import argparse import torch from whisper import load_model import os from openvino.tools import mo from openvino.frontend import FrontEndManager from openvino.runtime import serialize import shutil def convert_encoder(hparams, encoder, mname): encoder.eval() mel = torch.zeros((1, hparams.n_mels, 3000)) onnx_folder = os.path.join(os.path.dirname(__file__), "onnx_encoder") #create a directory to store the onnx model, and other collateral that is saved during onnx export procedure if not os.path.isdir(onnx_folder): os.makedirs(onnx_folder) onnx_path = os.path.join(onnx_folder, "whisper_encoder.onnx") # Export the PyTorch model to ONNX torch.onnx.export( encoder, mel, onnx_path, input_names=["mel"], output_names=["output_features"] ) # Convert ONNX to OpenVINO IR format using the frontend fem = FrontEndManager() onnx_fe = fem.load_by_framework("onnx") onnx_model = onnx_fe.load(onnx_path) ov_model = onnx_fe.convert(onnx_model) # Serialize the OpenVINO model to XML and BIN files serialize(ov_model, xml_path=os.path.join(os.path.dirname(__file__), "ggml-" + mname + "-encoder-openvino.xml")) # Cleanup if os.path.isdir(onnx_folder): shutil.rmtree(onnx_folder) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3, large-v3-turbo)", required=True) args = parser.parse_args() if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]: raise ValueError("Invalid model name") whisper = load_model(args.model).cpu() hparams = whisper.dims encoder = whisper.encoder # Convert encoder to onnx convert_encoder(hparams, encoder, args.model)