#pragma once #include "ggml.h" #include "ggml-backend.h" #ifdef __cplusplus extern "C" { #endif // Scheduling priorities enum ggml_sched_priority { GGML_SCHED_PRIO_NORMAL, GGML_SCHED_PRIO_MEDIUM, GGML_SCHED_PRIO_HIGH, GGML_SCHED_PRIO_REALTIME }; // Threadpool params // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults struct ggml_threadpool_params { bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings) int n_threads; // number of threads enum ggml_sched_priority prio; // thread priority uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling) bool strict_cpu; // strict cpu placement bool paused; // start in paused state }; struct ggml_threadpool; // forward declaration, see ggml.c typedef struct ggml_threadpool * ggml_threadpool_t; // the compute plan that needs to be prepared for ggml_graph_compute() // since https://github.com/ggerganov/ggml/issues/287 struct ggml_cplan { size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()` uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()` int n_threads; struct ggml_threadpool * threadpool; // abort ggml_graph_compute when true ggml_abort_callback abort_callback; void * abort_callback_data; }; // numa strategies enum ggml_numa_strategy { GGML_NUMA_STRATEGY_DISABLED = 0, GGML_NUMA_STRATEGY_DISTRIBUTE = 1, GGML_NUMA_STRATEGY_ISOLATE = 2, GGML_NUMA_STRATEGY_NUMACTL = 3, GGML_NUMA_STRATEGY_MIRROR = 4, GGML_NUMA_STRATEGY_COUNT }; GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value); GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value); GGML_BACKEND_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads); GGML_BACKEND_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads); GGML_BACKEND_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1); GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params); GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool); GGML_BACKEND_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool); GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool); GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool); // ggml_graph_plan() has to be called before ggml_graph_compute() // when plan.work_size > 0, caller must allocate memory for plan.work_data GGML_BACKEND_API struct ggml_cplan ggml_graph_plan( const struct ggml_cgraph * cgraph, int n_threads, /* = GGML_DEFAULT_N_THREADS */ struct ggml_threadpool * threadpool /* = NULL */ ); GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); // same as ggml_graph_compute() but the work data is allocated as a part of the context // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads); // // system info // // x86 GGML_BACKEND_API int ggml_cpu_has_sse3 (void); GGML_BACKEND_API int ggml_cpu_has_ssse3 (void); GGML_BACKEND_API int ggml_cpu_has_avx (void); GGML_BACKEND_API int ggml_cpu_has_avx2 (void); GGML_BACKEND_API int ggml_cpu_has_f16c (void); GGML_BACKEND_API int ggml_cpu_has_fma (void); GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void); GGML_BACKEND_API int ggml_cpu_has_avx512 (void); GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void); GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void); GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void); GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void); // ARM GGML_BACKEND_API int ggml_cpu_has_neon (void); GGML_BACKEND_API int ggml_cpu_has_arm_fma (void); GGML_BACKEND_API int ggml_cpu_has_fp16_va (void); GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void); GGML_BACKEND_API int ggml_cpu_has_sve (void); GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes // other GGML_BACKEND_API int ggml_cpu_has_riscv_v (void); GGML_BACKEND_API int ggml_cpu_has_vsx (void); GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void); GGML_BACKEND_API int ggml_cpu_has_llamafile (void); // Internal types and functions exposed for tests and benchmarks typedef void (*ggml_from_float_to_mat_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs); typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx, const void * GGML_RESTRICT y, size_t by, int nrc); typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y, int nr, int nc); typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y, int nr, int nc); struct ggml_type_traits_cpu { ggml_from_float_t from_float; ggml_from_float_to_mat_t from_float_to_mat; ggml_vec_dot_t vec_dot; enum ggml_type vec_dot_type; int64_t nrows; // number of rows to process simultaneously int64_t ncols; // number of columns to process simultaneously ggml_gemv_t gemv; ggml_gemm_t gemm; }; GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type); GGML_BACKEND_API void ggml_cpu_init(void); // // CPU backend // GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void); GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend); GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void); #ifdef GGML_USE_CPU_HBM GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); #endif GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void); GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft); #ifdef __cplusplus } #endif