(stdout); need_to_save_session = true; break; } } } is_running = sdl_poll_events(); if (!is_running) { break; } } speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id); audio.clear(); } } } audio.pause(); whisper_print_timings(ctx_wsp); whisper_free(ctx_wsp); llama_perf_sampler_print(smpl); llama_perf_context_print(ctx_llama); llama_sampler_free(smpl); llama_batch_free(batch); llama_free(ctx_llama); llama_backend_free(); return 0; }