#include "ggml-backend-impl.h" #include "ggml-alloc.h" #include "ggml-impl.h" #include #include #include #include #include #include #define MAX(a, b) ((a) > (b) ? (a) : (b)) // backend buffer type const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { return buft->iface.get_name(buft); } GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { return buft->iface.alloc_buffer(buft, size); } size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { return buft->iface.get_alignment(buft); } size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { // get_max_size is optional, defaults to SIZE_MAX if (buft->iface.get_max_size) { return buft->iface.get_max_size(buft); } return SIZE_MAX; } GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { // get_alloc_size is optional, defaults to ggml_nbytes if (buft->iface.get_alloc_size) { size_t size = buft->iface.get_alloc_size(buft, tensor); assert(size >= ggml_nbytes(tensor)); return size; } return ggml_nbytes(tensor); } bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return buft->iface.supports_backend(buft, backend); } bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { if (buft->iface.is_host) { return buft->iface.is_host(buft); } return false; } // backend buffer GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_type_t buft, struct ggml_backend_buffer_i iface, ggml_backend_buffer_context_t context, size_t size) { ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); (*buffer) = (struct ggml_backend_buffer) { /* .interface = */ iface, /* .buft = */ buft, /* .context = */ context, /* .size = */ size, /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY }; return buffer; } const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) { return buffer->iface.get_name(buffer); } void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { if (buffer == NULL) { return; } if (buffer->iface.free_buffer != NULL) { buffer->iface.free_buffer(buffer); } free(buffer); } size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { return buffer->size; } void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { void * base = buffer->iface.get_base(buffer); GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL"); return base; } GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { // init_tensor is optional if (buffer->iface.init_tensor) { buffer->iface.init_tensor(buffer, tensor); } } size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) { return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer)); } size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) { return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer)); } size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor); } void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { buffer->iface.clear(buffer, value); } bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer)); } void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { buffer->usage = usage; // FIXME: add a generic callback to the buffer interface if (ggml_backend_buffer_is_multi_buffer(buffer)) { ggml_backend_multi_buffer_set_usage(buffer, usage); } } ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { return buffer->buft; } void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { if (buffer->iface.reset) { buffer->iface.reset(buffer); } } bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer; if (dst_buf->iface.cpy_tensor) { return src->buffer->iface.cpy_tensor(dst_buf, src, dst); } return false; } // backend const char * ggml_backend_name(ggml_backend_t backend) { if (backend == NULL) { return "NULL"; } return backend->iface.get_name(backend); } void ggml_backend_free(ggml_backend_t backend) { if (backend == NULL) { return; } backend->iface.free(backend); } ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { return backend->iface.get_default_buffer_type(backend); } ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size); } size_t ggml_backend_get_alignment(ggml_backend_t backend) { return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend)); } size_t ggml_backend_get_max_size(ggml_backend_t backend) { return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend)); } void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); if (backend->iface.set_tensor_async == NULL) { ggml_backend_tensor_set(tensor, data, offset, size); } else { backend->iface.set_tensor_async(backend, tensor, data, offset, size); } } void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); if (backend->iface.get_tensor_async == NULL) { ggml_backend_tensor_get(tensor, data, offset, size); } else { backend->iface.get_tensor_async(backend, tensor, data, offset, size); } } GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(buf != NULL && "tensor buffer not set"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); if (!size) { return; } tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size); } GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set"); GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); if (!size) { return; } tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size); } void ggml_backend_synchronize(ggml_backend_t