#include "whisper.h" #ifdef WHISPER_USE_COREML #include "coreml/whisper-encoder.h" #endif #if WHISPER_USE_OPENVINO #include "openvino/whisper-openvino-encoder.h" #endif #include "ggml.h" #include #include #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #if defined(GGML_BIG_ENDIAN) #include template static T byteswap(T value) { return std::byteswap(value); } template<> float byteswap(float value) { return std::bit_cast(byteswap(std::bit_cast(value))); } template static void byteswap_tensor_data(ggml_tensor * tensor) { T * datum = reinterpret_cast(tensor->data); for (int i = 0; i < ggml_nelements(tensor); i++) { datum[i] = byteswap(datum[i]); } } static void byteswap_tensor(ggml_tensor * tensor) { switch (tensor->type) { case GGML_TYPE_I16: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_F16: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_I32: { byteswap_tensor_data(tensor); break; } case GGML_TYPE_F32: { byteswap_tensor_data(tensor); break; } default: { // GML_TYPE_I8 break; } } } #define BYTESWAP_VALUE(d) d = byteswap(d) #define BYTESWAP_FILTERS(f) \ do { \ for (auto & datum : f.data) { \ datum = byteswap(datum); \ } \ } while (0) #define BYTESWAP_TENSOR(t) \ do { \ byteswap_tensor(t); \ } while (0) #else #define BYTESWAP_VALUE(d) do {} while (0) #define BYTESWAP_FILTERS(f) do {} while (0) #define BYTESWAP_TENSOR(t) do {} while (0) #endif #define WHISPER_ASSERT(x) \ do { \ if (!(x)) { \ log("WHISPER_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ abort(); \ } \ } while (0) // define this to enable verbose trace logging - useful for debugging purposes //#define WHISPER_DEBUG #if defined(WHISPER_DEBUG) #define WHISPER_PRINT_DEBUG(...) \ do { \ fprintf(stderr, __VA_ARGS__); \ } while (0) #else #define WHISPER_PRINT_DEBUG(...) #endif //#define WHISPER_USE_FLASH_ATTN //#define WHISPER_USE_FLASH_FF #define WHISPER_MAX_DECODERS 16 #define WHISPER_USE_SCRATCH #define WHISPER_MAX_SCRATCH_BUFFERS 16 // available whisper models enum e_model { MODEL_UNKNOWN, MODEL_TINY, MODEL_BASE, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, }; static const std::map> g_lang = { { "en", { 0, "english", } }, { "zh", { 1, "chinese", } }, { "de", { 2, "german", } }, { "es", { 3, "spanish", } }, { "ru", { 4, "russian", } }, { "ko", { 5, "korean", } }, { "fr", { 6, "french", } }, { "ja", { 7, "japanese", } }, { "pt", { 8, "portuguese", } }, { "tr", { 9, "turkish", } }, { "pl", { 10, "polish", } }, { "ca", { 11, "catalan", } }, { "nl", { 12, "dutch", } }, { "ar", { 13, "arabic", } }, { "sv", { 14, "swedish", } }, { "it", { 15, "italian", } }, { "id", { 16, "indonesian", } }, { "hi", { 17, "hindi", } }, { "fi", { 18, "finnish", } }, { "vi", { 19, "vietnamese", } }, { "he", { 20, "hebrew", } }, { "uk", { 21, "ukrainian", } }, { "el", { 22, "greek", } }, { "ms", { 23, "malay", } }, { "cs", { 24, "czech", } }, { "ro", { 25, "romanian", } }, { "da", { 26, "danish", } }, { "hu", { 27, "hungarian", } }, { "ta", { 28, "tamil", } }, { "no", { 29, "norwegian", } }, { "th", { 30, "thai", } }, { "ur", { 31, "urdu", } }, { "hr", { 32, "croatian", } }, { "bg", { 33, "bulgarian", } }, { "lt", { 34, "lithuanian", } }, { "la", { 35, "latin", } }, { "mi", { 36, "maori", } }, { "ml", { 37, "malayalam", } }, { "cy", { 38, "welsh", } }, { "sk", { 39, "slovak", } }, { "te", { 40, "telugu", } }, { "fa", { 41, "persian", } }, { "lv", { 42, "latvian", } }, { "bn", { 43, "bengali", } }, { "sr", { 44, "serbian", } }, { "az", { 45, "azerbaijani", } }, { "sl", { 46, "slovenian", } }, { "kn", { 47, "kannada", } }, { "et", { 48, "estonian", } }, { "mk", { 49, "macedonian", } }, { "br", { 50, "breton", } }, { "eu", { 51, "basque", } }, { "is", { 52, "icelandic", } }, { "hy", { 53, "armenian", } }, { "ne", { 54, "nepali", } }, { "mn", { 55, "mongolian", } }, { "bs", { 56, "bosnian", } }, { "kk", { 57, "kazakh", } }, { "sq", { 58, "albanian", } }, { "sw", { 59, "swahili", } }, { "gl", { 60, "galician", } }, { "mr", { 61, "marathi", } }, { "pa", { 62, "punjabi", } }, { "si", { 63, "sinhala", } }, { "km", { 64, "khmer", } }, { "sn", { 65, "shona", } }, { "yo", { 66, "yoruba", } }, { "so", { 67, "somali", } }, { "af", { 68, "afrikaans", } }, { "oc", { 69, "occitan", } }, { "ka", { 70, "georgian", } }, { "be", { 71, "belarusian", } }, { "tg", { 72, "tajik", } }, { "sd", { 73, "sindhi", } }, { "gu", { 74, "gujarati", } }, { "am", { 75, "amharic", } }, { "yi", { 76, "yiddish", } }, { "lo", { 77, "lao", } }, { "uz", { 78, "uzbek", } }, { "fo", { 79, "faroese", } }, { "ht", { 80, "haitian creole", } }, { "ps", { 81, "pashto", } }, { "tk", { 82, "turkmen", } }, { "nn", { 83, "nynorsk", } }, { "mt", { 84, "maltese", } }, { "sa", { 85, "sanskrit", } }, { "lb", { 86, "luxembourgish", } }, { "my", { 87, "myanmar", } }, { "bo", { 88, "tibetan", } }, { "tl", { 89, "tagalog", } }, { "mg", { 90, "malagasy", } }, { "as", { 91, "assamese", } }, { "tt", { 92, "tatar", } }, { "haw", { 93, "hawaiian", } }, { "ln", { 94, "lingala", } }, { "ha", { 95, "hausa", } }, { "ba", { 96, "bashkir", } }, { "jw", { 97, "javanese", } }, { "su", { 98, "sundanese", } }, }; static const size_t MB = 1ull*1024*1024; static const std::map MEM_REQ_SCRATCH0 = { { MODEL_TINY, 62ull*MB }, { MODEL_BASE, 80ull*MB }, { MODEL_SMALL, 120ull*MB }, { MODEL_MEDIUM, 158ull*MB }, { MODEL_LARGE, 198ull*MB }, }; static const std::map MEM_REQ_SCRATCH1 = { { MODEL_TINY, 18ull*MB }, { MODEL_BASE, 24ull*MB }, { MODEL_SMALL, 36ull*MB }, { MODEL_MEDIUM, 48ull*MB }, { MODEL_LARGE, 60ull*MB }, }; static const std::map MEM_REQ_SCRATCH2 = { { MODEL_TINY, 4ull*MB }, { MODEL_BASE, 4ull*MB }, { MODEL_SMALL, 6ull*MB }, { MODEL_MEDIUM, 7ull*MB }, { MODEL_LARGE, 9ull*MB }, }; static const std::map MEM_REQ_SCRATCH3 = { { MODEL_TINY, 4ull*MB }, { MODEL_BASE, 4ull*MB }, { MODEL_SMALL, 6ull*MB }, { MODEL_MEDIUM, 7ull*MB }, { MODEL_LARGE, 9ull*MB }, }; static const std::map> MEM_REQ_MODEL = { { GGML_TYPE_F32, { { MODEL_TINY, 74ull*MB }, { MODEL_BASE, 142ull*MB }, { MODEL_SMALL, 466ull*MB }, { MODEL_MEDIUM, 1464ull*MB }, { MODEL_LARGE, 2952ull*MB }, }, }, { GGML_TYPE_F16, { { MODEL_TINY, 74ull*MB }, { MODEL_BASE, 142ull*MB }, { MODEL_SMALL, 466ull*MB }, { MODEL_MEDIUM, 1464ull*MB }, { MODEL_LARGE, 2952ull*MB }, }, }, { GGML_TYPE_Q4_0, { { MODEL_TINY, 26ull*MB }, { MODEL_BASE, 50ull*MB }, { MODEL_SMALL, 154ull*MB }, { MODEL_MEDIUM, 470ull*MB }, { MODEL_LARGE, 940ull*MB }, }, }, { GGML_TYPE_Q4_1, { { MODEL_TINY, 32ull*MB }, { MODEL_BASE, 58ull*MB }, { MODEL_SMALL, 182ull*MB }, { MODEL_MEDIUM, 562ull*MB }, { MODEL_LARGE, 1124ull*MB }, }, }, { GGML_TYPE_Q5_0, { { MODEL_TINY, 30ull*MB }, { MODEL_BASE, 54ull*MB }, { MODEL_SMALL, 170ull*MB }, { MODEL_MEDIUM, 516ull*MB }, { MODEL_LARGE, 1034ull*MB }, }, }, { GGML_TYPE_Q5_1, { { MODEL_TINY, 32ull*MB }, { MODEL_BASE, 58ull*MB }, { MODEL_SMALL, 182ull*MB }, { MODEL_MEDIUM, 562ull*MB }, { MODEL_LARGE, 1124ull*MB }, }, }, { GGML_TYPE_Q8_0, { { MODEL_TINY, 45ull*MB }, { MODEL_BASE, 84ull*MB }, { MODEL_SMALL, 268ull*MB }, { MODEL_MEDIUM, 834ull*MB }, { MODEL_LARGE, 1674ull*MB }, }, }, }; static const std::map MEM_REQ_KV_SELF = { { MODEL_TINY, 3ull*MB }, { MODEL_BASE, 6ull*MB }, { MODEL_SMALL, 16ull*MB }, { MODEL_MEDIUM, 43ull*MB }, { MODEL_LARGE, 71ull*MB }, }; static const std::map MEM_REQ_KV_CROSS = { { MODEL_TINY, 9ull*MB }, { MODEL_BASE, 18ull*MB }, { MODEL_SMALL, 53ull*MB }, { MODEL_MEDIUM, 141ull*MB }, { MODEL_LARGE, 235ull*MB }, }; static const std::map MEM_REQ_ENCODE = { { MODEL_TINY, 30ull*MB }, { MODEL_BASE, 38ull*MB }, { MODEL_SMALL, 56ull*MB }, { MODEL_MEDIUM, 74ull*MB }, { MODEL_LARGE, 94ull*MB }, }; static const std::map MEM_REQ_DECODE = { { MODEL_TINY, 3ull*MB }, { MODEL_BASE, 5ull*MB }, { MODEL_SMALL, 10ull*MB }, { MODEL_MEDIUM, 18ull*MB }, { MODEL_LARGE, 27ull*MB }, }; struct whisper_mel { int n_len; int n_len_org; int n_mel; std::vector data; }; struct whisper_filters { int32_t n_mel; int32_t n_fft; std::vector data; }; struct whisper_vocab { using id = int32_t; using token = std::string; int n_vocab = 51864; std::map token_to_id; std::map id_to_token; // reference: https://github.com/openai/whisper/blob/248b6cb124225dd263bb9bd32d060b6517e067f8/whisper/tokenizer.py#L334-L349 id token_eot = 50256; id token_sot = 50257; // task tokens (used only for multilingual models) id token_translate = 50357; id token_transcribe = 50358; // other special tokens id token_solm = 50359; // [TDRZ] used by tinydiarize models to indicate speaker turn id token_prev = 50360; id token_nosp = 50361; id token_not = 50362; // no timestamps id token_beg = 50363; // begin timestamps bool is_multilingual() const { return n_vocab == 51865; } }; struct whisper_segment { int64_t t0; int64_t t1; std::string text; std::vector tokens; bool speaker_turn_next; }; // medium // hparams: { // 'n_mels': 80, // 'n_vocab': 51864, // 'n_audio_ctx': 1500, // 'n_audio_state': 1024, // 'n_audio_head': 16, // 'n_audio_layer': 24, // 'n_text_ctx': 448, // 'n_text_state': 1024, // 'n_text_head': 16, // 'n_text_layer': 24 // } // // default hparams (Whisper tiny) struct whisper_hparams { int32_t n_vocab = 51864; int32_t n_audio_ctx = 1500; int32_t n_audio_state = 384; int32_t n_audio_head = 6; int32_t n_audio_layer = 4; int32_t n_text_ctx = 448; int32_t n_text_state = 384; int32_t n_text_head = 6; int32_t n_text_layer = 4; int32_t n_mels = 80; int32_t ftype = 1; }; // audio encoding layer struct whisper_layer_encoder { // encoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // encoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // encoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // encoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // encoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // encoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // encoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // encoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; // token decoding layer struct whisper_layer_decoder { // decoder.blocks.*.attn_ln struct ggml_tensor * attn_ln_0_w; struct ggml_tensor * attn_ln_0_b; // decoder.blocks.*.attn.out struct ggml_tensor * attn_ln_1_w; struct ggml_tensor * attn_ln_1_b; // decoder.blocks.*.attn.query struct ggml_tensor * attn_q_w; struct ggml_tensor * attn_q_b; // decoder.blocks.*.attn.key struct ggml_tensor * attn_k_w; // decoder.blocks.*.attn.value struct ggml_tensor * attn_v_w; struct ggml_tensor * attn_v_b; // decoder.blocks.*.cross_attn_ln struct ggml_tensor * cross_attn_ln_0_w; struct ggml_tensor * cross_attn_ln_0_b; // decoder.blocks.*.cross_attn.out struct ggml_tensor * cross_attn_ln_1_w; struct ggml_tensor * cross_attn_ln_1_b; // decoder.blocks.*.cross_attn.query struct ggml_tensor * cross_attn_q_w; struct ggml_tensor * cross_attn_q_b; // decoder.blocks.*.cross_attn.key struct ggml_tensor * cross_attn_k_w; // decoder.blocks.*.cross_attn.value struct ggml_tensor * cross_attn_v_w; struct ggml_tensor * cross_attn_v_b; // decoder.blocks.*.mlp_ln struct ggml_tensor * mlp_ln_w; struct ggml_tensor * mlp_ln_b; // decoder.blocks.*.mlp.0 struct ggml_tensor * mlp_0_w; struct ggml_tensor * mlp_0_b; // decoder.blocks.*.mlp.2 struct ggml_tensor * mlp_1_w; struct ggml_tensor * mlp_1_b; }; struct whisper_kv_cache { struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx; std::vector buf; int n; // number of tokens currently in the cache }; struct whisper_model { e_model type = MODEL_UNKNOWN; whisper_hparams hparams; whisper_filters filters; // encoder.positional_embedding struct ggml_tensor * e_pe; // encoder.conv1 struct ggml_tensor * e_conv_1_w; struct ggml_tensor * e_conv_1_b; // encoder.conv2 struct ggml_tensor * e_conv_2_w; struct ggml_tensor * e_conv_2_b; // encoder.ln_post struct ggml_tensor * e_ln_w; struct ggml_tensor * e_ln_b; // decoder.positional_embedding struct ggml_tensor * d_pe; // decoder.token_embedding struct ggml_tensor * d_te; // decoder.ln struct ggml_tensor * d_ln_w; struct ggml_tensor * d_ln_b; std::vector layers_encoder; std::vector layers_decoder; // context struct ggml_context * ctx; // the model memory buffer is read-only and can be shared between processors std::vector * buf; // tensors int n_loaded; std::map tensors; }; struct whisper_sequence { std::vector tokens; // the accumulated transcription in the current iteration (used to truncate the tokens array) int result_len; double sum_logprobs_all; // the sum of the log probabilities of the tokens double sum_logprobs; // the sum of the log probabilities of the tokens (first result_len tokens) double avg_logprobs; // the average log probability of the tokens double entropy; // the entropy of the tokens double score; // likelihood rank score }; // TAGS: WHISPER_DECODER_INIT struct whisper_decoder { // each decoders keeps its own KV-cache whisper_kv_cache kv_self; // the currently generated sequence of tokens whisper_sequence sequence; int seek_delta; // the window shift found so far based on the decoded timestamp tokens bool failed; // has the current segment failed to decode? bool completed; // has the decoder completed the current segment? bool has_ts; // have we already sampled a non-beg timestamp token for the current segment? // new token probs, logits and logprobs after the last whisper_decode (1-dimensional array: [n_vocab]) std::vector probs; std::vector logits; std::vector logprobs; std::vector tokens_tmp; // used for whisper_decode calls }; struct whisper_state { int64_t t_sample_us = 0; int64_t t_encode_us = 0; int64_t t_decode_us = 0; int64_t t_mel_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_encode = 0; // number of encoder calls int32_t n_decode = 0; // number of decoder calls int32_t n_fail_p = 0; // number of logprob threshold failures int32_t n_fail_h = 0; // number of entropy threshold failures // cross-attention KV cache for the decoders // shared between all decoders whisper_kv_cache kv_cross; whisper_mel mel; whisper_decoder decoders[WHISPER_MAX_DECODERS] = {}; // memory buffers used by encode / decode contexts std::vector buf_compute; std::vector buf_scratch[WHISPER_MAX_SCRATCH_BUFFERS]; int buf_last = 0; size_t buf_max_size[WHISPER_MAX_SCRATCH_BUFFERS] = { 0 }; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; std::vector result_all; std::vector prompt_past; // work container used to avoid memory allocations std::vector> logits_id; mutable std::mt19937 rng; // used for sampling at t > 0.0 int lang_id = 0; // english by default std::string path_model; // populated by whisper_init_from_file() #ifdef WHISPER_USE_COREML whisper_coreml_context * ctx_coreml = nullptr; #endif #ifdef WHISPER_USE_OPENVINO whisper_openvino_context * ctx_openvino = nullptr; #endif // [EXPERIMENTAL] token-level timestamps data int64_t t_beg = 0; int64_t t_last = 0; whisper_token tid_last; std::vector energy; // PCM signal energy // [EXPERIMENTAL] speed-up techniques int32_t exp_n_audio_ctx = 0; // 0 - use default void use_buf(struct ggml_context * ctx, int i) { #if defined(WHISPER_USE_SCRATCH) size_t last_size = 0; if (i == -1) { last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); } else { auto & buf = buf_scratch[i]; last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), }); } if (buf_last >= 0) { buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); } buf_last = i; #else (void) i; (void) ctx; #endif } size_t get_buf_max_mem(int i) const { #if defined(WHISPER_USE_SCRATCH) return