#define LLAMA_API_INTERNAL #include "llama.h" #include "unicode.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #ifdef GGML_USE_RPC # include "ggml-rpc.h" #endif #ifdef GGML_USE_CUDA # include "ggml-cuda.h" #elif defined(GGML_USE_VULKAN) # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) # include "ggml-sycl.h" #elif defined(GGML_USE_KOMPUTE) # include "ggml-kompute.h" #endif #ifdef GGML_USE_BLAS # include "ggml-blas.h" #endif #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif // TODO: replace with ggml API call #define QK_K 256 #ifdef __has_include #if __has_include() #include #if defined(_POSIX_MAPPED_FILES) #include #include #endif #if defined(_POSIX_MEMLOCK_RANGE) #include #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_ATTRIBUTE_FORMAT(...) #endif #define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_EXPERTS 160 // // logging // LLAMA_ATTRIBUTE_FORMAT(2, 3) static void llama_log_internal (ggml_log_level level, const char * format, ...); static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) // // helpers // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { std::string result; for (size_t pos = 0; ; pos += search.length()) { auto new_pos = s.find(search, pos); if (new_pos == std::string::npos) { result += s.substr(pos, s.size() - pos); break; } result += s.substr(pos, new_pos - pos) + replace; pos = new_pos; } s = std::move(result); } static bool is_float_close(float a, float b, float abs_tol) { // Check for non-negative tolerance if (abs_tol < 0.0) { throw std::invalid_argument("Tolerance must be non-negative"); } // Exact equality check if (a == b) { return true; } // Check for infinities if (std::isinf(a) || std::isinf(b)) { return false; } // Regular comparison using the provided absolute tolerance return std::fabs(b - a) <= abs_tol; } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } // // gguf constants (sync with gguf.py) // enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, LLM_ARCH_REFACT, LLM_ARCH_BERT, LLM_ARCH_NOMIC_BERT, LLM_ARCH_JINA_BERT_V2, LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, LLM_ARCH_QWEN2, LLM_ARCH_QWEN2MOE, LLM_ARCH_PHI2, LLM_ARCH_PHI3, LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, LLM_ARCH_ORION, LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, LLM_ARCH_GEMMA, LLM_ARCH_STARCODER2, LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, LLM_ARCH_COMMAND_R, LLM_ARCH_DBRX, LLM_ARCH_OLMO, LLM_ARCH_ARCTIC, LLM_ARCH_DEEPSEEK2, LLM_ARCH_UNKNOWN, }; static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_BERT, "bert" }, { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, { LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, { LLM_ARCH_QWEN2, "qwen2" }, { LLM_ARCH_QWEN2MOE, "qwen2moe" }, { LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PHI3, "phi3" }, { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_ORION, "orion" }, { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_GEMMA, "gemma" }, { LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, { LLM_ARCH_COMMAND_R, "command-r" }, { LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_ARCTIC, "arctic" }, { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { LLM_KV_GENERAL_ARCHITECTURE, LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_VERSION, LLM_KV_GENERAL_URL, LLM_KV_GENERAL_DESCRIPTION, LLM_KV_GENERAL_LICENSE, LLM_KV_GENERAL_SOURCE_URL, LLM_KV_GENERAL_SOURCE_HF_REPO, LLM_KV_VOCAB_SIZE, LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_LEADING_DENSE_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_FEED_FORWARD_LENGTH, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, LLM_KV_EXPERT_SHARED_COUNT, LLM_KV_EXPERT_WEIGHTS_SCALE, LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_MAX_ALIBI_BIAS, LLM_KV_ATTENTION_CLAMP_KQV, LLM_KV_ATTENTION_KEY_LENGTH, LLM_KV_ATTENTION_VALUE_LENGTH, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ATTENTION_CAUSAL, LLM_KV_ATTENTION_Q_LORA_RANK, LLM_KV_ATTENTION_KV_LORA_RANK, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALING_TYPE, LLM_KV_ROPE_SCALING_FACTOR, LLM_KV_ROPE_SCALING_ATTN_FACTOR, LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, LLM_KV_ROPE_SCALING_FINETUNED, LLM_KV_ROPE_SCALING_YARN_LOG_MUL, LLM_KV_SPLIT_NO, LLM_KV_SPLIT_COUNT, LLM_KV_SPLIT_TENSORS_COUNT, LLM_KV_SSM_INNER_SIZE, LLM_KV_SSM_CONV_KERNEL, LLM_KV_SSM_STATE_SIZE, LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_PRE, LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_TOKEN_TYPE, LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, LLM_KV_TOKENIZER_SCORES, LLM_KV_TOKENIZER_MERGES, LLM_KV_TOKENIZER_BOS_ID, LLM_KV_TOKENIZER_EOS_ID, LLM_KV_TOKENIZER_UNK_ID, LLM_KV_TOKENIZER_SEP_ID, LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_CLS_ID, LLM_KV_TOKENIZER_MASK_ID, LLM_KV_TOKENIZER_ADD_BOS, LLM_KV_TOKENIZER_ADD_EOS, LLM_KV_TOKENIZER_ADD_PREFIX, LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, LLM_KV_TOKENIZER_PREFIX_ID, LLM_KV_TOKENIZER_SUFFIX_ID, LLM_KV_TOKENIZER_MIDDLE_ID, LLM_KV_TOKENIZER_EOT_ID, }; static