backend) { if (backend->iface.synchronize == NULL) { return; } backend->iface.synchronize(backend); } ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { return backend->iface.graph_plan_create(backend, cgraph); } void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { backend->iface.graph_plan_free(backend, plan); } void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { backend->iface.graph_plan_compute(backend, plan); } bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { return backend->iface.graph_compute(backend, cgraph); } bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { return backend->iface.supports_op(backend, op); } // backend copy static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); if (src == dst) { return; } if (ggml_backend_buffer_is_host(src->buffer)) { ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); } else if (ggml_backend_buffer_is_host(dst->buffer)) { ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); } else if (!ggml_backend_buffer_copy_tensor(src, dst)) { #ifndef NDEBUG fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer)); #endif size_t nbytes = ggml_nbytes(src); void * data = malloc(nbytes); ggml_backend_tensor_get(src, data, 0, nbytes); ggml_backend_tensor_set(dst, data, 0, nbytes); free(data); } } void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); if (src == dst) { return; } if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) { if (backend->iface.cpy_tensor_async != NULL) { if (backend->iface.cpy_tensor_async(backend, src, dst)) { return; } } } size_t nbytes = ggml_nbytes(src); if (ggml_backend_buffer_is_host(src->buffer)) { ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes); } else { ggml_backend_tensor_copy(src, dst); } } // backend registry #define GGML_MAX_BACKENDS_REG 16 struct ggml_backend_reg { char name[128]; ggml_backend_init_fn init_fn; ggml_backend_buffer_type_t default_buffer_type; void * user_data; }; static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG]; static size_t ggml_backend_registry_count = 0; GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); GGML_CALL static void ggml_backend_registry_init(void) { static bool initialized = false; if (initialized) { return; } initialized = true; ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL); // add forward decls here to avoid including the backend headers #ifdef GGML_USE_CUBLAS extern GGML_CALL void ggml_backend_cuda_reg_devices(void); ggml_backend_cuda_reg_devices(); #endif #ifdef GGML_USE_SYCL extern void ggml_backend_sycl_reg_devices(void); ggml_backend_sycl_reg_devices(); #endif #ifdef GGML_USE_METAL extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL); #endif #ifdef GGML_USE_VULKAN extern GGML_CALL int ggml_backend_vk_reg_devices(void); ggml_backend_vk_reg_devices(); #endif #ifdef GGML_USE_KOMPUTE extern GGML_CALL void ggml_backend_kompute_reg_devices(void); ggml_backend_kompute_reg_devices(); #endif } GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG); size_t id = ggml_backend_registry_count; ggml_backend_registry[id] = (struct ggml_backend_reg) { /* .name = */ {0}, /* .fn = */ init_fn, /* .default_buffer_type = */ default_buffer_type, /* .user_data = */ user_data, }; snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name); #ifndef NDEBUG fprintf(stderr, "%s: registered backend %s\n", __func__, name); #endif ggml_backend_registry_count++; } size_t ggml_backend_reg_get_count(void) { ggml_backend_registry_init(); return ggml_backend_registry_count; } size_t ggml_backend_reg_find_by_name(const char * name) { ggml_backend_registry_init(); for (size_t i = 0; i < ggml_backend_registry_count; i++) { // TODO: case insensitive in a portable way if (strcmp(ggml_backend_registry[i].name, name) == 0) { return i; } } // not found return SIZE_MAX; } // init from backend:params string ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) { ggml_backend_registry_init(); const char * params = strchr(backend_str, ':'); char backend_name[128]; if (params == NULL) { snprintf(backend_name, sizeof(backend_name), "%s", backend_str); params = ""; } else { snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str); params++; } size_t backend_i = ggml_backend_reg_find_by_name(backend_name); if (backend_i == SIZE_MAX) { fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name); return NULL; } return ggml_backend_reg_init_backend(backend_i, params); } const char * ggml_backend_reg_get_name(size_t i) { ggml_backend_registry_init(); GGML_ASSERT(i < ggml_backend_registry_count); return ggml_backend_registry[i].name; } ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) { ggml_backend_registry_init(); GGML_ASSERT(i < ggml_backend_registry_count); return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data); } ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) { ggml_backend_registry_init(); GGML_ASSERT(i < ggml_backend_registry_count); return ggml_backend_registry[i].default_buffer_type; } ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { ggml_backend_registry_init(); GGML_ASSERT(i < ggml_backend_registry_count); return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size); } // backend CPU static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { return "CPU"; GGML_UNUSED(buffer); } GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { uintptr_t data = (uintptr_t)buffer->context; // align the buffer if (data % TENSOR_ALIGNMENT != 0) { data = GGML_PAD(data, TENSOR_ALIGNMENT); } return (void *)data; } GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { free(buffer->context); } GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; } return false; GGML_UNUSED(buffer); } GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { memset(buffer->context, value, buffer->size); } static struct ggml_backend_buffer_i cpu_backend_buffer_i = { /* .get_name = */ ggml_backend_cpu_buffer_name, /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, /* .get_base = */ ggml_backend_cpu_buffer_get_base, /* .init_tensor = */ NULL, // no initialization required /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, /* .clear = */ ggml_backend_cpu_buffer_clear, /* .reset = */ NULL, }; // for buffers from ptr, free is not called static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { /* .get_name = */ ggml_backend_cpu_buffer_name, /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed /* .get_base = */ ggml_backend_cpu_buffer_get_base, /* .init_tensor = */ NULL, // no initialization required /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, /* .clear = */ ggml_backend_cpu_buffer_clear, /* .reset = */ NULL, }; GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU"; GGML_UNUSED(buft); } GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h) if (data == NULL) { fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); return NULL; } return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); } GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return ggml_backend_is_cpu(backend); GGML_UNUSED(buft); } GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; GGML_UNUSED(buft); } GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, }, /* .context = */ NULL, }; return &ggml_backend_cpu_buffer_type; } #ifdef GGML_USE_CPU_HBM // buffer type HBM #include GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_HBM"; GGML_UNUSED(buft); } GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { return "CPU_HBM"; GGML_UNUSED(buf); } GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { hbw_free(buffer->context); } GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { //void * ptr = hbw_malloc(size); void * ptr; int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size); if (result != 0) { fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size); return NULL; } ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); buffer->buft = buft; buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name; buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer; return buffer; } ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, /* .get_max_size = */ NULL, // defaults to SIZE_MAX /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, }, /* .context = */ NULL, }; return &ggml_backend_cpu_buffer_type_hbm; } #endif struct ggml_backend_cpu_context { int n_threads; void * work_data; size_t work_size; ggml_abort_callback abort_callback; void * abort_callback_data; }; GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) { return "CPU"; GGML_UNUSED(backend); } GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; free(cpu_ctx->work_data); free(cpu_ctx); free(backend); } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); } struct ggml_backend_plan_cpu { struct ggml_cplan cplan; struct ggml_cgraph cgraph; }; GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); cpu_plan->cgraph = *cgraph; // FIXME: deep copy if (cpu_plan->cplan.work_size > 0) { cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); } cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data; return cpu_plan; } GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; free(cpu_plan->cplan.work_data); free(cpu_plan); GGML_UNUSED(backend); } GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); if (cpu_ctx->work_size < cplan.work_size) { // TODO: may be faster to free and use malloc to avoid the copy cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); cpu_ctx->work_size = cplan.work_size; } cplan.work_data = cpu_ctx->work_data; cplan.abort_callback = cpu_ctx->abort_callback; cplan.abort_callback_data = cpu_ctx->abort_callback_data; ggml_graph_compute(cgraph, &cplan); return true; } GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { switch (op->op) { case GGML_OP_CPY: return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float case GGML_OP_MUL_MAT: return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; default: return true; } GGML_UNUSED(backend); } static struct ggml_backend_i cpu_backend_i = { /* .get_name = */ ggml_backend_cpu_name, /* .free = */ ggml_backend_cpu_free, /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, /* .graph_compute = */ ggml_backend_cpu_graph_compute, /* .supports_op = */ ggml_backend_cpu_supports_op, }; ggml_backend_t