buf_max_size[i]; #else (void) i; return 0; #endif } }; struct whisper_context { int64_t t_load_us = 0; int64_t t_start_us = 0; ggml_type wtype = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX) ggml_type itype = ggml_type::GGML_TYPE_F16; // intermediate type (FP32 or FP16) whisper_model model; whisper_vocab vocab; whisper_state * state = nullptr; std::string path_model; // populated by whisper_init_from_file() }; static void whisper_default_log(const char * text) { fprintf(stderr, "%s", text); } static whisper_log_callback whisper_log = whisper_default_log; static void log(const char * fmt, ...) { if (!whisper_log) return; char buf[1024]; va_list args; va_start(args, fmt); vsnprintf(buf, sizeof(buf), fmt, args); whisper_log(buf); } template static void read_safe(whisper_model_loader * loader, T & dest) { loader->read(loader->context, &dest, sizeof(T)); BYTESWAP_VALUE(dest); } static bool kv_cache_init( const struct whisper_hparams & hparams, const size_t mem_bytes, struct whisper_kv_cache & cache, ggml_type wtype, int n_ctx) { cache.buf.resize(mem_bytes); struct ggml_init_params params = { /*.mem_size =*/ cache.buf.size(), /*.mem_buffer =*/ cache.buf.data(), /*.no_alloc =*/ false, }; cache.ctx = ggml_init(params); if (!cache.ctx) { log("%s: failed to allocate memory for kv cache\n", __func__); return false; } const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mem = n_text_layer*n_ctx; const int n_elements = n_text_state*n_mem; cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } static bool kv_cache_reinit(struct whisper_kv_cache & cache) { WHISPER_ASSERT(cache.ctx); const int n_elements = ggml_nelements(cache.k); WHISPER_ASSERT(n_elements == ggml_nelements(cache.v)); const ggml_type wtype = cache.k->type; WHISPER_ASSERT(wtype == cache.v->type); WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_sizef(wtype)); struct ggml_init_params params = { /*.mem_size =*/ cache.buf.size(), /*.mem_buffer =*/ cache.buf.data(), /*.no_alloc =*/ false, }; cache.ctx = ggml_init(params); if (!cache.ctx) { log("%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } static void kv_cache_free(struct whisper_kv_cache & cache) { if (cache.ctx) { ggml_free(cache.ctx); cache.ctx = nullptr; } } // load the model from a ggml file // // file format: // // - hparams // - pre-computed mel filters // - vocab // - weights // // see the convert-pt-to-ggml.py script for details // static bool whisper_model_load(struct whisper_model_loader * loader, whisper_context & wctx) { log("%s: loading model\n", __func__); const int64_t t_start_us = ggml_time_us(); wctx.t_start_us = t_start_us; auto & model = wctx.model; auto & vocab = wctx.vocab; // verify magic { uint32_t magic; read_safe(loader, magic); if (magic != GGML_FILE_MAGIC) { log("%s: invalid model data (bad magic)\n", __func__); return false; } } //load hparams { auto & hparams = model.hparams; read_safe(loader, hparams.n_vocab); read_safe(loader, hparams.n_audio_ctx); read_safe(loader, hparams.n_audio_state); read_safe(loader, hparams.n_audio_head); read_safe(loader, hparams.n_audio_layer); read_safe(loader, hparams.n_text_ctx); read_safe(loader, hparams.n_text_state); read_safe(loader, hparams.n_text_head); read_safe(loader, hparams.n_text_layer); read_safe(loader, hparams.n_mels); read_safe(loader, hparams.ftype); assert(hparams.n_text_state == hparams.n_audio_state); if (hparams.n_audio_layer == 4) { model.type = e_model::MODEL_TINY; } if (hparams.n_audio_layer == 6) { model.type = e_model::MODEL_BASE; } if (hparams.n_audio_layer == 12) { model.type = e_model::MODEL_SMALL; } if (hparams.n_audio_layer == 24) { model.type = e_model::MODEL_MEDIUM; } if (hparams.n_audio_layer == 32) { model.type = e_model::MODEL_LARGE; } const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; hparams.ftype %= GGML_QNT_VERSION_FACTOR; // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation wctx.wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wctx.wtype == GGML_TYPE_COUNT) { log("%s: invalid model (bad ftype value %d)\n", __func__, model.hparams.ftype); return false; } const size_t scale = model.hparams.ftype ? 1 : 2; log("%s: n_vocab = %d\n", __func__, hparams.n_vocab); log("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); log("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); log("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); log("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); log("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); log("%s: n_text_state = %d\n", __func__, hparams.n_text_state); log("%s: n_text_head = %d\n", __func__, hparams.n_text_head); log("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); log("%s: n_mels = %d\n", __func__, hparams.n_mels); log("%s: ftype = %d\n", __func__, model.hparams.ftype); log("%s: qntvr = %d\n", __func__, qntvr); log("%s: type = %d\n", __func__, model.type); // print memory requirements { // this is the total memory required to run the inference const size_t mem_required = MEM_REQ_SCRATCH0.at(model.type) + MEM_REQ_SCRATCH1.at(model.type) + MEM_REQ_SCRATCH2.at(model.type) + MEM_REQ_SCRATCH3.at(model.type) + scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type) + scale*MEM_REQ_KV_CROSS.at(model.type) + scale*std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)); // this is the memory required by one decoder const size_t mem_required_decoder = scale*MEM_REQ_KV_SELF.at(model.type); log("%s: mem required = %7.2f MB (+ %7.2f MB per decoder)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_decoder / 1024.0 / 1024.0); } // initialize all memory buffers // always have at least one decoder wctx.model.buf = new std::vector(); wctx.model.buf->resize(scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type)); // we skip initialization of the state until it is needed // because it might be that state will always be provided externally. } // load mel filters { auto & filters = wctx.model.filters; read_safe(loader, filters.n_mel); read_safe(loader, filters.n_fft); filters.data.resize(filters.n_mel * filters.n_fft); loader->read(loader->context, filters.data.data(), filters.data.size() * sizeof(float)); BYTESWAP_FILTERS(filters); } // load vocab { int32_t n_vocab = 0; read_safe(loader, n_vocab); //if (n_vocab != model.hparams.n_vocab) { // log("%s: invalid model file '%s' (bad vocab size %d != %d)\n", // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); // return false; //} std::string word; std::vector tmp; tmp.reserve(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; read_safe(loader, len); if (len > 0) { tmp.resize(len); loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer word.assign(&tmp[0], tmp.size()); } else { // seems like we have an empty-string token in multi-language models (i = 50256) //log("%s: warning: empty-string token in vocab, i = %d\n", __func__, i); word = ""; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); } vocab.n_vocab = model.hparams.n_vocab; if (vocab.is_multilingual()) { vocab.token_eot++; vocab.token_sot++; vocab.token_translate++; vocab.token_transcribe++; vocab.token_solm++; vocab.token_prev++; vocab.token_nosp++; vocab.token_not++; vocab.token_beg++; } if (n_vocab < model.hparams.n_vocab) { log("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); for (int i = n_vocab; i < model.hparams.n_vocab; i++) { if (i > vocab.token_beg) { word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; } else if (i == vocab.token_eot) { word = "[_EOT_]"; } else if (i == vocab.token_sot) { word = "[_SOT_]"; } else if (i == vocab.token_solm) { word = "[_SOLM_]"; } else if (i == vocab.token_prev) { word = "[_PREV_]"; } else if (i == vocab.token_nosp) { word = "[_NOSP_]"; } else if (i == vocab.token_not) { word = "[_NOT_]"; } else if (i == vocab.token_beg) { word = "[_BEG_]"; } else { word = "[_extra_token_" + std::to_string(i) + "]"; } vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } } size_t ctx_size = 0; const ggml_type wtype = wctx.wtype; const ggml_type vtype = wctx.wtype == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; // conv type { const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; // encoder { ctx_size += n_audio_ctx*n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_pe; ctx_size += 3*n_mels*n_audio_state*ggml_type_sizef(vtype); // e_conv_1_w ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_1_b ctx_size += 3*n_audio_state*n_audio_state*ggml_type_sizef(vtype); // e_conv_2_w ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_2_b ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_w; ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_b; } // decoder { ctx_size += n_text_ctx*n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_pe; ctx_size += n_vocab*n_text_state*ggml_type_sizef(wtype); // d_te; ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_w; ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_b; } // encoder layers { ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_0_w ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_q_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_k_w ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_v_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_ln_1_w ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b } // decoder layers { ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_0_w ctx_size += n_text_layer*( 4*n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b // ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_w ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_q_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_q_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_k_w ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_v_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_v_b ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_ln_1_w ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_1_b } ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*512; // object overhead log("%s: model ctx = %7.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { /*.mem_size =*/ wctx.model.buf->size(), /*.mem_buffer =*/ wctx.model.buf->data(), /*.no_alloc =*/ false, }; model.ctx = ggml_init(params); if (!model.ctx) { log("%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { auto & ctx = model.ctx; const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_state = hparams.n_audio_state; const int n_audio_layer = hparams.n_audio_layer; const int n_text_ctx = hparams.n_text_ctx; const int n_text_state = hparams.n_text_state; const int n_text_layer = hparams.n_text_layer; const int n_mels = hparams.n_mels; model.layers_encoder.resize(n_audio_layer); model.layers_decoder.resize(n_text_layer); // encoder { model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state); model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state); model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.positional_embedding"] = model.e_pe; model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; model.tensors["encoder.ln_post.weight"] = model.e_ln_w; model.tensors["encoder.ln_post.bias"] = model.e_ln_b; for (int i = 0; i < n_audio_layer; ++i) { auto & layer = model.layers_encoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); // map by name model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; } } // decoder { model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.positional_embedding"] = model.d_pe; model.tensors["decoder.token_embedding.weight"] = model.d_te; model.tensors["decoder.ln.weight"] = model.d_ln_w; model.tensors["decoder.ln.bias"] = model.d_ln_b; for (int i = 0; i < n_text_layer; ++i) { auto & layer = model.layers_decoder[i]; layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); // map by name model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; } } } // load weights { size_t total_size = 0; model.n_loaded = 0; while (true) { int32_t n_dims; int32_t length; int32_t ttype; read_safe(loader, n_dims); read_safe(loader, length); read_safe(loader, ttype); if (loader->eof(loader->context)) { break; } int32_t nelements = 1; int32_t ne[4] = { 1, 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { read_safe(loader, ne[i]); nelements *= ne[i]; } std::string name; std::vector tmp(length); // create a buffer loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer name.assign(&tmp[0], tmp.size()); if (model.tensors.find(name) == model.tensors.end()) { log("%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { log("%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); log("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n", __func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { log("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]); return false; } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { log("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } loader->read(loader->context, tensor->data, ggml_nbytes(tensor)); BYTESWAP_TENSOR(tensor); //printf("%48s - [%5d, %5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype), ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); model.n_loaded++; } log("%s: model size = %7.2f MB\n", __func__, total_size/1024.0/1024.0); if (model.n_loaded == 0) { log("%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); } else if (model.n_loaded != (int) model.tensors.size()) { log("%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded); return false; } } wctx.t_load_us = ggml_time_us() - t_start_us; return true; } // evaluate the encoder with the given state // // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder // part of the transformer model and returns the encoded features // // - wctx: the model // - wstate: the state of the encoder // - n_threads: number of threads to use // - mel_offset: offset in the mel spectrogram (i.e. audio offset) // static bool whisper_encode_internal( whisper_context & wctx, whisper_state & wstate, const int mel_offset, const int n_threads){ const int64_t t_start_us = ggml_time_us(); const auto & model = wctx.model; const auto & mel_inp = wstate.mel; const auto & hparams = model.hparams; const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; const int n_state = hparams.n_audio_state; const int n_head = hparams.n_audio_head; const int n_layer = hparams.n_audio_layer; const int n_mels = hparams.n_mels; assert(mel_inp.n_mel == n_mels); struct ggml_init_params params = { /*.mem_size =*/ wstate.buf_compute.size(), /*.mem_buffer =*/ wstate.buf_compute.data(), /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); wstate.use_buf(ctx0, 0); struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); assert(mel->type == GGML_TYPE_F32); { float * dst = (float *) mel->data; memset(dst, 0, ggml_nbytes(mel)); const int i0 = std::min(mel_offset, mel_inp.n_len); const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); for (int j = 0; j < mel_inp.n_mel; ++j) { for (int i = i0; i < i1; ++i) { dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; } } } struct ggml_tensor * cur; #ifndef WHISPER_USE_COREML const bool use_coreml = false; #else const bool use_coreml = wstate.ctx_coreml != nullptr; #endif #ifndef WHISPER_USE_OPENVINO const bool use_openvino = false; #else const bool use_openvino = wstate.ctx_openvino != nullptr; #endif if (!use_coreml && !use_openvino) { // convolution + gelu { wstate.use_buf(ctx0, 1); cur = ggml_conv_1d_ph(ctx0, model.e_conv_1_w, mel, 1, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_1_b, cur), cur); cur = ggml_gelu(ctx0, cur); wstate.use_buf(ctx0, 0); cur = ggml_conv_1d_ph(ctx0, model.e_conv_2_w, cur, 2, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.e_conv_2_b, cur), cur); cur = ggml_gelu(ctx0, cur); } wstate.use_buf(ctx0, 3); // =================================================================== // NOTE: experimenting with partial evaluation of the encoder (ignore) //static int iter = -1; //const int n_iter = 1500/n_ctx; //iter = (iter + 1) % n_iter; //if (iter == 0) { // memset(model.memory_cross_k->data, 0, ggml_nbytes(model.memory_cross_k)); // memset(model.memory_cross_v->data, 0, ggml_nbytes(model.memory_cross_v)); //} static int iter = 0; const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe); const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter; struct ggml_tensor * e_pe = ggml_view_2d(ctx0, model.e_pe, model.e_pe->ne[0], n_ctx, e_pe_stride, e_pe_offset); cur = ggml_add(ctx0, e_pe, ggml_transpose(ctx0, cur)); // =================================================================== // original: //cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_encoder[il]; // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctx0, layer.attn_ln_0_b, cur)); } // self-attention { wstate.use_buf(ctx0, 1); struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.attn_q_w, cur); Qcur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_q_b, Qcur), Qcur); //Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.attn_k_w, cur); //Kcur = ggml_scale_inplace(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.attn_v_w, cur); Vcur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_v_b, Vcur), Vcur); // ------ wstate.use_buf(ctx0, 0); #ifdef WHISPER_USE_FLASH_ATTN struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, ggml_cpy(ctx0, Kcur, ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * V = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, Vcur, n_state/n_head, n_head, n_ctx), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state/n_head, n_head)); struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, false); #else struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, ggml_cpy(ctx0, Kcur, ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head)) ); struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_scaled); struct ggml_tensor * V = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, Vcur, n_state/n_head, n_head, n_ctx), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state/n_head, n_head) ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); #endif struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); wstate.use_buf(ctx0, 1); cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx)); } // projection { wstate.use_buf(ctx0, 0); cur = ggml_mul_mat(ctx0, layer.attn_ln_1_w, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_ln_1_b, cur), cur); } wstate.use_buf(ctx0, 2); // add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, inpFF); wstate.use_buf(ctx0, 1); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.mlp_ln_w, cur), cur), ggml_repeat(ctx0, layer.mlp_ln_b, cur)); } #ifdef WHISPER_USE_FLASH_FF wstate.use_buf(ctx0, 0); cur = ggml_flash_ff(ctx0, ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, wstate.itype, n_state, n_ctx)), layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); #else wstate.use_buf(ctx0, 0); // fully connected cur = ggml_mul_mat(ctx0, layer.mlp_0_w, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.mlp_0_b, cur), cur); wstate.use_buf(ctx0, 0); // GELU activation cur = ggml_gelu(ctx0, cur); wstate.use_buf(ctx0, 1); // projection cur = ggml_mul_mat(ctx0, layer.mlp_1_w, cur); wstate.use_buf(ctx0, 0); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.mlp_1_b, cur), cur); #endif } wstate.use_buf(ctx0, 3); inpL = ggml_add(ctx0, cur, inpFF); } cur = inpL; // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, cur); wstate.use_buf(ctx0, 1); // cur = ln_f_g*cur + ln_f_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.e_ln_w, cur), cur), ggml_repeat(ctx0, model.e_ln_b, cur)); } wstate.use_buf(ctx0, -1); // run the computation { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; ggml_build_forward_expand(&gf, cur); ggml_graph_compute(ctx0, &gf); //ggml_graph_print(&gf); } } #ifdef WHISPER_USE_COREML else if (use_coreml) { wstate.use_buf(ctx0, -1); cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx); whisper_coreml_encode(wstate.ctx_coreml, (float *) mel->data, (float *) cur->data); } #endif #ifdef WHISPER_USE_OPENVINO else if (use_openvino) { wstate.use_buf(ctx0, -1); cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx); if (!whisper_openvino_encode(wstate.ctx_openvino, mel, cur)) { return false; } } #endif // cur //{ // printf("ne0 = %d\n", cur->ne[0]); // printf("ne1 = %d\n", cur->ne[1]); // for (int i = 0; i < 10; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("... "); // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { // printf("%8.4f ", ((float *)(cur->data))[i]); // } // printf("\n"); //} // pre-compute cross-attention memory { struct ggml_cgraph gf = {}; gf.n_threads = n_threads; // TODO: hack to disconnect the encoded features from the previous graph cur->op = GGML_OP_NONE; cur->src0 = nullptr; cur->src1 = nullptr; for (int il = 0; il < model.hparams.n_text_layer; ++il) { auto& layer = model.layers_decoder[il]; wstate.use_buf(ctx0, 0); struct ggml_tensor* Kcross = ggml_mul_mat(ctx0, layer.cross_attn_k_w, cur); Kcross = ggml_scale_inplace(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state) / n_head, -0.25))); wstate.use_buf(ctx0, 1); struct ggml_tensor* Vcross = ggml_mul_mat(ctx0, layer.cross_attn_v_w, cur); Vcross = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_v_b, Vcross), Vcross); wstate.use_buf(ctx0, -1); Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx)); struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx)); struct ggml_tensor * v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state, ( n_ctx)*ggml_element_size(wstate.kv_cross.v), (il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); } ggml_graph_compute(ctx0, &gf); //ggml_graph_print(&gf); } //////////////////////////////////////////////////////////////////////////// //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__, // ggml_used_mem(ctx0)/1024.0/1024.0, // wstate.get_buf_max_mem(0)/1024.0/1024.0, // wstate.get_buf_max_mem(1)/1024.0/1024.0, // wstate.get_buf_max_mem(2)/1024.0/1024.0, // wstate.get_buf_max_mem(3)/1024.0/1024.0); ggml_free(ctx0); wstate.t_encode_us += ggml_time_us() - t_start_us; wstate.n_encode++; return true; } // evaluate the decoder // // given text prompt + audio features -> computes the logits for the next token // // - model: the model // - n_threads: number of threads to use // - tokens: text prompt // - n_tokens: number of tokens in the prompt // - n_past: number of past tokens to prefix the prompt with // static bool whisper_decode_internal( whisper_context & wctx, whisper_state & wstate, whisper_decoder & decoder, const whisper_token * tokens, const int n_tokens, const int n_past, const int n_threads) { const int64_t t_start_us = ggml_time_us(); const auto & model = wctx.model; const auto & hparams = model.hparams; auto & kv_self = decoder.kv_self; WHISPER_ASSERT(!!kv_self.ctx); auto & logits_out = wstate.logits; const int n_vocab = hparams.n_vocab; const int n_ctx = hparams.n_text_ctx; const int n_state = hparams.n_text_state; const int n_head = hparams.n_text_head; const int n_layer = hparams.n_text_layer; const int N = n_tokens; const int M = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx; //WHISPER_PRINT_DEBUG("%s: n_past = %d, N = %d, M = %d, n_ctx = %d\n", __func__, n_past, N, M, n_ctx); struct ggml_init_params params = { /*.mem_size =*/ wstate.buf_compute.size(), /*.mem_buffer =*/ wstate.buf_compute.data(), /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; gf.n_threads = n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); for (int i = 0; i < N; ++i) { ((int32_t *) position->data)[i] = n_past + i; } wstate.use_buf(ctx0, 3); // token encoding + position encoding struct ggml_tensor * cur = ggml_add(ctx0, ggml_get_rows(ctx0, model.d_te, embd), ggml_get_rows(ctx0, model.d_pe, position)); struct ggml_tensor * inpL = cur; for (int il = 0; il < n_layer; ++il) { const auto & layer = model.layers_decoder[il]; // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, inpL); // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.attn_ln_0_w, cur), cur), ggml_repeat(ctx0, layer.attn_ln_0_b, cur)); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.attn_q_w, cur); Qcur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_q_b, Qcur), Qcur); Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); // note: no bias for Key struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.attn_k_w, cur); Kcur = ggml_scale_inplace(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); // store key and value to memory { struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.attn_v_w, cur); Vcur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_v_b, Vcur), Vcur); Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, N)); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_state, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_state + n_past*ggml_element_size(kv_self.v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // ------ wstate.use_buf(ctx0, 0); struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.k)*n_state), n_state/n_head, n_head, n_past + N), 0, 2, 1, 3); wstate.use_buf(ctx0, 1); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale_inplace(ctx0, // KQ, // ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head)) // ); struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_past + N, n_state/n_head, n_head, n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_state/n_head, il*n_ctx*ggml_element_size(kv_self.v)*n_state); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, N)); } // projection { wstate.use_buf(ctx0, 0); cur = ggml_mul_mat(ctx0, layer.attn_ln_1_w, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.attn_ln_1_b, cur), cur); } wstate.use_buf(ctx0, 2); // add the input struct ggml_tensor * inpCA = ggml_add(ctx0, cur, inpL); // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, inpCA); // note: we use inpCA here // cur = ln_0_w*cur + ln_0_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.cross_attn_ln_0_w, cur), cur), ggml_repeat(ctx0, layer.cross_attn_ln_0_b, cur)); } // cross-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.cross_attn_q_w, cur); Qcur = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_q_b, Qcur), Qcur); Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); // Kcross is already scaled struct ggml_tensor * Kcross = ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, wstate.kv_cross.k, M*n_state, il*M*ggml_element_size(wstate.kv_cross.k)*n_state), n_state/n_head, n_head, M); //struct ggml_tensor * Vcross = // ggml_reshape_3d(ctx0, // ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state), // n_state/n_head, n_head, M); //struct ggml_tensor * V_trans = // ggml_cpy(ctx0, // ggml_permute(ctx0, Vcross, 1, 2, 0, 3), // ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head)); struct ggml_tensor * V = ggml_view_3d(ctx0, wstate.kv_cross.v, M, n_state/n_head, n_head, M*ggml_element_size(wstate.kv_cross.v), M*ggml_element_size(wstate.kv_cross.v)*n_state/n_head, il*M*ggml_element_size(wstate.kv_cross.v)*n_state); // ------ struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, N)), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, Kcross, 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); //struct ggml_tensor * KQ_scaled = // ggml_scale_inplace(ctx0, // KQ, // ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head)) // ); // no masking for cross-attention //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_state, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, N)); } // projection { wstate.use_buf(ctx0, 0); cur = ggml_mul_mat(ctx0, layer.cross_attn_ln_1_w, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.cross_attn_ln_1_b, cur), cur); } wstate.use_buf(ctx0, 2); // add the input cur = ggml_add(ctx0, cur, inpCA); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, inpFF); wstate.use_buf(ctx0, 1); // cur = mlp_ln_w*cur + mlp_ln_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.mlp_ln_w, cur), cur), ggml_repeat(ctx0, layer.mlp_ln_b, cur)); } wstate.use_buf(ctx0, 0); // fully connected cur = ggml_mul_mat(ctx0, layer.mlp_0_w, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.mlp_0_b, cur), cur); wstate.use_buf(ctx0, 0); // GELU activation cur = ggml_gelu(ctx0, cur); wstate.use_buf(ctx0, 1); // projection cur = ggml_mul_mat(ctx0, layer.mlp_1_w, cur); wstate.use_buf(ctx0, 0); cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.mlp_1_b, cur), cur); } wstate.use_buf(ctx0, 3); inpL = ggml_add(ctx0, cur, inpFF); } cur = inpL; // norm { wstate.use_buf(ctx0, 0); cur = ggml_norm(ctx0, cur); wstate.use_buf(ctx0, 1); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.d_ln_w, cur), cur), ggml_repeat(ctx0, model.d_ln_b, cur)); } wstate.use_buf(ctx0, 0); // compute logits only for the last token // comment this line to compute logits for all N tokens // might be useful in the future cur = ggml_view_2d(ctx0, cur, cur->ne[0], 1, cur->nb[1], (cur->ne[1] - 1)*cur->nb[1]); struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); wstate.use_buf(ctx0, -1); // run the computation { ggml_build_forward_expand(&gf, logits); ggml_graph_compute (ctx0, &gf); } // extract logits for all N tokens //logits_out.resize(N*n_vocab); //memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); // extract logits only for the last token logits_out.resize(n_vocab); memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*n_vocab); if (N > 1) { //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__, // ggml_used_mem(ctx0)/1024.0/1024.0, // wstate.get_buf_max_mem(0)/1024.0/1024.0, // wstate.get_buf_max_mem(1)/1024.0/1024.0, // wstate.get_buf_max_mem(2)/1024.0/1024.0, // wstate.get_buf_max_mem(3)/1024.0/1024.0); } ggml_free(ctx0); wstate.t_decode_us += ggml_time_us() - t_start_us; wstate.n_decode++; return true; } // 500 -> 00:05.000 // 6000 -> 01:00.000 static std::string to_timestamp(int64_t t, bool comma = false) { int64_t msec = t * 10; int64_t hr = msec / (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60); int64_t min = msec / (1000 * 60); msec = msec - min * (1000 * 60); int64_t sec = msec / 1000; msec = msec - sec * 1000; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); return std::string(buf); } #define SIN_COS_N_COUNT WHISPER_N_FFT static float sin_vals[SIN_COS_N_COUNT]; static float cos_vals[SIN_COS_N_COUNT]; // In FFT, we frequently use sine and cosine operations with the same values. // We can use precalculated values to speed up the process. static void fill_sin_cos_table() { static bool is_filled = false; if (is_filled) return; for (int i = 0; i < SIN_COS_N_COUNT; i++) { double theta = (2*M_PI*i)/SIN_COS_N_COUNT; sin_vals[i] = sinf(theta); cos_vals[i] = cosf(theta); } is_filled = true; } // naive Discrete Fourier Transform // input is real-valued // output is complex-valued static void