const std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, { LLM_KV_GENERAL_NAME, "general.name" }, { LLM_KV_GENERAL_AUTHOR, "general.author" }, { LLM_KV_GENERAL_VERSION, "general.version" }, { LLM_KV_GENERAL_URL, "general.url" }, { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, { LLM_KV_GENERAL_LICENSE, "general.license" }, { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, }; struct LLM_KV { LLM_KV(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_kv kv) const { return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); } }; enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_TOKEN_TYPES, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_ROPE_FREQS, LLM_TENSOR_ROPE_FACTORS_LONG, LLM_TENSOR_ROPE_FACTORS_SHORT, LLM_TENSOR_ATTN_Q, LLM_TENSOR_ATTN_K, LLM_TENSOR_ATTN_V, LLM_TENSOR_ATTN_QKV, LLM_TENSOR_ATTN_OUT, LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_OUT_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_ACT, LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, LLM_TENSOR_FFN_NORM_EXPS, LLM_TENSOR_FFN_DOWN_EXPS, // merged experts LLM_TENSOR_FFN_GATE_EXPS, LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_FFN_DOWN_SHEXP, LLM_TENSOR_FFN_GATE_SHEXP, LLM_TENSOR_FFN_UP_SHEXP, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, LLM_TENSOR_SSM_IN, LLM_TENSOR_SSM_CONV1D, LLM_TENSOR_SSM_X, LLM_TENSOR_SSM_DT, LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_OUT, LLM_TENSOR_ATTN_Q_A, LLM_TENSOR_ATTN_Q_B, LLM_TENSOR_ATTN_KV_A_MQA, LLM_TENSOR_ATTN_KV_B, LLM_TENSOR_ATTN_Q_A_NORM, LLM_TENSOR_ATTN_KV_A_NORM, }; static const std::map> LLM_TENSOR_NAMES = { { LLM_ARCH_LLAMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_BAICHUAN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_FALCON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_GROK, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, }, }, { LLM_ARCH_GPT2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_GPTJ, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, { LLM_ARCH_GPTNEOX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output"}, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, }, }, { LLM_ARCH_STARCODER, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_REFACT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_NOMIC_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_JINA_BERT_V2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BLOOM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_STABLELM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, { LLM_ARCH_QWEN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN2MOE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, { LLM_ARCH_PHI2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PHI3, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PLAMO, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_CODESHELL, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_ORION, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_INTERNLM2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MINICPM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, }, }, { LLM_ARCH_GEMMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_STARCODER2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MAMBA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, }, }, { LLM_ARCH_XVERSE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_COMMAND_R, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, }, }, { LLM_ARCH_DBRX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_OLMO, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_ARCTIC, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_DEEPSEEK2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, }, }, { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, }; static llm_arch llm_arch_from_string(const std::string & name) { for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return LLM_ARCH_UNKNOWN; } // helper to handle gguf constants // usage: // // const auto tn = LLM_TN(LLM_ARCH_LLAMA); // // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" // struct LLM_TN { LLM_TN(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_tensor tensor) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; } }; // // gguf helpers // static const std::map LLAMA_ROPE_SCALING_TYPES = { { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, }; static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { return (llama_rope_scaling_type) kv.first; } } return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { switch (type) { case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; default: return format("unknown type %d", type); } } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); switch (type) { case GGUF_TYPE_STRING: return gguf_get_val_str(ctx_gguf, i); case GGUF_TYPE_ARRAY: { const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i); const void * data = gguf_get_arr_data(ctx_gguf, i); std::stringstream ss; ss << "["; for (int j = 