ggml_backend_cpu_init(void) { struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); if (ctx == NULL) { return NULL; } ctx->n_threads = GGML_DEFAULT_N_THREADS; ctx->work_data = NULL; ctx->work_size = 0; ctx->abort_callback = NULL; ctx->abort_callback_data = NULL; ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); if (cpu_backend == NULL) { free(ctx); return NULL; } *cpu_backend = (struct ggml_backend) { /* .interface = */ cpu_backend_i, /* .context = */ ctx }; return cpu_backend; } GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_cpu_name; } void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; ctx->n_threads = n_threads; } void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) { GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; ctx->abort_callback = abort_callback; ctx->abort_callback_data = abort_callback_data; } GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned"); return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); } GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { return ggml_backend_cpu_init(); GGML_UNUSED(params); GGML_UNUSED(user_data); } // multi-buffer buffer struct ggml_backend_multi_buffer_context { ggml_backend_buffer_t * buffers; size_t n_buffers; }; typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t; GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; return ctx->buffers[0]->iface.get_name(ctx->buffers[0]); } GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_free(ctx->buffers[i]); } free(ctx->buffers); free(ctx); } GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_clear(ctx->buffers[i], value); } } static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) { static struct ggml_backend_buffer_i multi_backend_buffer_i = { /* .get_name = */ ggml_backend_multi_buffer_get_name, /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer, /* .get_base = */ NULL, /* .init_tensor = */ NULL, /* .set_tensor = */ NULL, /* .get_tensor = */ NULL, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_multi_buffer_clear, /* .reset = */ NULL, }; return multi_backend_buffer_i; } GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context)); ctx->n_buffers = n_buffers; ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t)); GGML_ASSERT(ctx->buffers != NULL); size_t total_size = 0; for (size_t i = 0; i < n_buffers; i++) { ctx->buffers[i] = buffers[i]; total_size += ggml_backend_buffer_get_size(buffers[i]); } return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size); } GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_multi_buffer_get_name; } GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; for (size_t i = 0; i < ctx->n_buffers; i++) { ggml_backend_buffer_set_usage(ctx->buffers[i], usage); } } // creates a copy of the tensor with the same memory layout static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); for (int i = 0; i < GGML_MAX_DIMS; i++) { dup->nb[i] = tensor->nb[i]; } return dup; } static bool ggml_is_view_op(enum ggml_op op) { return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; } // scheduler #define GGML_MAX_BACKENDS 16 #define GGML_MAX_SPLITS 256 #define GGML_MAX_SPLIT_INPUTS 16 struct ggml_backend_sched_split { int backend_id; int i_start; int i_end; struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS]; int n_inputs; // graph view of this split struct ggml_cgraph graph; }; struct ggml_backend_sched { bool is_reset; // true if the scheduler has been reset since the last graph split int n_backends; ggml_backend_t backends[GGML_MAX_BACKENDS]; ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS]; ggml_gallocr_t galloc; // hash keys of the nodes in the graph struct ggml_hash_set hash_set; // hash values int * tensor_backend_id; struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS]; int * node_backend_ids; // [n_nodes] int n_nodes; // copy of the graph with modified inputs struct ggml_cgraph * graph; struct ggml_backend_sched_split splits[GGML_MAX_SPLITS]; int n_splits; struct ggml_context * ctx; ggml_backend_sched_eval_callback callback_eval; void * callback_eval_user_data; // align context_buffer to GGML_MEM_ALIGN #ifdef _MSC_VER __declspec(align(GGML_MEM_ALIGN)) #else __attribute__((aligned(GGML_MEM_ALIGN))) #endif char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)]; }; #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node) #define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)] #define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)]) // returns the priority of the backend, lower id is higher priority static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { for (int i = 0; i < sched->n_backends; i++) { if (sched->backends[i] == backend) { return i; } } return -1; } static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) { if (buffer == NULL) { return -1; } // find highest prio backend that supports the buffer type for (int i = 0; i < sched->n_backends; i++) { if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) { return i; } } GGML_ASSERT(false && "tensor buffer type not supported by any backend"); return -1; // silence warning } #if 0 