dft(const std::vector & in, std::vector & out) { int N = in.size(); out.resize(N*2); const int sin_cos_step = SIN_COS_N_COUNT / N; for (int k = 0; k < N; k++) { float re = 0; float im = 0; for (int n = 0; n < N; n++) { int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N re += in[n]*cos_vals[idx]; // cos(t) im -= in[n]*sin_vals[idx]; // sin(t) } out[k*2 + 0] = re; out[k*2 + 1] = im; } } // Cooley-Tukey FFT // poor man's implementation - use something better // input is real-valued // output is complex-valued static void fft(const std::vector & in, std::vector & out) { out.resize(in.size()*2); int N = in.size(); if (N == 1) { out[0] = in[0]; out[1] = 0; return; } if (N%2 == 1) { dft(in, out); return; } std::vector even; std::vector odd; even.reserve(N/2); odd.reserve(N/2); for (int i = 0; i < N; i++) { if (i % 2 == 0) { even.push_back(in[i]); } else { odd.push_back(in[i]); } } std::vector even_fft; std::vector odd_fft; fft(even, even_fft); fft(odd, odd_fft); const int sin_cos_step = SIN_COS_N_COUNT / N; for (int k = 0; k < N/2; k++) { int idx = k * sin_cos_step; // t = 2*M_PI*k/N float re = cos_vals[idx]; // cos(t) float im = -sin_vals[idx]; // sin(t) float re_odd = odd_fft[2*k + 0]; float im_odd = odd_fft[2*k + 1]; out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; } } static bool hann_window(int length, bool periodic, std::vector & output) { if (output.size() < length) { output.resize(length); } int offset = -1; if (periodic) { offset = 0; } for (int i = 0; i < length; i++) { output[i] = 0.5*(1.0 - cosf((2.0*M_PI*i)/(length + offset))); } return true; } static void log_mel_spectrogram_worker_thread(int ith, const std::vector & hann, const std::vector & samples, int n_samples, int frame_size, int frame_step, int n_threads, const whisper_filters & filters, whisper_mel & mel) { std::vector fft_in(frame_size, 0.0); std::vector fft_out(2 * frame_step); // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist int n_fft = 1 + (frame_size / 2); int i = ith; // calculate FFT only when fft_in are not all zero for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) { const int offset = i * frame_step; // apply Hanning window (~10% faster) for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) { fft_in[j] = hann[j] * samples[offset + j]; } // fill the rest with zeros if (n_samples - offset < frame_size) { std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0); } // FFT fft(fft_in, fft_out); // Calculate modulus^2 of complex numbers // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting. for (int j = 0; j < frame_size; j++) { fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]); } // mel spectrogram for (int j = 0; j < mel.n_mel; j++) { double sum = 0.0; // unroll loop (suggested by GH user @lunixbochs) int k = 0; for (k = 0; k < n_fft - 3; k += 4) { sum += fft_out[k + 0] * filters.data[j * n_fft + k + 0] + fft_out[k + 1] * filters.data[j * n_fft + k + 1] + fft_out[k + 2] * filters.data[j * n_fft + k + 2] + fft_out[k + 3] * filters.data[j * n_fft + k + 3]; } // handle n_fft remainder for (; k < n_fft; k++) { sum += fft_out[k] * filters.data[j * n_fft + k]; } sum = log10(std::max(sum, 1e-10)); mel.data[j * mel.n_len + i] = sum; } } // Otherwise fft_out are all zero double sum = log10(1e-10); for (; i < mel.n_len; i += n_threads) { for (int j = 0; j < mel.n_mel; j++) { mel.data[j * mel.n_len + i] = sum; } } } // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157 static bool log_mel_spectrogram( whisper_state & wstate, const float * samples, const int n_samples, const int /*sample_rate*/, const int frame_size, const int frame_step, const int n_mel, const int n_threads, const whisper_filters & filters, const bool debug, whisper_mel & mel) { const int64_t t_start_us = ggml_time_us(); // Hanning window (Use cosf to eliminate difference) // ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147 std::vector hann; hann_window(frame_size, true, hann); // Calculate the length of padding int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30; int64_t stage_2_pad = frame_size / 2; // Initialize a vector and copy data from C array to it. std::vector samples_padded; samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2); std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad); // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0); // reflective pad 200 samples at the beginning of audio std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin()); mel.n_mel = n_mel; // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936 // Calculate number of frames + remove the last frame mel.n_len = (samples_padded.size() - frame_size) / frame_step; // Calculate semi-padded sample length to ensure compatibility mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step; mel.data.resize(mel.n_mel * mel.n_len); { std::vector workers(n_threads - 1); for (int iw = 0; iw < n_threads - 1; ++iw) { workers[iw] = std::thread( log_mel_spectrogram_worker_thread, iw + 1, std::cref(hann), samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, std::cref(filters), std::ref(mel)); } // main thread log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel); for (int iw = 0; iw < n_threads - 1; ++iw) { workers[iw].join(); } } // clamping and normalization double mmax = -1e20; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] > mmax) { mmax = mel.data[i]; } } mmax -= 8.0; for (int i = 0; i < mel.n_mel*mel.n_len; i++) { if (mel.data[i] < mmax) { mel.data[i] = mmax; } mel.data[i] = (mel.data[i] + 4.0)/4.0; } wstate.t_mel_us += ggml_time_us() - t_start_us; // Dump log_mel_spectrogram if (debug) { std::ofstream outFile("log_mel_spectrogram.json"); outFile << "["; for (uint64_t i = 0; i < mel.data.size() - 1; i++) { outFile << mel.data[i] << ", "; } outFile << mel.data[mel.data.size() - 1] << "]"; outFile.close(); } return true; } // split text into tokens // // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 // // Regex (Python): // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" // // Regex (C++): // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" // static std::vector tokenize(const whisper_vocab & vocab, const std::string & text) { std::vector words; // first split the text into words { std::string str = text; std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; std::regex re(pat); std::smatch m; while (std::regex_search(str, m, re)) { for (auto x : m) { words.push_back(x); } str = m.suffix(); } } // find the longest tokens that form the words: std::vector tokens; for (const auto & word : words) { if (word.empty()) continue; int i = 0; int n = word.size(); while (i < n) { int j = n; bool found = false; while (j > i) { auto sub = word.substr(i, j-i); auto it = vocab.token_to_id.find(sub); if (it != vocab.token_to_id.end()) { tokens.push_back(it->second); i = j; found = true; break; } --j; } if (!found) { log("unknown token\n"); ++i; } } } return tokens; } // // interface implementation // #ifdef WHISPER_USE_COREML // replace .bin with -encoder.mlmodelc static std::string whisper_get_coreml_path_encoder(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } // match "-qx_x" pos = path_bin.rfind('-'); if (pos != std::string::npos) { auto sub = path_bin.substr(pos); if (sub.size() == 5 && sub[1] == 'q' && sub[3] == '_') { path_bin = path_bin.substr(0, pos); } } path_bin += "-encoder.mlmodelc"; return path_bin; } #endif #ifdef WHISPER_USE_OPENVINO // replace .bin with-encoder-openvino.xml static std::string whisper_openvino_get_path_encoder(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } path_bin += "-encoder-openvino.xml"; return path_bin; } static std::string whisper_openvino_get_path_cache(std::string path_bin) { auto pos = path_bin.rfind('.'); if (pos != std::string::npos) { path_bin = path_bin.substr(0, pos); } path_bin += "-encoder-openvino-cache"; return path_bin; } #endif struct whisper_state * whisper_init_state(whisper_context * ctx) { fill_sin_cos_table(); whisper_state * state = new whisper_state; const size_t scale = ctx->model.hparams.ftype ? 1 : 2; if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_SELF.at(ctx->model.type), state->decoders[0].kv_self, ctx->itype, ctx->model.hparams.n_text_ctx)) { log("%s: kv_cache_init() failed for self-attention cache\n", __func__); delete state; return nullptr; } { const size_t memory_size = ggml_nbytes(state->decoders[0].kv_self.k) + ggml_nbytes(state->decoders[0].kv_self.v); log("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_CROSS.at(ctx->model.type), state->kv_cross, ctx->itype, ctx->model.hparams.n_audio_ctx)) { log("%s: kv_cache_init() failed for cross-attention cache\n", __func__); delete state; return nullptr; } { const size_t memory_size = ggml_nbytes(state->kv_cross.k) + ggml_nbytes(state->kv_cross.v); log("%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } #ifdef WHISPER_USE_COREML const auto path_coreml = whisper_get_coreml_path_encoder(ctx->path_model); log("%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str()); log("%s: first run on a device may take a while ...\n", __func__); state->ctx_coreml = whisper_coreml_init(path_coreml.c_str()); if (!state->ctx_coreml) { log("%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str()); #ifndef WHISPER_COREML_ALLOW_FALLBACK return nullptr; #endif } else { log("%s: Core ML model loaded\n", __func__); } #endif state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx); state->logits_id.reserve(ctx->model.hparams.n_vocab); // TAGS: WHISPER_DECODER_INIT state->decoders[0].sequence.tokens.reserve(ctx->model.hparams.n_text_ctx); state->decoders[0].probs.reserve(ctx->vocab.n_vocab); state->decoders[0].logits.reserve(ctx->vocab.n_vocab); state->decoders[0].logprobs.reserve(ctx->vocab.n_vocab); state->buf_compute.resize(scale * std::max(MEM_REQ_ENCODE.at(ctx->model.type), MEM_REQ_DECODE.at(ctx->model.type))); state->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type)); state->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type)); state->buf_scratch[2].resize(MEM_REQ_SCRATCH2.at(ctx->model.type)); state->buf_scratch[3].resize(MEM_REQ_SCRATCH3.at(ctx->model.type)); state->rng = std::mt19937(0); return state; } int whisper_ctx_init_openvino_encoder( struct whisper_context * ctx, const char * model_path, const char * device, const char * cache_dir) { #ifndef WHISPER_USE_OPENVINO (void)(ctx); (void)(model_path); (void)(device); (void)(cache_dir); return 1; #else if (!model_path && ctx->path_model.empty()) { log("%s: model_path is nullptr, and ctx has no model_path set.\n", __func__); return 1; } std::string path_encoder; if (!model_path) { //if model_path is not set, attempt to find it in the same directory as ggml-.bin model path_encoder = whisper_openvino_get_path_encoder(ctx->path_model); } else { path_encoder = model_path; } std::string path_cache; if (!cache_dir) { //if cache_dir is not set, set it as a dir residing next to ggml-.bin path_cache = whisper_openvino_get_path_cache(ctx->path_model); } else { path_cache = cache_dir; } log("%s: loading OpenVINO model from '%s'\n", __func__, path_encoder.c_str()); log("%s: first run on a device may take a while ...\n", __func__); ctx->state->ctx_openvino = whisper_openvino_init(path_encoder.c_str(), device, path_cache.c_str()); if (!ctx->state->ctx_openvino) { log("%s: failed to init OpenVINO encoder from '%s'\n", __func__, path_encoder.c_str()); return 1; } else { log("%s: OpenVINO model loaded\n", __func__); } return 0; #endif } struct whisper_context * whisper_init_from_file_no_state(const char * path_model) { log("%s: loading model from '%s'\n", __func__, path_model); auto fin = std::ifstream(path_model, std::ios::binary); if (!fin) { log("%s: failed to open '%s'\n", __func__, path_model); return nullptr; } whisper_model_loader loader = {}; loader.context = &fin; loader.read = [](void * ctx, void * output, size_t read_size) { std::ifstream * fin = (std::ifstream*)ctx; fin->read((char *)output, read_size); return read_size; }; loader.eof = [](void * ctx) { std::ifstream * fin = (std::ifstream*)ctx; return fin->eof(); }; loader.close = [](void * ctx) { std::ifstream * fin = (std::ifstream*)ctx; fin->close(); }; auto ctx = whisper_init_no_state(&loader); if (ctx) { ctx->path_model = path_model; } return ctx; } struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size) { struct buf_context { uint8_t* buffer; size_t size; size_t current_offset; }; buf_context ctx = { reinterpret_cast(buffer), buffer_size, 0 }; log("%s: loading model from buffer\n", __func__); whisper_model_loader loader = {}; loader.context = &ctx; loader.read = [](void * ctx, void * output, size_t read_size) { buf_context * buf = reinterpret_cast(ctx); size_t size_to_copy = buf->current_offset + read_size < buf->size ? read_size : buf->size - buf->current_offset; memcpy(output, buf->buffer + buf->current_offset, size_to_copy); buf->current_offset += size_to_copy; return size_to_copy; }; loader.eof = [](void * ctx) { buf_context * buf = reinterpret_cast(ctx); return buf->current_offset >= buf->size; }; loader.close = [](void * /*ctx*/) { }; return whisper_init_no_state(&loader); } struct whisper_context * whisper_init_no_state(struct whisper_model_loader * loader) { ggml_time_init(); whisper_context * ctx = new whisper_context; if (!whisper_model_load(loader, *ctx)) { loader->close(loader->context); log("%s: failed to load model\n", __func__); delete ctx; return nullptr; } loader->close(loader->context); return ctx; } struct whisper_context * whisper_init_from_file(const char * path_model) { whisper_context * ctx = whisper_init_from_file_no_state(path_model); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size) { whisper_context * ctx = whisper_init_from_buffer_no_state(buffer, buffer_size); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } struct whisper_context * whisper_init(struct whisper_model_loader * loader) { whisper_context * ctx = whisper_init_no_state(loader); if (!ctx) { return nullptr; } ctx->state = whisper_init_state(ctx); if (!ctx->state) { whisper_free(ctx); return nullptr; } return ctx; } void whisper_free_state(struct whisper_state * state) { if (state) { kv_cache_free(state->kv_cross); for (int i = 0; i < WHISPER_MAX_DECODERS; ++i) { kv_cache_free(state->decoders[i].kv_self); } #ifdef WHISPER_USE_COREML if (state->ctx_coreml != nullptr) { whisper_coreml_free(state->ctx_coreml); state->ctx_coreml = nullptr; } #endif #ifdef WHISPER_USE_OPENVINO if (state->ctx_openvino != nullptr) { whisper_openvino_free(state->ctx_openvino); state->ctx_openvino = nullptr; } #endif delete state; } } void whisper_free(struct whisper_context * ctx) { if (ctx) { if (ctx->model.ctx) { ggml_free(ctx->model.ctx); } if (ctx->model.buf) { delete ctx->model.buf; } whisper_free_state(ctx->state); delete ctx; } } void whisper_free_params(struct whisper_full_params * params) { if (params) { delete params; } } int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) { if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) { log("%s: failed to compute mel spectrogram\n", __func__); return -1; } return 0; } int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { return whisper_pcm_to_mel_with_state(ctx, ctx->state, samples, n_samples, n_threads); } // same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 (PV without phase lock is not good) int