static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) #define GET_CAUSE(node) causes[hash_id(node)] #else #define SET_CAUSE(node, ...) #define GET_CAUSE(node) "" #endif // returns the backend that should be used for the node based on the current locations static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) { // TODO: use supports_op to check if the backend supports the op // assign pre-allocated nodes to their backend // dst int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer); if (cur_backend != -1) { SET_CAUSE(node, "1.dst"); return cur_backend; } // view_src if (tensor->view_src != NULL) { cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer); if (cur_backend != -1) { SET_CAUSE(node, "1.vsrc"); return cur_backend; } } // assign nodes that use weights to the backend of the weights for (int i = 0; i < GGML_MAX_SRC; i++) { const struct ggml_tensor * src = tensor->src[i]; if (src == NULL) { break; } if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer); // operations with weights are always run on the same backend as the weights SET_CAUSE(node, "1.wgt%d", i); return src_backend; } } return -1; } static char * fmt_size(size_t size) { static char buffer[128]; if (size >= 1024*1024) { sprintf(buffer, "%zuM", size/1024/1024); } else { sprintf(buffer, "%zuK", size/1024); } return buffer; } static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { int cur_split = 0; for (int i = 0; i < graph->n_nodes; i++) { if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id]; fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs); for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j]))); } fprintf(stderr, "\n"); cur_split++; } struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } ggml_backend_t tensor_backend = tensor_backend(node); fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node)); for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } ggml_backend_t src_backend = tensor_backend(src); fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src)); } fprintf(stderr, "\n"); } } //#define DEBUG_PASS1 //#define DEBUG_PASS2 //#define DEBUG_PASS3 //#define DEBUG_PASS4 // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { // reset splits sched->n_splits = 0; sched->is_reset = false; struct ggml_init_params params = { /* .mem_size = */ sizeof(sched->context_buffer), /* .mem_buffer = */ sched->context_buffer, /* .no_alloc = */ true }; ggml_free(sched->ctx); sched->ctx = ggml_init(params); if (sched->ctx == NULL) { fprintf(stderr, "%s: failed to initialize context\n", __func__); GGML_ASSERT(false); } // pass 1: assign backends to ops with pre-allocated inputs for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; if (tensor_backend_id(leaf) != -1) { // do not overwrite user assignments continue; } tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf); } for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (tensor_backend_id(node) != -1) { // do not overwrite user assignments continue; } tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node); // src for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } if (tensor_backend_id(src) == -1) { tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src); } } } #ifdef DEBUG_PASS1 fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); #endif // pass 2: expand current backend assignments // assign the same backend to adjacent nodes // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend) // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops // pass 2.1 expand gpu up { int cur_backend_id = -1; for (int i = graph->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } int tensor_backend_id = tensor_backend_id(node); if (tensor_backend_id != -1) { if (tensor_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) cur_backend_id = -1; } else { cur_backend_id = tensor_backend_id; } } else { tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.1"); } } } // pass 2.2 expand gpu down { int cur_backend_id = -1; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } int tensor_backend_id = tensor_backend_id(node); if (tensor_backend_id != -1) { if (tensor_backend_id == sched->n_backends - 1) { // skip cpu (lowest prio backend) cur_backend_id = -1; } else { cur_backend_id = tensor_backend_id; } } else { tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.2"); } } } // pass 2.3 expand rest up { int cur_backend_id = -1; for (int i = graph->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } int tensor_backend_id = tensor_backend_id(node); if (tensor_backend_id != -1) { cur_backend_id = tensor_backend_id; } else { tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.3"); } } } // pass 2.4 expand rest down { int cur_backend_id = -1; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } int tensor_backend_id = tensor_backend_id(node); if (tensor_backend_id != -1) { cur_backend_id = tensor_backend_id; } else { tensor_backend_id(node) = cur_backend_id; SET_CAUSE(node, "2.4"); } } } #ifdef DEBUG_PASS2 fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); #endif // pass 3: assign backends to remaining src from dst and view_src for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; int cur_backend_id = tensor_backend_id(node); if (node->view_src != NULL && cur_backend_id == -1) { cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src); SET_CAUSE(node, "3.vsrc"); } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } int src_backend_id = tensor_backend_id(src); if (src_backend_id == -1) { if (src->view_src != NULL) { // views are always on the same backend as the source tensor_backend_id(src) = tensor_backend_id(src->view_src); SET_CAUSE(src, "3.vsrc"); } else { tensor_backend_id(src) = cur_backend_id; SET_CAUSE(src, "3.cur"); } } } } #ifdef DEBUG_PASS3 fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); #endif // pass 4: split graph, find tensors that need to be copied { int cur_split = 0; // find the backend of the first split, skipping view ops for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (!ggml_is_view_op(node->op)) { sched->splits[0].backend_id = tensor_backend_id(node); break; } } sched->splits[0].i_start = 0; sched->splits[0].n_inputs = 0; memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK int cur_backend_id = sched->splits[0].backend_id; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view_op(node->op)) { continue; } int tensor_backend_id = tensor_backend_id(node); GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now if (tensor_backend_id != cur_backend_id) { sched->splits[cur_split].i_end = i; cur_split++; GGML_ASSERT(cur_split < GGML_MAX_SPLITS); sched->splits[cur_split].backend_id = tensor_backend_id; sched->splits[cur_split].i_start = i; sched->splits[cur_split].n_inputs = 0; cur_backend_id = tensor_backend_id; } // find inputs that are not on the same backend for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } int src_backend_id = tensor_backend_id(src); assert(src_backend_id != -1); // all inputs should be assigned by now if (src_backend_id != tensor_backend_id) { // create a copy of the input in the split's backend size_t id = hash_id(src); if (sched->tensor_copies[id][cur_backend_id] == NULL) { ggml_backend_t backend = sched->backends[cur_backend_id]; struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name); sched->tensor_copies[id][cur_backend_id] = tensor_copy; tensor_backend_id(tensor_copy) = cur_backend_id; SET_CAUSE(tensor_copy, "4.cpy"); int n_inputs = sched->splits[cur_split].n_inputs++; GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); sched->splits[cur_split].inputs[n_inputs] = src; } node->src[j] = sched->tensor_copies[id][cur_backend_id]; } } } sched->splits[cur_split].i_end = graph->n_nodes; sched->n_splits = cur_split + 1; } #ifdef DEBUG_PASS4 fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); #endif #ifndef NDEBUG // sanity check: all sources should have the same backend as the node for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; ggml_backend_t tensor_backend = tensor_backend(node); if (tensor_backend == NULL) { fprintf(stderr, "!!!!!!! %s has no backend\n", node->name); } if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) { fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n", node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL"); } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { break; } ggml_backend_t src_backend = tensor_backend(src); if (src_backend != tensor_backend /* && src_backend != NULL */) { fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n", node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL"); } if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) { fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n", src->name, src_backend ? ggml_backend_name(src_backend) : "NULL", src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL"); } } } fflush(stderr); #endif // create copies of the graph for each split // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false); for (int i = 0; i < sched->n_splits; i++) { struct ggml_backend_sched_split * split = &sched->splits[i]; split->graph = ggml_graph_view(graph, split->i_start, split->i_end); for (int j = 0; j < split->n_inputs; j++) { struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id]; // add a dependency to the input source so that it is not freed before the copy is done struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input); graph_copy->nodes[graph_copy->n_nodes++] = input_dep; // add a dependency to the input copy so that it is allocated at the start of the split sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id; graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; } for (int j = split->i_start; j < split->i_end; j++) { sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; } } sched->graph = graph_copy; } static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { // ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids); if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { #ifndef NDEBUG fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n"); #endif ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids); if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n"); return false; } } return