whisper_pcm_to_mel_phase_vocoder_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) { if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, 2 * WHISPER_N_FFT, 2 * WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) { log("%s: failed to compute mel spectrogram\n", __func__); return -1; } return 0; } // same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 (PV without phase lock is not good) int whisper_pcm_to_mel_phase_vocoder(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { return whisper_pcm_to_mel_phase_vocoder_with_state(ctx, ctx->state, samples, n_samples, n_threads); } // same as whisper_pcm_to_mel, but applies WSOLA to speed up the audio x2 // TODO // same as whisper_pcm_to_mel, but applies HPTSM to speed up the audio x2 // TODO // same as whisper_pcm_to_mel, but applies PV (with phase lock) to speed up the audio x2 // TODO int whisper_set_mel_with_state( struct whisper_context * /*ctx*/, struct whisper_state * state, const float * data, int n_len, int n_mel) { if (n_mel != WHISPER_N_MEL) { log("%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL); return -1; } state->mel.n_len = n_len; state->mel.n_len_org = n_len; state->mel.n_mel = n_mel; state->mel.data.resize(n_len*n_mel); memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float)); return 0; } int whisper_set_mel( struct whisper_context * ctx, const float * data, int n_len, int n_mel) { return whisper_set_mel_with_state(ctx, ctx->state, data, n_len, n_mel); } int whisper_encode_with_state(struct whisper_context * ctx, struct whisper_state * state, int offset, int n_threads) { if (!whisper_encode_internal(*ctx, *state, offset, n_threads)) { log("%s: failed to eval\n", __func__); return -1; } return 0; } int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { if (!whisper_encode_internal(*ctx, *ctx->state, offset, n_threads)) { log("%s: failed to eval\n", __func__); return -1; } return 0; } int whisper_decode_with_state(struct whisper_context * ctx, struct whisper_state * state, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { const int selected_decoder_id = 0; if (!whisper_decode_internal(*ctx, *state, state->decoders[selected_decoder_id], tokens, n_tokens, n_past, n_threads)) { log("%s: failed to eval\n", __func__); return 1; } return 0; } int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { // TODO: add selected_decoder_id to state const int selected_decoder_id = 0; if (ctx->state == nullptr) { log("%s: ERROR state was not loaded.\n", __func__); return false; } if (!whisper_decode_internal(*ctx, *ctx->state, ctx->state->decoders[selected_decoder_id], tokens, n_tokens, n_past, n_threads)) { log("%s: failed to eval\n", __func__); return 1; } return 0; } int whisper_tokenize(struct whisper_context * ctx, const char * text, whisper_token * tokens, int n_max_tokens) { const auto res = tokenize(ctx->vocab, text); if (n_max_tokens < (int) res.size()) { log("%s: too many resulting tokens: %d (max %d)\n", __func__, (int) res.size(), n_max_tokens); return -1; } for (int i = 0; i < (int) res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int whisper_lang_max_id() { auto max_id = 0; for (const auto & kv : g_lang) { max_id = std::max(max_id, kv.second.first); } return max_id; } int whisper_lang_id(const char * lang) { if (!g_lang.count(lang)) { for (const auto & kv : g_lang) { if (kv.second.second == lang) { return kv.second.first; } } log("%s: unknown language '%s'\n", __func__, lang); return -1; } return g_lang.at(lang).first; } const char * whisper_lang_str(int id) { for (const auto & kv : g_lang) { if (kv.second.first == id) { return kv.first.c_str(); } } log("%s: unknown language id %d\n", __func__, id); return nullptr; } int whisper_lang_auto_detect_with_state( struct whisper_context * ctx, struct whisper_state * state, int offset_ms, int n_threads, float * lang_probs) { const int seek = offset_ms/10; if (seek < 0) { log("%s: offset %dms is before the start of the audio\n", __func__, offset_ms); return -1; } if (seek >= state->mel.n_len_org) { log("%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, state->mel.n_len_org*10); return -2; } // run the encoder if (whisper_encode_with_state(ctx, state, seek, n_threads) != 0) { log("%s: failed to encode\n", __func__); return -6; } const std::vector prompt = { whisper_token_sot(ctx) }; if (whisper_decode_with_state(ctx, state, prompt.data(), prompt.size(), 0, n_threads) != 0) { log("%s: failed to decode\n", __func__); return -7; } auto & logits_id = state->logits_id; logits_id.clear(); for (const auto & kv : g_lang) { const auto token_lang = whisper_token_lang(ctx, kv.second.first); logits_id.emplace_back(state->logits[token_lang], kv.second.first); } // sort descending { using pair_type = std::remove_reference::type::value_type; std::sort(logits_id.begin(), logits_id.end(), [](const pair_type & a, const pair_type & b) { return a.first > b.first; }); } // softmax { const auto max = logits_id[0].first; double sum = 0.0f; for (auto & kv : logits_id) { kv.first = exp(kv.first - max); sum += kv.first; } for (auto & kv : logits_id) { kv.first /= sum; } } { for (const auto & prob : logits_id) { if (lang_probs) { lang_probs[prob.second] = prob.first; } //printf("%s: lang %2d (%3s): %f\n", __func__, prob.second, whisper_lang_str(prob.second), prob.first); } } return logits_id[0].second; } int whisper_lang_auto_detect( struct whisper_context * ctx, int offset_ms, int n_threads, float * lang_probs) { return whisper_lang_auto_detect_with_state(ctx, ctx->state, offset_ms, n_threads, lang_probs); } int whisper_model_n_vocab(struct whisper_context * ctx) { return ctx->model.hparams.n_vocab; } int whisper_model_n_audio_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_ctx; } int whisper_model_n_audio_state(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_state; } int whisper_model_n_audio_head(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_head; } int whisper_model_n_audio_layer(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_layer; } int whisper_model_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_model_n_text_state(struct whisper_context * ctx) { return ctx->model.hparams.n_text_state; } int whisper_model_n_text_head(struct whisper_context * ctx) { return ctx->model.hparams.n_text_head; } int whisper_model_n_text_layer(struct whisper_context * ctx) { return ctx->model.hparams.n_text_layer; } int whisper_model_n_mels(struct whisper_context * ctx) { return ctx->model.hparams.n_mels; } int whisper_model_ftype(struct whisper_context * ctx) { return ctx->model.hparams.ftype; } int whisper_model_type(struct whisper_context * ctx) { return ctx->model.type; } const char *whisper_model_type_readable(struct whisper_context * ctx) { switch (ctx->model.type) { case e_model::MODEL_TINY: return "tiny"; case e_model::MODEL_BASE: return "base"; case e_model::MODEL_SMALL: return "small"; case e_model::MODEL_MEDIUM: return "medium"; case e_model::MODEL_LARGE: return "large"; default: return "unknown"; } } int whisper_n_len_from_state(struct whisper_state * state) { return state->mel.n_len_org; } int whisper_n_len(struct whisper_context * ctx) { return ctx->state->mel.n_len_org; } int whisper_n_vocab(struct whisper_context * ctx) { return ctx->vocab.n_vocab; } int whisper_n_text_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_text_ctx; } int whisper_n_audio_ctx(struct whisper_context * ctx) { return ctx->model.hparams.n_audio_ctx; } int whisper_is_multilingual(struct whisper_context * ctx) { return ctx->vocab.is_multilingual() ? 1 : 0; } float * whisper_get_logits(struct whisper_context * ctx) { return ctx->state->logits.data(); } float * whisper_get_logits_from_state(struct whisper_state * state) { return state->logits.data(); } const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { return ctx->vocab.id_to_token.at(token).c_str(); } whisper_token whisper_token_eot(struct whisper_context * ctx) { return ctx->vocab.token_eot; } whisper_token whisper_token_sot(struct whisper_context * ctx) { return ctx->vocab.token_sot; } whisper_token whisper_token_solm(struct whisper_context * ctx) { return ctx->vocab.token_solm; } whisper_token whisper_token_prev(struct whisper_context * ctx) { return ctx->vocab.token_prev; } whisper_token whisper_token_nosp(struct whisper_context * ctx) { return ctx->vocab.token_nosp; } whisper_token whisper_token_not(struct whisper_context * ctx) { return ctx->vocab.token_not; } whisper_token whisper_token_beg(struct whisper_context * ctx) { return ctx->vocab.token_beg; } whisper_token whisper_token_lang(struct whisper_context * ctx, int lang_id) { return whisper_token_sot(ctx) + 1 + lang_id; } whisper_token whisper_token_translate(struct whisper_context * ctx) { return ctx->vocab.token_translate; } whisper_token whisper_token_transcribe(struct whisper_context * ctx) { return ctx->vocab.token_transcribe; } void whisper_print_timings(struct whisper_context * ctx) { const int64_t t_end_us = ggml_time_us(); log("\n"); log("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f); if (ctx->state != nullptr) { const int32_t n_sample = std::max(1, ctx->state->n_sample); const int32_t n_encode = std::max(1, ctx->state->n_encode); const int32_t n_decode = std::max(1, ctx->state->n_decode); log("%s: fallbacks = %3d p / %3d h\n", __func__, ctx->state->n_fail_p, ctx->state->n_fail_h); log("%s: mel time = %8.2f ms\n", __func__, ctx->state->t_mel_us / 1000.0f); log("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_sample_us, n_sample, 1e-3f * ctx->state->t_sample_us / n_sample); log("%s: encode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_encode_us, n_encode, 1e-3f * ctx->state->t_encode_us / n_encode); log("%s: decode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_decode_us, n_decode, 1e-3f * ctx->state->t_decode_us / n_decode); } log("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); } void whisper_reset_timings(struct whisper_context * ctx) { if (ctx->state != nullptr) { ctx->state->t_sample_us = 0; ctx->state->t_encode_us = 0; ctx->state->t_decode_us = 0; } } static int whisper_has_coreml(void) { #ifdef WHISPER_USE_COREML return 1; #else return 0; #endif } static int whisper_has_openvino(void) { #ifdef WHISPER_USE_OPENVINO return 1; #else return 0; #endif } const char * whisper_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; s += "COREML = " + std::to_string(whisper_has_coreml()) + " | "; s += "OPENVINO = " + std::to_string(whisper_has_openvino()) + " | "; return s.c_str(); } //////////////////////////////////////////////////////////////////////////// struct whisper_full_params * whisper_full_default_params_by_ref(enum whisper_sampling_strategy strategy) { struct whisper_full_params params = whisper_full_default_params(strategy); struct whisper_full_params* result = new whisper_full_params(); *result = params; return result; } struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) { struct whisper_full_params result = { /*.strategy =*/ strategy, /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_max_text_ctx =*/ 16384, /*.offset_ms =*/ 0, /*.duration_ms =*/ 0, /*.translate =*/ false, /*.no_context =*/ true, /*.single_segment =*/ false, /*.print_special =*/ false, /*.print_progress =*/ true, /*.print_realtime =*/ false, /*.print_timestamps =*/ true, /*.token_timestamps =*/ false, /*.thold_pt =*/ 0.01f, /*.thold_ptsum =*/ 0.01f, /*.max_len =*/ 0, /*.split_on_word =*/ false, /*.max_tokens =*/ 0, /*.speed_up =*/ false, /*.debug_mode =*/ false, /*.audio_ctx =*/ 0, /*.tdrz_enable =*/ false, /*.initial_prompt =*/ nullptr, /*.prompt_tokens =*/ nullptr, /*.prompt_n_tokens =*/ 0, /*.language =*/ "en", /*.detect_language =*/ false, /*.suppress_blank =*/ true, /*.suppress_non_speech_tokens =*/ false, /*.temperature =*/ 0.0f, /*.max_initial_ts =*/ 1.0f, /*.length_penalty =*/ -1.0f, /*.temperature_inc =*/ 0.4f, /*.entropy_thold =*/ 2.4f, /*.logprob_thold =*/ -1.0f, /*.no_speech_thold =*/ 0.6f, /*.greedy =*/ { /*.best_of =*/ -1, }, /*.beam_search =*/ { /*.beam_size =*/ -1, /*.patience =*/ -1.0f, }, /*.new_segment_callback =*/ nullptr, /*.new_segment_callback_user_data =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.encoder_begin_callback =*/ nullptr, /*.encoder_begin_callback_user_data =*/ nullptr, /*.logits_filter_callback =*/ nullptr, /*.logits_filter_callback_user_data =*/ nullptr, }; switch (strategy) { case WHISPER_SAMPLING_GREEDY: { result.greedy = { /*.best_of =*/ 2, // TODO: increase to 5 when we speed-up batch decoding }; } break; case WHISPER_SAMPLING_BEAM_SEARCH: { result.beam_search = { /*.beam_size =*/ 2, // TODO: increase to 5 when we speed-up batch decoding /*.patience =*/ -1.0f, }; } break; } return result; } // forward declarations static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window); static void whisper_exp_compute_token_level_timestamps( struct whisper_context & ctx, struct whisper_state & state, int i_segment, float thold_pt, float thold_ptsum); static inline bool should_split_on_word(const char * txt, bool split_on_word) { if (!split_on_word) return true; return txt[0] == ' '; } // wrap the last segment to max_len characters // returns the number of new segments static int whisper_wrap_segment(struct whisper_context & ctx, struct whisper_state & state, int max_len, bool split_on_word) { auto segment = state.result_all.back(); int res = 1; int acc = 0; std::string text; for (int i = 0; i < (int) segment.tokens.size(); i++) { const auto & token = segment.tokens[i]; if (token.id >= whisper_token_eot(&ctx)) { continue; } const auto txt = whisper_token_to_str(&ctx, token.id); const int cur = strlen(txt); if (acc + cur > max_len && i > 0 && should_split_on_word(txt, split_on_word)) { state.result_all.back().text = std::move(text); state.result_all.back().t1 = token.t0; state.result_all.back().tokens.resize(i); state.result_all.back().speaker_turn_next = false; state.result_all.push_back({}); state.result_all.back().t0 = token.t0; state.result_all.back().t1 = segment.t1; // add tokens [i, end] to the new segment state.result_all.back().tokens.insert( state.result_all.back().tokens.end(), segment.tokens.begin() + i, segment.tokens.end()); state.result_all.back().speaker_turn_next = segment.speaker_turn_next; acc = 0; text = ""; segment = state.result_all.back(); i = -1; res++; } else { acc += cur; text += txt; } } state.result_all.back().text = std::move(text); return res; } static const std::vector non_speech_tokens = { "\"", "#", "(", ")", "*", "+", "/", ":", ";", "<", "=", ">", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~", "「", "」", "『", "』", "<<", ">>", "<<<", ">>>", "--", "---", "-(", "-[", "('", "(\"", "((", "))", "(((", ")))", "[[", "]]", "{{", "}}", "♪♪", "♪♪♪","♩", "♪", "♫", "♬", "♭", "♮", "♯" }; // process the logits for the selected decoder // - applies logit filters // - computes logprobs and probs static void whisper_process_logits( struct whisper_context & ctx, struct whisper_state & state, const struct whisper_full_params params, struct whisper_decoder & decoder, float temperature) { const auto & vocab = ctx.vocab; const auto & tokens_cur = decoder.sequence.tokens; const bool is_initial = tokens_cur.size() == 0; const int n_logits = vocab.id_to_token.size(); WHISPER_ASSERT(n_logits == ctx.vocab.n_vocab); // extract the logits for the last token // we will be mutating, and therefore we don't want to use the ctx.logits buffer directly auto & probs = decoder.probs; auto & logits = decoder.logits; auto & logprobs = decoder.logprobs; { logits.resize(n_logits); memcpy(logits.data(), state.logits.data() + (state.logits.size() - n_logits), n_logits*sizeof(float)); if (temperature > 0.0f) { for (int i = 0; i < n_logits; i++) { logits[i] /= temperature; } } // will be populated a bit later probs.resize(n_logits); logprobs.resize(n_logits); } // apply logit filters here // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L480-L493 { // suppress blank // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L388-L390 if (params.suppress_blank) { if (is_initial) { logits[vocab.token_eot] = -INFINITY; logits[vocab.token_to_id.at(" ")] = -INFINITY; } } // suppress <|notimestamps|> token // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L410-L412 logits[vocab.token_not] = -INFINITY; // suppress sot and nosp tokens logits[vocab.token_sot] = -INFINITY; logits[vocab.token_nosp] = -INFINITY; // TODO: ignore this token for now // [TDRZ] when tinydiarize is disabled, suppress solm token if (params.tdrz_enable == false) { logits[vocab.token_solm] = -INFINITY; } // suppress task tokens logits[vocab.token_translate] = -INFINITY; logits[vocab.token_transcribe] = -INFINITY; if (params.logits_filter_callback) { params.logits_filter_callback(&ctx, &state, tokens_cur.data(), tokens_cur.size(), logits.data(), params.logits_filter_callback_user_data); } // suppress non-speech tokens // ref: https://github.com/openai/whisper/blob/7858aa9c08d98f75575035ecd6481f462d66ca27/whisper/tokenizer.py#L224-L253 if (params.suppress_non_speech_tokens) { for (const std::string & token : non_speech_tokens) { const std::string suppress_tokens[] = {token, " " + token}; for (const std::string & suppress_token : suppress_tokens) { if (vocab.token_to_id.find(suppress_token) != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(suppress_token)] = -INFINITY; } } } // allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word if (vocab.token_to_id.find(" -") != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(" -")] = -INFINITY; } if (vocab.token_to_id.find(" '") != vocab.token_to_id.end()) { logits[vocab.token_to_id.at(" '")] = -INFINITY; } } // timestamps have to appear in pairs, except directly before EOT; mask logits accordingly // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L414-L424 { const bool last_was_timestamp = tokens_cur.size() > 0 && tokens_cur.back().id >= vocab.token_beg; const bool penultimate_was_timestamp = tokens_cur.size() < 2 || tokens_cur[tokens_cur.size() - 2].id >= vocab.token_beg; //log("last_was_timestamp=%d penultimate_was_timestamp=%d\n", last_was_timestamp, penultimate_was_timestamp); if (last_was_timestamp) { if (penultimate_was_timestamp) { for (int i = vocab.token_beg; i < n_logits; ++i) { logits[i] = -INFINITY; } } else { for (int i = 0; i < vocab.token_eot; ++i) { logits[i] = -INFINITY; } } } } // the initial timestamp cannot be larger than max_initial_ts // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L426-L429 if (is_initial && params.max_initial_ts > 0.0f) { const float precision = float(WHISPER_CHUNK_SIZE)/ctx.model.hparams.n_audio_ctx; const int tid0 = std::round(params.max_initial_ts/precision); for (int i = vocab.token_beg + tid0 + 1; i < n_logits; ++i) { logits[i] = -INFINITY; } } // condition timestamp tokens to be increasing // ref: https://github.com/openai/whisper/pull/831#issuecomment-1385910556 if (decoder.has_ts) { const int tid0 = decoder.seek_delta/2; for (int i = vocab.token_beg; i < vocab.token_beg + tid0; ++i) { logits[i] = -INFINITY; } } // populate the logprobs array (log_softmax) { const float logit_max = *std::max_element(logits.begin(), logits.end()); float logsumexp = 0.0f; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logsumexp += expf(logits[i] - logit_max); } } logsumexp = logf(logsumexp) + logit_max; for (int i = 0; i < n_logits; ++i) { if (logits[i] > -INFINITY) { logprobs[i] = logits[i] - logsumexp; } else { logprobs[i] = -INFINITY; } } } // if sum of probability over timestamps is above any other token, sample timestamp // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L431-L437 { // logsumexp over timestamps float timestamp_logprob = -INFINITY; { float logsumexp = 0.0f; const float logprob_max = *std::max_element(logprobs.begin() + vocab.token_beg, logprobs.end()); for (int i = vocab.token_beg; i < n_logits; ++i) { if (logprobs[i] > -INFINITY) { logsumexp += expf(logprobs[i] - logprob_max); } } if (logsumexp > 0.0f) { timestamp_logprob = logf(logsumexp) + logprob_max; } } const float max_text_token_logprob = *std::max_element(logprobs.begin(), logprobs.begin() + vocab.token_beg); //log("timestamp_logprob=%f max_text_token_logprob=%f\n", timestamp_logprob, max_text_token_logprob); if (timestamp_logprob > max_text_token_logprob) { for (int i = 0; i < vocab.token_beg; ++i) { logits[i] = -INFINITY; logprobs[i] = -INFINITY; } } } } // compute probs { for (int i = 0; i < n_logits; ++i) { if (logits[i] == -INFINITY) { probs[i] = 0.0f; } else { probs[i] = expf(logprobs[i]); } } } #if 0 // print first 100 logits - token string : logit for (int i = 0; i < 100; i++) { const auto token = vocab.id_to_token.at(i); const auto prob = probs[i]; const auto logit = logits[i]; const auto logprob = logprobs[i]; printf("%s : prob=%9.5f logit=%9.5f logprob=%9.5f\n", token.c_str(), prob, logit, logprob); } // "And", "and", " And", " and" printf("logits[\"and\"] = %f\n", logits[vocab.token_to_id.at("and")]); printf("logits[\"And\"] = %f\n", logits[vocab.token_to_id.at("And")]); printf("logits[\" and\"] = %f\n", logits[vocab.token_to_id.at(" and")]); printf("logits[\" And\"] = %f\n", logits[vocab.token_to_id.at(" And")]); printf("logits[\" so\"] = %f\n", logits[vocab.token_to_id.at(" so")]); printf("logprobs[\"and\"] = %f\n", logprobs[vocab.token_to_id.at("and")]); printf("logprobs[\"And\"] = %f\n", logprobs[vocab.token_to_id.at("And")]); printf("logprobs[\" and\"] = %f\n", logprobs[vocab.token_to_id.at(" and")]); printf("logprobs[\" And\"] = %f\n", logprobs[vocab.token_to_id.at(" And")]); printf("logprobs[\" so\"] = %f\n", logprobs[vocab.token_to_id.at(" so")]); printf("probs[\"and\"] = %f\n", probs[vocab.token_to_id.at("and")]); printf("probs[\"And\"] = %f\n", probs[vocab.token_to_id.at("And")]); printf("probs[\" and\"] = %f\n", probs[vocab.token_to_id.at(" and")]); printf("probs[\" And\"] = %f\n", probs[vocab.token_to_id.at(" And")]); printf("probs[\" so\"] = %f\n", probs[vocab.token_to_id.at(" so")]); #endif } static whisper_token_data whisper_sample_token( whisper_context & ctx, whisper_state & state, const whisper_decoder & decoder, bool best) { whisper_token_data result = { 0, 0, 0.0f, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f, }; const auto & vocab = ctx.vocab; const auto & probs = decoder.probs; const auto & logprobs = decoder.logprobs; const int n_logits = vocab.n_vocab; { double sum_ts = 0.0; double max_ts = 0.0; for (int i = vocab.token_beg; i < n_logits; i++) { if (probs[i] == -INFINITY) { continue; } sum_ts += probs[i]; if (max_ts < probs[i]) { max_ts = probs[i]; result.tid = i; } } result.pt = max_ts/(sum_ts + 1e-10); result.ptsum = sum_ts; } if (best) { for (int i = 0; i < n_logits; ++i) { if (result.p < probs[i]) { result.id = i; result.p = probs[i]; result.plog = logprobs[i]; } } } else { std::discrete_distribution<> dist(probs.begin(), probs.end()); result.id = dist(state.rng); result.p = probs[result.id]; result.plog = logprobs[result.id]; } if (result.id >= vocab.token_beg) { result.tid = result.id; result.pt = result.p; } state.n_sample++; return result; } static std::vector whisper_sample_token_topk( whisper_context & ctx, whisper_state & state, const whisper_decoder & decoder, int k) { const auto & vocab = ctx.vocab; const auto & probs = decoder.probs; const auto & logits = decoder.logits; const auto & logprobs = decoder.logprobs; const int n_logits = vocab.n_vocab; auto & logits_id = state.logits_id; logits_id.clear(); for (int i = 0; i < n_logits; ++i) { logits_id.push_back({ logits[i], i }); } std::partial_sort( logits_id.begin(), logits_id.begin() + k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); std::vector result; result.reserve(k); whisper_token tid = vocab.token_beg; float pt = 0.0; float ptsum = 0.0; { double sum_ts = 0.0; double max_ts = 0.0; for (int i = vocab.token_beg; i < n_logits; i++) { if (probs[i] == -INFINITY) { continue; } sum_ts += probs[i]; if (max_ts < probs[i]) { max_ts = probs[i]; tid = i; } } pt = max_ts/(sum_ts + 1e-10); ptsum = sum_ts; } for (int i = 0; i < k; ++i) { const auto id = logits_id[i].second; result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, 0.0f, }); if (result[i].id >= vocab.token_beg) { result[i].tid = result[i].id; result[i].pt = result[i].p; } } state.n_sample++; return result; } // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L178-L192 static void whisper_sequence_score( const struct whisper_full_params & params, whisper_sequence & sequence) { if (sequence.result_len == 0) { return; } double result = 0.0f; for (int i = 0; i < sequence.result_len; ++i) { result += sequence.tokens[i].plog; } sequence.sum_logprobs = result; sequence.avg_logprobs = result/sequence.result_len; double penalty = sequence.result_len; if (params.length_penalty > 0.0f) { penalty = pow((5.0 + penalty)/6.0, params.length_penalty); } sequence.score = result/penalty; // compute the entropy of the sequence of the last 32 tokens { const int n = 32; int cnt = 0; double entropy = 0.0f; std::map token_counts; for (int i = std::max(0, sequence.result_len - n); i < sequence.result_len; ++i) { token_counts[sequence.tokens[i].id]++; cnt++; } for (const auto & kv : token_counts) { const auto p = kv.second/(double)cnt; entropy -= p*log(p); //WHISPER_PRINT_DEBUG("entropy: %d %f %f, count %d\n", kv.first, p, log(p), kv.second); } sequence.entropy = entropy; } } int whisper_full_with_state( struct whisper_context * ctx, struct whisper_state * state, struct whisper_full_params params, const float * samples, int n_samples) { // clear old results auto & result_all = state->result_all; result_all.clear(); if (n_samples > 0) { // compute log mel spectrogram if (params.speed_up) { // TODO: Replace PV with more advanced algorithm log("%s: failed to compute log mel spectrogram\n", __func__); return -1; } else { if (whisper_pcm_to_mel_with_state(ctx, state, samples, n_samples, params.n_threads) != 0) { log("%s: failed to compute log mel spectrogram\n", __func__); return -2; } } } // auto-detect language if not specified if (params.language == nullptr || strlen(params.language) == 0 || strcmp(params.language, "auto") == 0 || params.detect_language) { std::vector probs(whisper_lang_max_id() + 1, 0.0f); const auto lang_id = whisper_lang_auto_detect_with_state(ctx, state, 0, params.n_threads, probs.data()); if (lang_id < 0) { log("%s: failed to auto-detect language\n", __func__); return -3; } state->lang_id = lang_id; params.language = whisper_lang_str(lang_id); log("%s: auto-detected language: %s (p = %f)\n", __func__, params.language, probs[whisper_lang_id(params.language)]); if (params.detect_language) { return 0; } } if (params.token_timestamps) { state->t_beg = 0; state->t_last = 0; state->tid_last = 0; if (n_samples > 0) { state->energy = get_signal_energy(samples, n_samples, 32); } } const int seek_start = params.offset_ms/10; const int seek_end = params.duration_ms == 0 ? whisper_n_len_from_state(state) : seek_start + params.duration_ms/10; // if length of spectrogram is less than 1.0s (100 frames), then return // basically don't process anything that is less than 1.0s // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39 if (seek_end < seek_start + (params.speed_up ? 50 : 100)) { return 0; } // a set of temperatures to use // [ t0, t0 + delta, t0 + 2*delta, ..., < 1.0f + 1e-6f ] std::vector temperatures; if (params.temperature_inc > 0.0f) { for (float t = params.temperature; t < 1.0f + 1e-6f; t += params.temperature_inc) { temperatures.push_back(t); } } else { temperatures.push_back(params.temperature); } // initialize the decoders int n_decoders = 1; switch (params.strategy) { case WHISPER_SAMPLING_GREEDY: { n_decoders = params.greedy.best_of; } break; case WHISPER_SAMPLING_BEAM_SEARCH: { n_decoders = std::max(params.greedy.best_of, params.beam_search.beam_size); } break; }; n_decoders = std::max(1, n_decoders); // TAGS: WHISPER_DECODER_INIT for (int j = 1; j < n_decoders; j++) { auto & decoder = state->decoders[j]; if (decoder.kv_self.ctx == nullptr) { decoder.kv_self = state->decoders[0].kv_self; if (!kv_cache_reinit(decoder.kv_self)) { log("%s: kv_cache_reinit() failed for self-attention, decoder %d\n", __func__, j); return -4; } WHISPER_PRINT_DEBUG("%s: initialized self-attention kv cache, decoder %d\n", __func__, j); decoder.sequence.tokens.reserve(state->decoders[0].sequence.tokens.capacity()); decoder.probs.resize (ctx->vocab.n_vocab); decoder.logits.resize (ctx->vocab.n_vocab); decoder.logprobs.resize(ctx->vocab.n_vocab); } } // the accumulated text context so far auto & prompt_past = state->prompt_past; if (params.no_context) { prompt_past.clear(); } // prepare prompt { std::vector prompt_tokens; // initial prompt if (!params.prompt_tokens && params.initial_prompt) { prompt_tokens.resize(1024); prompt_tokens.resize(whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size())); params.prompt_tokens = prompt_tokens.data(); params.prompt_n_tokens = prompt_tokens.size(); } // prepend the prompt tokens to the prompt_past if (params.prompt_tokens && params.prompt_n_tokens > 0) { // parse tokens from the pointer for (int i = 0; i < params.prompt_n_tokens; i++) { prompt_past.push_back(params.prompt_tokens[i]); } std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end()); } } // overwrite audio_ctx, max allowed is hparams.n_audio_ctx if (params.audio_ctx > whisper_n_audio_ctx(ctx)) { log("%s: audio_ctx is larger than the maximum allowed (%d > %d)\n", __func__, params.audio_ctx, whisper_n_audio_ctx(ctx)); return -5; } state->exp_n_audio_ctx = params.audio_ctx; // these tokens determine the task that will be performed std::vector prompt_init = { whisper_token_sot(ctx) }; if (whisper_is_multilingual(ctx)) { const int lang_id = whisper_lang_id(params.language); state->lang_id = lang_id; prompt_init.push_back(whisper_token_lang(ctx, lang_id)); if (params.translate) { prompt_init.push_back(whisper_token_translate(ctx)); } else { prompt_init.push_back(whisper_token_transcribe(ctx)); } } int seek = seek_start; std::vector prompt; prompt.reserve(whisper_n_text_ctx(ctx)); // beam-search helpers struct kv_buf { std::vector k; std::vector v; }; std::vector kv_bufs; struct beam_candidate { int decoder_idx; int seek_delta; bool has_ts; whisper_sequence sequence; }; std::vector beam_candidates; // main loop while (true) { if (params.progress_callback) { const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start); params.progress_callback( ctx, ctx->state, progress_cur, params.progress_callback_user_data); } // of only 1 second left, then stop if (seek + 100 >= seek_end) { break; } if (params.encoder_begin_callback) { if (params.encoder_begin_callback(ctx, state, params.encoder_begin_callback_user_data) == false) { log("%s: encoder_begin_callback returned