true; } static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { uint64_t copy_us[GGML_MAX_BACKENDS] = {0}; uint64_t compute_us[GGML_MAX_BACKENDS] = {0}; struct ggml_backend_sched_split * splits = sched->splits; for (int i = 0; i < sched->n_splits; i++) { struct ggml_backend_sched_split * split = &splits[i]; int split_backend_id = split->backend_id; ggml_backend_t split_backend = sched->backends[split_backend_id]; // copy the input tensors to the split backend uint64_t copy_start_us = ggml_time_us(); for (int j = 0; j < split->n_inputs; j++) { struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id]; GGML_ASSERT(input->buffer != NULL); GGML_ASSERT(input_cpy->buffer != NULL); ggml_backend_tensor_copy_async(split_backend, input, input_cpy); } //ggml_backend_synchronize(split_backend); // necessary to measure copy time int64_t copy_end_us = ggml_time_us(); copy_us[split_backend_id] += copy_end_us - copy_start_us; #if 0 char split_filename[GGML_MAX_NAME]; snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend)); ggml_graph_dump_dot(split->graph, NULL, split_filename); #endif uint64_t compute_start_us = ggml_time_us(); if (!sched->callback_eval) { if (!ggml_backend_graph_compute(split_backend, &split->graph)) { return false; } //ggml_backend_synchronize(split_backend); // necessary to measure compute time } else { // similar to ggml_backend_compare_graph_backend for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { struct ggml_tensor * t = split->graph.nodes[j0]; // check if the user needs data from this node bool need = sched->callback_eval(t, true, sched->callback_eval_user_data); int j1 = j0; // determine the range [j0, j1] of nodes that can be computed together while (!need && j1 < split->graph.n_nodes - 1) { t = split->graph.nodes[++j1]; need = sched->callback_eval(t, true, sched->callback_eval_user_data); } struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1); if (!ggml_backend_graph_compute(split_backend, &gv)) { return false; } if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) { break; } j0 = j1; } } uint64_t compute_end_us = ggml_time_us(); compute_us[split_backend_id] += compute_end_us - compute_start_us; } #if 0 // per-backend timings fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits); for (int i = 0; i < sched->n_backends; i++) { if (copy_us[i] > 0 || compute_us[i] > 0) { fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]); } } #endif return true; } ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) { GGML_ASSERT(n_backends > 0); GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS); struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1); // initialize hash table sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size); sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size); sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size); sched->n_backends = n_backends; for (int i = 0; i < n_backends; i++) { sched->backends[i] = backends[i]; sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]); } sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends); ggml_backend_sched_reset(sched); return sched; } void ggml_backend_sched_free(ggml_backend_sched_t sched) { if (sched == NULL) { return; } ggml_gallocr_free(sched->galloc); ggml_free(sched->ctx); free(sched->hash_set.keys); free(sched->tensor_backend_id); free(sched->tensor_copies); free(sched->node_backend_ids); free(sched); } void ggml_backend_sched_reset(ggml_backend_sched_t sched) { // reset state for the next run size_t hash_size = sched->hash_set.size; memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); sched->is_reset = true; } bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { ggml_backend_sched_split_graph(sched, measure_graph); if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) { return false; } ggml_backend_sched_reset(sched); return true; } bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS); if (!sched->is_reset) { ggml_backend_sched_reset(sched); } ggml_backend_sched_split_graph(sched, graph); if (!ggml_backend_sched_alloc_splits(sched)) { return false; } if (!ggml_backend_sched_compute_splits(sched)) { return false; } return true; } void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { sched->callback_eval = callback; sched->callback_eval_user_data = user_data; } int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { return sched->n_splits; } size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); return ggml_gallocr_get_buffer_size(sched->galloc, backend_index); } void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { int backend_index = ggml_backend_sched_backend_id(sched, backend); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); tensor_backend_id(node) = backend_index; } ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { int backend_index = tensor_backend_id(node); if (backend_index == -1) { return NULL; } return sched->backends[backend_index]; } // utils void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->view_src != NULL); GGML_ASSERT(tensor->view_src->buffer != NULL); GGML_ASSERT(tensor->view_src->data != NULL); tensor->buffer = buffer; tensor->data = (char *)tensor->view_src->data + tensor->view_offs; tensor->backend = tensor->view_src->backend; ggml_backend_buffer_init_tensor(buffer, tensor); } void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { GGML_ASSERT(tensor->buffer == NULL); GGML_ASSERT(tensor->data == NULL); GGML_ASSERT(tensor->view_src == NULL); GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer)); GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <= (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer)); tensor->buffer = buffer; tensor->data = addr; ggml_backend_buffer_init_tensor(buffer, tensor); } static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) { GGML_ASSERT(src != NULL); GGML_ASSERT(src->data && "graph must be allocated"); size_t id = ggml_hash_insert(hash_set, src); if (id == GGML_HASHTABLE_ALREADY_EXISTS) { return node_copies[ggml_hash_find(hash_set, src)]; } struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); if (src->view_src != NULL) { dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src); dst->view_offs = src->view_offs; } dst->op = src->op; memcpy(dst->op_params, src->op_params, sizeof(dst->op_params)); ggml_set_name(dst, src->name); // copy src for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * s = src->src[i]; if (s == NULL) { break; } dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); } node_copies[id] = dst; return dst; } static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { size_t id = ggml_hash_find(hash_set, src); if (node_init[id]) { return; } node_init[id] = true; struct ggml_tensor * dst = node_copies[id]; if (dst->view_src != NULL) { graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src); ggml_backend_view_init(dst->view_src->buffer, dst); } else { ggml_backend_tensor_copy(src, dst); } // init src for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * s = src->src[i]; if (s == NULL) { break; } graph_copy_init_tensor(hash_set, node_copies, node_init, s); } } struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { struct ggml_hash_set hash_set = { /* .size = */ graph->visited_hash_table.size, /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT }; struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT bool * node_init = calloc(sizeof(node_init[0]), hash_set.size); struct ggml_init_params params = { /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), /* .mem_buffer = */ NULL, /* .no_alloc = */ true }; struct ggml_context * ctx_allocated = ggml_init(params); struct ggml_context * ctx_unallocated = ggml_init(params); if (ctx_allocated == NULL || ctx_unallocated == NULL) { fprintf(stderr, "failed to allocate context for graph copy\n"); free(hash_set.keys); free(node_copies); free(node_init); ggml_free(ctx_allocated); ggml_free(ctx_unallocated); return (struct ggml_backend_graph_copy) { /* .buffer = */ NULL, /* .ctx_allocated = */ NULL, /* .ctx_unallocated = */ NULL, /* .graph = */ NULL, }; } // dup nodes for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node); } // allocate nodes ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); if (buffer == NULL) { fprintf(stderr, "failed to allocate buffer for graph copy\n"); free(hash_set.keys); free(node_copies); free(node_init); ggml_free(ctx_allocated); ggml_free(ctx_unallocated); return (struct ggml_backend_graph_copy) { /* .buffer = */ NULL, /* .ctx_allocated = */ NULL, /* .ctx_unallocated = */ NULL, /* .graph = */ NULL, }; } //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024); // copy data and init views for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; graph_copy_init_tensor(hash_set, node_copies, node_init, node); } // build graph copy struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false); for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)]; graph_copy->nodes[i] = node_copy; } graph_copy->n_nodes = graph->n_nodes; free(hash_set.keys); free(node_copies); free(node_init); return (struct ggml_backend_graph_copy) { /* .buffer = */ buffer, /* .ctx_allocated = */ ctx_allocated, /* .ctx_unallocated = */ ctx_unallocated, /* .graph = */ graph_copy, }; } void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) { ggml_backend_buffer_free(copy.buffer); ggml_free(copy.ctx_allocated); ggml_free(copy.ctx_unallocated); } bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) { struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph); if (copy.buffer == NULL) { return false; } struct ggml_cgraph * g1 = graph; struct ggml_cgraph * g2 = copy.graph; assert(g1->n_nodes == g2->n_nodes); for (int i = 0; i < g1->n_nodes; i++) { //printf("eval %d/%d\n", i, g1->n_nodes); struct ggml_tensor * t1 = g1->nodes[i]; struct ggml_tensor * t2 = g2->nodes[i]; assert(t1->op == t2->op && ggml_are_same_layout(t1, t2)); struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1); struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1); ggml_backend_graph_compute(backend1, &g1v); ggml_backend_graph_compute(backend2, &g2v); if (ggml_is_view_op(t1->op)) { continue; } // compare results, calculate rms etc if (!callback(i, t1, t2, user_data)) { break; } } ggml_backend_graph_copy_free(copy); return true; }