false - aborting\n", __func__); break; } } // encode audio features starting at offset seek if (!whisper_encode_internal(*ctx, *state, seek, params.n_threads)) { log("%s: failed to encode\n", __func__); return -6; } // if there is a very short audio segment left to process, we remove any past prompt since it tends // to confuse the decoder and often make it repeat or hallucinate stuff if (seek > seek_start && seek + 500 >= seek_end) { prompt_past.clear(); } int best_decoder_id = 0; for (int it = 0; it < (int) temperatures.size(); ++it) { const float t_cur = temperatures[it]; int n_decoders_cur = 1; switch (params.strategy) { case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY: { if (t_cur > 0.0f) { n_decoders_cur = params.greedy.best_of; } } break; case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH: { if (t_cur > 0.0f) { n_decoders_cur = params.greedy.best_of; } else { n_decoders_cur = params.beam_search.beam_size; } } break; }; n_decoders_cur = std::max(1, n_decoders_cur); WHISPER_PRINT_DEBUG("\n%s: decoding with %d decoders, temperature = %.2f\n", __func__, n_decoders_cur, t_cur); // TAGS: WHISPER_DECODER_INIT for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; decoder.kv_self.n = 0; decoder.sequence.tokens.clear(); decoder.sequence.result_len = 0; decoder.sequence.sum_logprobs_all = 0.0; decoder.sequence.sum_logprobs = -INFINITY; decoder.sequence.avg_logprobs = -INFINITY; decoder.sequence.entropy = 0.0; decoder.sequence.score = -INFINITY; decoder.seek_delta = 100*WHISPER_CHUNK_SIZE; decoder.failed = false; decoder.completed = false; decoder.has_ts = false; } // init prompt and kv cache for the current iteration // run whisper_decoder() only for decoder 0 and copy the results for the other decoders { prompt.clear(); // if we have already generated some text, use it as a prompt to condition the next generation if (!prompt_past.empty() && t_cur < 0.5f && params.n_max_text_ctx > 0) { int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size())); prompt = { whisper_token_prev(ctx) }; prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); } // init new transcription with sot, language (opt) and task tokens prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); // print the prompt WHISPER_PRINT_DEBUG("\n\n"); for (int i = 0; i < (int) prompt.size(); i++) { WHISPER_PRINT_DEBUG("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token.at(prompt[i]).c_str()); } WHISPER_PRINT_DEBUG("\n\n"); if (!whisper_decode_internal(*ctx, *state, state->decoders[0], prompt.data(), prompt.size(), 0, params.n_threads)) { log("%s: failed to decode\n", __func__); return -7; } { const int64_t t_start_sample_us = ggml_time_us(); whisper_process_logits(*ctx, *state, params, state->decoders[0], t_cur); state->decoders[0].kv_self.n += prompt.size(); for (int j = 1; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; memcpy(decoder.kv_self.k->data, state->decoders[0].kv_self.k->data, ggml_nbytes(decoder.kv_self.k)); memcpy(decoder.kv_self.v->data, state->decoders[0].kv_self.v->data, ggml_nbytes(decoder.kv_self.v)); decoder.kv_self.n += prompt.size(); memcpy(decoder.probs.data(), state->decoders[0].probs.data(), decoder.probs.size()*sizeof(decoder.probs[0])); memcpy(decoder.logits.data(), state->decoders[0].logits.data(), decoder.logits.size()*sizeof(decoder.logits[0])); memcpy(decoder.logprobs.data(), state->decoders[0].logprobs.data(), decoder.logprobs.size()*sizeof(decoder.logprobs[0])); } state->t_sample_us += ggml_time_us() - t_start_sample_us; } } for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) { const int64_t t_start_sample_us = ggml_time_us(); // store the KV caches of all decoders when doing beam-search if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) { kv_bufs.resize(n_decoders_cur); for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } kv_bufs[j].k.resize(ggml_nbytes(decoder.kv_self.k)); kv_bufs[j].v.resize(ggml_nbytes(decoder.kv_self.v)); memcpy(kv_bufs[j].k.data(), decoder.kv_self.k->data, kv_bufs[j].k.size()); memcpy(kv_bufs[j].v.data(), decoder.kv_self.v->data, kv_bufs[j].v.size()); } beam_candidates.clear(); } // generate new sequence candidates for each decoder for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } switch (params.strategy) { case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY: { if (t_cur < 1e-6f) { decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, *state, decoder, true)); } else { decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, *state, decoder, false)); } decoder.sequence.sum_logprobs_all += decoder.sequence.tokens.back().plog; } break; case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH: { const auto tokens_new = whisper_sample_token_topk(*ctx, *state, decoder, params.beam_search.beam_size); for (const auto & token : tokens_new) { beam_candidates.push_back({ j, decoder.seek_delta, decoder.has_ts, decoder.sequence }); beam_candidates.back().sequence.tokens.push_back(token); beam_candidates.back().sequence.sum_logprobs_all += token.plog; //WHISPER_PRINT_DEBUG("%s: beam candidate: %s (%f, %f)\n", __func__, ctx->vocab.id_to_token.at(token.id).c_str(), token.plog, beam_candidates.back().sequence.sum_logprobs_all); } } break; }; } // for beam-search, choose the top candidates and update the KV caches if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) { std::sort( beam_candidates.begin(), beam_candidates.end(), [](const beam_candidate & a, const beam_candidate & b) { return a.sequence.sum_logprobs_all > b.sequence.sum_logprobs_all; }); uint32_t cur_c = 0; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } auto & cur = beam_candidates[cur_c++]; while (beam_candidates.size() > cur_c && beam_candidates[cur_c].sequence.sum_logprobs_all == cur.sequence.sum_logprobs_all && i > 0) { ++cur_c; } decoder.sequence = cur.sequence; decoder.seek_delta = cur.seek_delta; decoder.has_ts = cur.has_ts; memcpy(decoder.kv_self.k->data, kv_bufs[cur.decoder_idx].k.data(), kv_bufs[cur.decoder_idx].k.size()); memcpy(decoder.kv_self.v->data, kv_bufs[cur.decoder_idx].v.data(), kv_bufs[cur.decoder_idx].v.size()); WHISPER_PRINT_DEBUG("%s: beam search: decoder %d: from decoder %d: token = %10s, plog = %8.5f, sum_logprobs = %8.5f\n", __func__, j, cur.decoder_idx, ctx->vocab.id_to_token.at(decoder.sequence.tokens.back().id).c_str(), decoder.sequence.tokens.back().plog, decoder.sequence.sum_logprobs_all); } } // update the decoder state // - check if the sequence is completed // - check if the sequence is failed // - update sliding window based on timestamp tokens for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } auto & has_ts = decoder.has_ts; auto & failed = decoder.failed; auto & completed = decoder.completed; auto & seek_delta = decoder.seek_delta; auto & result_len = decoder.sequence.result_len; { const auto & token = decoder.sequence.tokens.back(); // timestamp token - update sliding window if (token.id > whisper_token_beg(ctx)) { const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx)); // do not allow to go back in time if (has_ts && seek_delta > seek_delta_new && result_len < i) { failed = true; // TODO: maybe this is not a failure ? continue; } seek_delta = seek_delta_new; result_len = i + 1; has_ts = true; } #ifdef WHISPER_DEBUG { const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token.at(token.tid) : "[?]"; WHISPER_PRINT_DEBUG("%s: id = %3d, decoder = %d, token = %6d, p = %6.3f, ts = %10s, %6.3f, result_len = %4d '%s'\n", __func__, i, j, token.id, token.p, tt.c_str(), token.pt, result_len, ctx->vocab.id_to_token.at(token.id).c_str()); } #endif // end of segment if (token.id == whisper_token_eot(ctx) || // end of text token (params.max_tokens > 0 && i >= params.max_tokens) || // max tokens per segment reached (has_ts && seek + seek_delta + 100 >= seek_end) // end of audio reached ) { if (result_len == 0) { if (seek + seek_delta + 100 >= seek_end) { result_len = i + 1; } else { failed = true; continue; } } if (params.single_segment) { result_len = i + 1; seek_delta = 100*WHISPER_CHUNK_SIZE; } completed = true; continue; } // TESTS: if no tensors are loaded, it means we are running tests if (ctx->model.n_loaded == 0) { seek_delta = 100*WHISPER_CHUNK_SIZE; completed = true; continue; } } // sometimes, the decoding can get stuck in a repetition loop // this is an attempt to mitigate such cases - we flag the decoding as failed and use a fallback strategy if (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) { failed = true; continue; } } // check if all decoders have finished (i.e. completed or failed) { bool completed_all = true; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.completed || decoder.failed) { continue; } completed_all = false; } if (completed_all) { break; } } state->t_sample_us += ggml_time_us() - t_start_sample_us; // obtain logits for the next token for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.failed || decoder.completed) { continue; } decoder.tokens_tmp.resize(1); decoder.tokens_tmp[0] = decoder.sequence.tokens.back().id; //WHISPER_PRINT_DEBUG("%s: decoder %d: token %d, kv_self.n %d, seek_delta %d\n", __func__, j, decoder.tokens_tmp[0], decoder.kv_self.n, decoder.seek_delta); if (!whisper_decode_internal(*ctx, *state, decoder, decoder.tokens_tmp.data(), decoder.tokens_tmp.size(), decoder.kv_self.n, params.n_threads)) { log("%s: failed to decode\n", __func__); return -8; } { const int64_t t_start_sample_us = ggml_time_us(); whisper_process_logits(*ctx, *state, params, decoder, t_cur); ++decoder.kv_self.n; state->t_sample_us += ggml_time_us() - t_start_sample_us; } } } // rank the resulting sequences and select the best one { double best_score = -INFINITY; for (int j = 0; j < n_decoders_cur; ++j) { auto & decoder = state->decoders[j]; if (decoder.failed) { continue; } decoder.sequence.tokens.resize(decoder.sequence.result_len); whisper_sequence_score(params, decoder.sequence); WHISPER_PRINT_DEBUG("%s: decoder %2d: score = %8.5f, result_len = %3d, avg_logprobs = %8.5f, entropy = %8.5f\n", __func__, j, decoder.sequence.score, decoder.sequence.result_len, decoder.sequence.avg_logprobs, decoder.sequence.entropy); if (decoder.sequence.result_len > 32 && decoder.sequence.entropy < params.entropy_thold) { WHISPER_PRINT_DEBUG("%s: decoder %2d: failed due to entropy %8.5f < %8.5f\n", __func__, j, decoder.sequence.entropy, params.entropy_thold); decoder.failed = true; state->n_fail_h++; continue; } if (best_score < decoder.sequence.score) { best_score = decoder.sequence.score; best_decoder_id = j; } } WHISPER_PRINT_DEBUG("%s: best decoder = %d\n", __func__, best_decoder_id); } // was the decoding successful for the current temperature? // do fallback only if: // - we are not at the last temperature // - we are not at the end of the audio (3 sec) if (it != (int) temperatures.size() - 1 && seek_end - seek > 10*WHISPER_CHUNK_SIZE) { bool success = true; const auto & decoder = state->decoders[best_decoder_id]; if (decoder.failed || decoder.sequence.avg_logprobs < params.logprob_thold) { success = false; state->n_fail_p++; } if (success) { //for (auto & token : ctx->decoders[best_decoder_id].sequence.tokens) { // WHISPER_PRINT_DEBUG("%s: token = %d, p = %6.3f, pt = %6.3f, ts = %s, str = %s\n", __func__, token.id, token.p, token.pt, ctx->vocab.id_to_token.at(token.tid).c_str(), ctx->vocab.id_to_token.at(token.id).c_str()); //} break; } } WHISPER_PRINT_DEBUG("\n%s: failed to decode with temperature = %.2f\n", __func__, t_cur); } // output results through a user-provided callback { const auto & best_decoder = state->decoders[best_decoder_id]; const auto seek_delta = best_decoder.seek_delta; const auto result_len = best_decoder.sequence.result_len; const auto & tokens_cur = best_decoder.sequence.tokens; //WHISPER_PRINT_DEBUG("prompt_init.size() = %d, prompt.size() = %d, result_len = %d, seek_delta = %d\n", prompt_init.size(), prompt.size(), result_len, seek_delta); // update prompt_past prompt_past.clear(); if (prompt.front() == whisper_token_prev(ctx)) { prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - prompt_init.size()); } for (int i = 0; i < result_len; ++i) { prompt_past.push_back(tokens_cur[i].id); } if (!tokens_cur.empty() && ctx->model.n_loaded > 0) { int i0 = 0; auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx)); std::string text; bool speaker_turn_next = false; for (int i = 0; i < (int) tokens_cur.size(); i++) { //printf("%s: %18s %6.3f %18s %6.3f\n", __func__, // ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p, // ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt); if (params.print_special || tokens_cur[i].id < whisper_token_eot(ctx)) { text += whisper_token_to_str(ctx, tokens_cur[i].id); } // [TDRZ] record if speaker turn was predicted after current segment if (params.tdrz_enable && tokens_cur[i].id == whisper_token_solm(ctx)) { speaker_turn_next = true; } if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) { const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx)); if (!text.empty()) { const auto tt0 = params.speed_up ? 2*t0 : t0; const auto tt1 = params.speed_up ? 2*t1 : t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } //printf("tt0 = %d, tt1 = %d, text = %s, token = %s, token_id = %d, tid = %d\n", tt0, tt1, text.c_str(), ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].id, tokens_cur[i].tid); result_all.push_back({ tt0, tt1, text, {}, speaker_turn_next }); for (int j = i0; j <= i; j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data); } } text = ""; while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) { i++; } i--; t0 = t1; i0 = i + 1; speaker_turn_next = false; } } if (!text.empty()) { const auto t1 = seek + seek_delta; const auto tt0 = params.speed_up ? 2*t0 : t0; const auto tt1 = params.speed_up ? 2*t1 : t1; if (params.print_realtime) { if (params.print_timestamps) { printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str()); } else { printf("%s", text.c_str()); fflush(stdout); } } result_all.push_back({ tt0, tt1, text, {} , speaker_turn_next }); for (int j = i0; j < (int) tokens_cur.size(); j++) { result_all.back().tokens.push_back(tokens_cur[j]); } int n_new = 1; if (params.token_timestamps) { whisper_exp_compute_token_level_timestamps( *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum); if (params.max_len > 0) { n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word); } } if (params.new_segment_callback) { params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data); } } } // update audio window seek += seek_delta; WHISPER_PRINT_DEBUG("seek = %d, seek_delta = %d\n", seek, seek_delta); } } return 0; } int whisper_full( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples) { return whisper_full_with_state(ctx, ctx->state, params, samples, n_samples); } int whisper_full_parallel( struct whisper_context * ctx, struct whisper_full_params params, const float * samples, int n_samples, int n_processors) { if (n_processors == 1) { return whisper_full(ctx, params, samples, n_samples); } int ret = 0; // prepare separate states for each thread std::vector states; const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000; const int n_samples_per_processor = (n_samples - offset_samples)/n_processors; // the calling thread will process the first chunk // while the other threads will process the remaining chunks std::vector workers(n_processors - 1); for (int i = 0; i < n_processors - 1; ++i) { // create a new state for each thread states.push_back(whisper_init_state(ctx)); const int start_samples = offset_samples + (i + 1)*n_samples_per_processor; const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor; auto params_cur = params; params_cur.offset_ms = 0; params_cur.print_progress = false; params_cur.print_realtime = false; params_cur.new_segment_callback = nullptr; params_cur.new_segment_callback_user_data = nullptr; params_cur.progress_callback = nullptr; params_cur.progress_callback_user_data = nullptr; workers[i] = std::thread(whisper_full_with_state, ctx, states[i], std::move(params_cur), samples + start_samples, n_samples_cur); } { auto params_cur = params; // We need to disable the print real-time for this one as well, otherwise it will show only for the first chunk. params_cur.print_realtime = false; // Run the first transformation using default state but only for the first chunk. ret = whisper_full_with_state(ctx, ctx->state, std::move(params_cur), samples, offset_samples + n_samples_per_processor); } for (int i = 0; i < n_processors - 1; ++i) { workers[i].join(); } const int64_t offset_t = (int64_t) params.offset_ms/10.0; // combine results into result_state->result_all from all other states for (int i = 0; i < n_processors - 1; ++i) { auto& results_i = states[i]->result_all; for (auto& result : results_i) { // correct the segment timestamp taking into account the offset result.t0 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t; result.t1 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t; // make sure that segments are not overlapping if (!ctx->state->result_all.empty()) { result.t0 = std::max(result.t0, ctx->state->result_all.back().t1); } ctx->state->result_all.push_back(std::move(result)); // call the new_segment_callback for each segment if (params.new_segment_callback) { params.new_segment_callback(ctx, ctx->state, 1, params.new_segment_callback_user_data); } } ctx->state->t_mel_us += states[i]->t_mel_us; ctx->state->t_sample_us += states[i]->t_sample_us; ctx->state->t_encode_us += states[i]->t_encode_us; ctx->state->t_decode_us += states[i]->t_decode_us; whisper_free_state(states[i]); } // average the timings ctx->state->t_mel_us /= n_processors; ctx->state->t_sample_us /= n_processors; ctx->state->t_encode_us /= n_processors; ctx->state->t_decode_us /= n_processors; // print information about the audio boundaries log("\n"); log("%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors); for (int i = 0; i < n_processors - 1; ++i) { log("%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str()); } log("%s: the transcription quality may be degraded near these boundaries\n", __func__); return ret; } int whisper_full_n_segments_from_state(struct whisper_state * state) { return state->result_all.size(); } int whisper_full_n_segments(struct whisper_context * ctx) { return ctx->state->result_all.size(); } int whisper_full_lang_id_from_state(struct whisper_state * state) { return state->lang_id; } int whisper_full_lang_id(struct whisper_context * ctx) { return ctx->state->lang_id; } int64_t whisper_full_get_segment_t0_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].t0; } int64_t whisper_full_get_segment_t1_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].t1; } int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].t1; } bool whisper_full_get_segment_speaker_turn_next(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].speaker_turn_next; } const char * whisper_full_get_segment_text_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].text.c_str(); } const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].text.c_str(); } int whisper_full_n_tokens_from_state(struct whisper_state * state, int i_segment) { return state->result_all[i_segment].tokens.size(); } int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) { return ctx->state->result_all[i_segment].tokens.size(); } const char * whisper_full_get_token_text_from_state(struct whisper_context * ctx, struct whisper_state * state, int i_segment, int i_token) { return ctx->vocab.id_to_token[state->result_all[i_segment].tokens[i_token].id].c_str(); } const char* whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->vocab.id_to_token[ctx->state->result_all[i_segment].tokens[i_token].id].c_str(); } whisper_token whisper_full_get_token_id_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token].id; } whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token].id; } struct whisper_token_data whisper_full_get_token_data_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token]; } struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token]; } float whisper_full_get_token_p_from_state(struct whisper_state * state, int i_segment, int i_token) { return state->result_all[i_segment].tokens[i_token].p; } float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) { return ctx->state->result_all[i_segment].tokens[i_token].p; } // ================================================================================================= // // Temporary interface needed for exposing ggml interface // Will be removed in the future when ggml becomes a separate library // WHISPER_API int whisper_bench_memcpy(int n_threads) { fputs(whisper_bench_memcpy_str(n_threads), stderr); return 0; } WHISPER_API const char * whisper_bench_memcpy_str(int n_threads) { static std::string s; s = ""; char strbuf[256]; ggml_time_init(); size_t n = 20; size_t arr = n_threads > 0 ? 1024llu : n_threads; // trick to avoid compiler optimizations // 1GB MB array const size_t size = arr*1024llu*1024llu; // single-thread { char * src = (char *) malloc(size); char * dst = (char *) malloc(size); for (size_t i = 0; i < size; i++) src[i] = i; memcpy(dst, src, size); // heat-up double tsum = 0.0; double sum = 0.0; for (size_t i = 0; i < n; i++) { const int64_t t0 = ggml_time_us(); memcpy(dst, src, size); const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; src[rand() % size] = rand() % 256; } snprintf(strbuf, sizeof(strbuf), "memcpy: %.2f GB/s (1 thread)\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu)); s += strbuf; // needed to prevent the compiler from optimizing the memcpy away { for (size_t i = 0; i < size; i++) sum += dst[i]; snprintf(strbuf, sizeof(strbuf), "sum: %f\n", sum); s += strbuf; } free(src); free(dst); } return s.c_str(); } WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) { fputs(whisper_bench_ggml_mul_mat_str(n_threads), stderr); return 0; } WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) { static std::string s; s = ""; char strbuf[256]; ggml_time_init(); const int n_max = 128; const std::vector sizes = { 64, 128, 256, 512, 1024, 2048, 4096, }; const size_t N_max = sizes.back(); // a: N*N*sizeof(float) // b: N*N*sizeof(float) // c: N*N*sizeof(float) // when F16 is used, there is an extra work buffer of size N*N*sizeof(float) std::vector buf(4llu*N_max*N_max*sizeof(float) + 4*512); // put a bunch of random data in the buffer for (size_t i = 0; i < buf.size(); i++) buf[i] = i; for (int j = 0; j < (int) sizes.size(); j++) { int n_q4_0 = 0; int n_q4_1 = 0; int n_q5_0 = 0; int n_q5_1 = 0; int n_q8_0 = 0; int n_fp16 = 0; int n_fp32 = 0; // GFLOPS/s double s_q4_0 = 0.0; double s_q4_1 = 0.0; double s_q5_0 = 0.0; double s_q5_1 = 0.0; double s_q8_0 = 0.0; double s_fp16 = 0.0; double s_fp32 = 0.0; const size_t N = sizes[j]; for (int k = 0; k < 7; ++k) { const ggml_type wtype = k == 0 ? GGML_TYPE_Q4_0 : k == 1 ? GGML_TYPE_Q4_1 : k == 2 ? GGML_TYPE_Q5_0 : k == 3 ? GGML_TYPE_Q5_1 : k == 4 ? GGML_TYPE_Q8_0 : k == 5 ? GGML_TYPE_F16 : GGML_TYPE_F32; double & s = k == 0 ? s_q4_0 : k == 1 ? s_q4_1 : k == 2 ? s_q5_0 : k == 3 ? s_q5_1 : k == 4 ? s_q8_0 : k == 5 ? s_fp16 : /*k == 6*/ s_fp32; int & n = k == 0 ? n_q4_0 : k == 1 ? n_q4_1 : k == 2 ? n_q5_0 : k == 3 ? n_q5_1 : k == 4 ? n_q8_0 : k == 5 ? n_fp16 : /*k == 6*/ n_fp32; struct ggml_init_params gparams = { /*.mem_size =*/ buf.size(), /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(gparams); struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N); struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N); struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b); struct ggml_cgraph gf = ggml_build_forward(c); gf.n_threads = n_threads; double tsum = 0.0; // heat-up ggml_graph_compute(ctx0, &gf); for (int i = 0; i < n_max; ++i) { const int64_t t0 = ggml_time_us(); ggml_graph_compute(ctx0, &gf); const int64_t t1 = ggml_time_us(); tsum += (t1 - t0)*1e-6; n++; if (tsum > 1.0 && n >= 3) { break; } } ggml_free(ctx0); s = ((2.0*N*N*N*n)/tsum)*1e-9; } // Q4_0 | Q4_1 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q4_0 %7.1f GFLOPS (%3d runs) | Q4_1 %7.1f GFLOPS (%3d runs)\n", N, N, s_q4_0, n_q4_0, s_q4_1, n_q4_1); s += strbuf; // Q5_0 | Q5_1 | Q8_0 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q5_0 %7.1f GFLOPS (%3d runs) | Q5_1 %7.1f GFLOPS (%3d runs) | Q8_0 %7.1f GFLOPS (%3d runs)\n", N, N, s_q5_0, n_q5_0, s_q5_1, n_q5_1, s_q8_0, n_q8_0); s += strbuf; // F16 | F32 snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: F16 %7.1f GFLOPS (%3d runs) | F32 %7.1f GFLOPS (%3d runs)\n", N, N, s_fp16, n_fp16, s_fp32, n_fp32); s += strbuf; } return s.c_str(); } // ================================================================================================= // ================================================================================================= // // Experimental stuff below // // Not sure if these should be part of the library at all, because the quality of the results is not // guaranteed. Might get removed at some point unless a robust algorithm implementation is found // // ================================================================================================= // // token-level timestamps // static int timestamp_to_sample(int64_t t, int n_samples) { return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100))); } static int64_t sample_to_timestamp(int i_sample) { return (100ll*i_sample)/WHISPER_SAMPLE_RATE; } // a cost-function / heuristic that is high for text that takes longer to pronounce // obviously, can be improved static float voice_length(const std::string & text) { float res = 0.0f; for (char c : text) { if (c == ' ') { res += 0.01f; } else if (c == ',') { res += 2.00f; } else if (c == '.') { res += 3.00f; } else if (c == '!') { res += 3.00f; } else if (c == '?') { res += 3.00f; } else if (c >= '0' && c <= '9') { res += 3.00f; } else { res += 1.00f; } } return res; } // average the fabs of the signal static std::vector get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) { const int hw = n_samples_per_half_window; std::vector result(n_samples); for (int i = 0; i < n_samples; i++) { float sum = 0; for (int j = -hw; j <= hw; j++) { if (i + j >= 0 && i + j < n_samples) { sum += fabs(signal[i + j]); } } result[i] = sum/(2*hw + 1); } return result; } static void whisper_exp_compute_token_level_timestamps( struct whisper_context & ctx, struct whisper_state & state, int i_segment, float thold_pt, float thold_ptsum) { auto & segment = state.result_all[i_segment]; auto & tokens = segment.tokens; const int n_samples = state.energy.size(); if (n_samples == 0) { log("%s: no signal data available\n", __func__); return; } const int64_t t0 = segment.t0; const int64_t t1 = segment.t1; const int n = tokens.size(); if (n == 0) { return; } if (n == 1) { tokens[0].t0 = t0; tokens[0].t1 = t1; return; } auto & t_beg = state.t_beg; auto & t_last = state.t_last; auto & tid_last = state.tid_last; for (int j = 0; j < n; ++j) { auto & token = tokens[j]; if (j == 0) { if (token.id == whisper_token_beg(&ctx)) { tokens[j ].t0 = t0; tokens[j ].t1 = t0; tokens[j + 1].t0 = t0; t_beg = t0; t_last = t0; tid_last = whisper_token_beg(&ctx); } else { tokens[j ].t0 = t_last; } } const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(&ctx)); tokens[j].id = token.id; tokens[j].tid = token.tid; tokens[j].p = token.p; tokens[j].pt = token.pt; tokens[j].ptsum = token.ptsum; tokens[j].vlen = voice_length(whisper_token_to_str(&ctx, token.id)); if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) { if (j > 0) { tokens[j - 1].t1 = tt; } tokens[j].t0 = tt; tid_last = token.tid; } } tokens[n - 2].t1 = t1; tokens[n - 1].t0 = t1; tokens[n - 1].t1 = t1; t_last = t1; // find intervals of tokens with unknown timestamps // fill the timestamps by proportionally splitting the interval based on the token voice lengths { int p0 = 0; int p1 = 0; while (true) { while (p1 < n && tokens[p1].t1 < 0) { p1++; } if (p1 >= n) { p1--; } //printf("p0=%d p1=%d t0=%lld t1=%lld\n", p0, p1, tokens[p0].t0, tokens[p1].t1); if (p1 > p0) { double psum = 0.0; for (int j = p0; j <= p1; j++) { psum += tokens[j].vlen; } //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum); const double dt = tokens[p1].t1 - tokens[p0].t0; // split the time proportionally to the voice length for (int j = p0 + 1; j <= p1; j++) { const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum; tokens[j - 1].t1 = ct; tokens[j ].t0 = ct; } } p1++; p0 = p1; if (p1 >= n) { break; } } } // fix up (just in case) for (int j = 0; j < n - 1; j++) { if (tokens[j].t1 < 0) { tokens[j + 1].t0 = tokens[j].t1; } if (j > 0) { if (tokens[j - 1].t1 > tokens[j].t0) { tokens[j].t0 = tokens[j - 1].t1; tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1); } } } // VAD // expand or contract tokens based on voice activity { const int hw = WHISPER_SAMPLE_RATE/8; for (int j = 0; j < n; j++) { if (tokens[j].id >= whisper_token_eot(&ctx)) { continue; } int s0 = timestamp_to_sample(tokens[j].t0, n_samples); int s1 = timestamp_to_sample(tokens[j].t1, n_samples); const int ss0 = std::max(s0 - hw, 0); const int ss1 = std::min(s1 + hw, n_samples); const int ns = ss1 - ss0; float sum = 0.0f; for (int k = ss0; k < ss1; k++) { sum += state.energy[k]; } const float thold = 0.5*sum/ns; { int k = s0; if (state.energy[k] > thold && j > 0) { while (k > 0 && state.energy[k] > thold) { k--; } tokens[j].t0 = sample_to_timestamp(k); if (tokens[j].t0 < tokens[j - 1].t1) { tokens[j].t0 = tokens[j - 1].t1; } else { s0 = k; } } else { while (state.energy[k] < thold && k < s1) { k++; } s0 = k; tokens[j].t0 = sample_to_timestamp(k); } } { int k = s1; if (state.energy[k] > thold) { while (k < n_samples - 1 && state.energy[k] > thold) { k++; } tokens[j].t1 = sample_to_timestamp(k); if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) { tokens[j].t1 = tokens[j + 1].t0; } else { s1 = k; } } else { while (state.energy[k] < thold && k > s0) { k--; } s1 = k; tokens[j].t1 = sample_to_timestamp(k); } } } } // fixed token expand (optional) //{ // const int t_expand = 0; // for (int j = 0; j < n; j++) { // if (j > 0) { // tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand)); // } // if (j < n - 1) { // tokens[j].t1 = tokens[j].t1 + t_expand; // } // } //} // debug info //for (int j = 0; j < n; ++j) { // const auto & token = tokens[j]; // const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(&ctx, token.tid) : "[?]"; // printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__, // tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(&ctx, token.id)); // if (tokens[j].id >= whisper_token_eot(&ctx)) { // continue; // } //} } void whisper_set_log_callback(whisper_log_callback callback) { whisper_log = callback; }