0; j < arr_n; j++) { if (arr_type == GGUF_TYPE_STRING) { std::string val = gguf_get_arr_str(ctx_gguf, i, j); // escape quotes replace_all(val, "\\", "\\\\"); replace_all(val, "\"", "\\\""); ss << '"' << val << '"'; } else if (arr_type == GGUF_TYPE_ARRAY) { ss << "???"; } else { ss << gguf_data_to_str(arr_type, data, j); } if (j < arr_n - 1) { ss << ", "; } } ss << "]"; return ss.str(); } default: return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); } } // // llama helpers // #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { LPSTR buf; size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); if (!size) { return "FormatMessageA failed"; } std::string ret(buf, size); LocalFree(buf); return ret; } #endif template struct no_init { T value; no_init() { /* do nothing */ } }; struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); } seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) const { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, len, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error("unexpectedly reached end of file"); } } uint32_t read_u32() const { uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } void write_raw(const void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, len, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) const { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; using llama_files = std::vector>; struct llama_mmap { void * addr; size_t size; llama_mmap(const llama_mmap &) = delete; #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; // list of mapped fragments (first_offset, last_offset) std::vector> mapped_fragments; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; // prefetch/readahead impairs performance on NUMA systems if (numa) { prefetch = 0; } #ifdef __linux__ // advise the kernel to read the file sequentially (increases readahead) if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", strerror(errno)); } if (prefetch) { flags |= MAP_POPULATE; } #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); if (addr == MAP_FAILED) { // NOLINT throw std::runtime_error(format("mmap failed: %s", strerror(errno))); } if (prefetch > 0) { // advise the kernel to preload the mapped memory if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", strerror(errno)); } } if (numa) { // advise the kernel not to use readahead // (because the next page might not belong on the same node) if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", strerror(errno)); } } // initialize list of mapped_fragments mapped_fragments.emplace_back(0, file->size); } static void align_range(size_t * first, size_t * last, size_t page_size) { // align first to the next page size_t offset_in_page = *first & (page_size - 1); size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; *first += offset_to_page; // align last to the previous page *last = *last & ~(page_size - 1); if (*last <= *first) { *last = *first; } } // partially unmap the file in the range [first, last) void unmap_fragment(size_t first, size_t last) { // note: this function must not be called multiple times with overlapping ranges // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings int page_size = sysconf(_SC_PAGESIZE); align_range(&first, &last, page_size); size_t len = last - first; if (len == 0) { return; } GGML_ASSERT(first % page_size == 0); GGML_ASSERT(last % page_size == 0); GGML_ASSERT(last > first); void * next_page_start = (uint8_t *) addr + first; // unmap the range if (munmap(next_page_start, len)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } // update the list of mapped fragments to avoid unmapping the same range again in the destructor std::vector> new_mapped_fragments; for (const auto & frag : mapped_fragments) { if (frag.first < first && frag.second > last) { // the range is in the middle of the fragment, split it new_mapped_fragments.emplace_back(frag.first, first); new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first < first && frag.second > first) { // the range starts in the middle of the fragment new_mapped_fragments.emplace_back(frag.first, first); } else if (frag.first < last && frag.second > last) { // the range ends in the middle of the fragment new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first >= first && frag.second <= last) { // the range covers the entire fragment } else { // the range is outside the fragment new_mapped_fragments.push_back(frag); } } mapped_fragments = std::move(new_mapped_fragments); } ~llama_mmap() { for (const auto & frag : mapped_fragments) { if (munmap((char *) addr + frag.first, frag.second - frag.first)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { GGML_UNUSED(numa); size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); if (hMapping == NULL) { DWORD error = GetLastError(); throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); } addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); DWORD error = GetLastError(); CloseHandle(hMapping); if (addr == NULL) { throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); } if (prefetch > 0) { #if _WIN32_WINNT >= 0x602 // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); // may fail on pre-Windows 8 systems pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); if (pPrefetchVirtualMemory) { // advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else throw std::runtime_error("PrefetchVirtualMemory unavailable"); #endif } } void unmap_fragment(size_t first, size_t last) { // not supported GGML_UNUSED(first); GGML_UNUSED(last); } ~llama_mmap() { if (!UnmapViewOfFile(addr)) { LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { GGML_UNUSED(file); GGML_UNUSED(prefetch); GGML_UNUSED(numa); throw std::runtime_error("mmap not supported"); } void unmap_fragment(size_t first, size_t last) { GGML_UNUSED(first); GGML_UNUSED(last); throw std::runtime_error("mmap not supported"); } #endif }; using llama_mmaps = std::vector>; // Represents some region of memory being locked using mlock or VirtualLock; // will automatically unlock on destruction. struct llama_mlock { void * addr = NULL; size_t size = 0; bool failed_already = false; llama_mlock() {} llama_mlock(const llama_mlock &) = delete; ~llama_mlock() { if (size) { raw_unlock(addr, size); } } void init(void * ptr) { GGML_ASSERT(addr == NULL && size == 0); // NOLINT addr = ptr; } void grow_to(size_t target_size) { GGML_ASSERT(addr); if (failed_already) { return; } size_t granularity = lock_granularity(); target_size = (target_size + granularity - 1) & ~(granularity - 1); if (target_size > size) { if (raw_lock((uint8_t *) addr + size, target_size - size)) { size = target_size; } else { failed_already = true; } } } #ifdef _POSIX_MEMLOCK_RANGE static constexpr bool SUPPORTED = true; static size_t lock_granularity() { return (size_t) sysconf(_SC_PAGESIZE); } #ifdef __APPLE__ #define MLOCK_SUGGESTION \ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" #else #define MLOCK_SUGGESTION \ "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" #endif bool raw_lock(const void * addr, size_t size) const { if (!mlock(addr, size)) { return true; } char* errmsg = std::strerror(errno); bool suggest = (errno == ENOMEM); // Check if the resource limit is fine after all struct rlimit lock_limit; if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { suggest = false; } if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { suggest = false; } LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } #undef MLOCK_SUGGESTION static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; static size_t lock_granularity() { SYSTEM_INFO si; GetSystemInfo(&si); return (size_t) si.dwPageSize; } bool raw_lock(void * ptr, size_t len) const { for (int tries = 1; ; tries++) { if (VirtualLock(ptr, len)) { return true; } if (tries == 2) { LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } // It failed but this was only the first try; increase the working // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } // Per MSDN: "The maximum number of pages that a process can lock // is equal to the number of pages in its minimum working set minus // a small overhead." // Hopefully a megabyte is enough overhead: size_t increment = len + 1048576; // The minimum must be <= the maximum, so we need to increase both: min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } } } static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; static size_t lock_granularity() { return (size_t) 65536; } bool raw_lock(const void * addr, size_t len) const { LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); return false; } static void raw_unlock(const void * addr, size_t len) {} #endif }; using llama_mlocks = std::vector>; // NOTE: avoid ever using this except for building the token_to_piece caches static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(model, token, result.data(), result.size(), special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { ggml_backend_buffer_type_t buft = nullptr; #if defined(GGML_USE_CUDA) // host buffers should only be used when data is expected to be copied to/from the GPU if (host_buffer) { buft = ggml_backend_cuda_host_buffer_type(); } #elif defined(GGML_USE_SYCL) if (host_buffer) { buft = ggml_backend_sycl_host_buffer_type(); } #elif defined(GGML_USE_CPU_HBM) buft = ggml_backend_cpu_hbm_buffer_type(); #elif defined(GGML_USE_VULKAN) if (host_buffer) { buft = ggml_backend_vk_host_buffer_type(); } #endif if (buft == nullptr) { buft = ggml_backend_cpu_buffer_type(); } return buft; GGML_UNUSED(host_buffer); } // // globals // struct llama_state { llama_state() { #ifdef GGML_USE_METAL ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); #elif defined(GGML_USE_CUDA) ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data); #endif } // We save the log callback globally ggml_log_callback log_callback = llama_log_callback_default; void * log_callback_user_data = nullptr; }; static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, MODEL_14M, MODEL_17M, MODEL_22M, MODEL_33M, MODEL_70M, MODEL_109M, MODEL_137M, MODEL_160M, MODEL_335M, MODEL_410M, MODEL_0_5B, MODEL_1B, MODEL_1_4B, MODEL_2B, MODEL_2_8B, MODEL_3B, MODEL_4B, MODEL_6_9B, MODEL_7B, MODEL_8B, MODEL_12B, MODEL_13B, MODEL_14B, MODEL_15B, MODEL_16B, MODEL_20B, MODEL_30B, MODEL_34B, MODEL_35B, MODEL_40B, MODEL_65B, MODEL_70B, MODEL_236B, MODEL_314B, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, MODEL_XL, MODEL_A2_7B, MODEL_8x7B, MODEL_8x22B, MODEL_16x12B, MODEL_10B_128x3_66B, }; static const size_t kiB = 1024; static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; struct llama_hparams { bool vocab_only; bool rope_finetuned; bool use_par_res; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; uint32_t n_layer; uint32_t n_rot; uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_ff; uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types uint32_t n_layer_dense_lead = 0; uint32_t n_lora_q = 0; uint32_t n_lora_kv = 0; uint32_t n_ff_exp = 0; uint32_t n_expert_shared = 0; float expert_weights_scale = 0.0; float f_norm_eps; float f_norm_rms_eps; float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_ctx_orig_yarn; float rope_yarn_log_mul; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; bool causal_attn = true; bool use_alibi = false; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; if (this->n_ctx_train != other.n_ctx_train) return true; if (this->n_embd != other.n_embd) return true; if (this->n_head != other.n_head) return true; if (this->n_head_kv != other.n_head_kv) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; if (this->n_embd_head_k != other.n_embd_head_k) return true; if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_ff != other.n_ff) return true; if (this->n_expert != other.n_expert) return true; if (this->n_expert_used != other.n_expert_used) return true; if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; if (this->n_lora_q != other.n_lora_q) return true; if (this->n_lora_kv != other.n_lora_kv) return true; if (this->n_ff_exp != other.n_ff_exp) return true; if (this->n_expert_shared != other.n_expert_shared) return true; if (this->rope_finetuned != other.rope_finetuned) return true; if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true; if (this->ssm_d_conv != other.ssm_d_conv) return true; if (this->ssm_d_inner != other.ssm_d_inner) return true; if (this->ssm_d_state != other.ssm_d_state) return true; if (this->ssm_dt_rank != other.ssm_dt_rank) return true; const float EPSILON = 1e-9f; if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; return false; } uint32_t n_gqa() const { if (n_head_kv == 0) { return 0; } return n_head/n_head_kv; } uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads return n_embd_head_k * n_head_kv; } uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads return n_embd_head_v * n_head_kv; } uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } }; struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; uint32_t n_ubatch; uint32_t n_seq_max; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing float rope_freq_base; float rope_freq_scale; uint32_t n_ctx_orig_yarn; // These hyperparameters are not exposed in GGUF, because all // existing YaRN models use the same values for them. float yarn_ext_factor; float yarn_attn_factor; float yarn_beta_fast; float yarn_beta_slow; float defrag_thold; bool embeddings; bool causal_attn; bool offload_kqv; bool flash_attn; enum llama_pooling_type pooling_type; ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; }; struct llama_layer { // normalization struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm_b; struct ggml_tensor * attn_norm_2; struct ggml_tensor * attn_norm_2_b; struct ggml_tensor * attn_q_norm; struct ggml_tensor * attn_q_norm_b; struct ggml_tensor * attn_k_norm; struct ggml_tensor * attn_k_norm_b; struct ggml_tensor * attn_out_norm; struct ggml_tensor * attn_out_norm_b; struct ggml_tensor * attn_q_a_norm; struct ggml_tensor * attn_kv_a_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; struct ggml_tensor * wqkv; struct ggml_tensor * wq_a; struct ggml_tensor * wq_b; struct ggml_tensor * wkv_a_mqa; struct ggml_tensor * wkv_b; // attention bias struct ggml_tensor * bq; struct ggml_tensor * bk; struct ggml_tensor * bv; struct ggml_tensor * bo; struct ggml_tensor * bqkv; // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; struct ggml_tensor * layer_out_norm; struct ggml_tensor * layer_out_norm_b; struct ggml_tensor * ffn_norm_exps; // ff struct ggml_tensor * ffn_gate; // w1 struct ggml_tensor * ffn_down; // w2 struct ggml_tensor * ffn_up; // w3 // ff MoE struct ggml_tensor * ffn_gate_inp; struct ggml_tensor * ffn_gate_exps; struct ggml_tensor * ffn_down_exps; struct ggml_tensor * ffn_up_exps ; // ff shared expert (shexp) struct ggml_tensor * ffn_gate_inp_shexp; struct ggml_tensor * ffn_gate_shexp; struct ggml_tensor * ffn_down_shexp; struct ggml_tensor * ffn_up_shexp; // ff bias struct ggml_tensor * ffn_gate_b = nullptr; struct ggml_tensor * ffn_down_b = nullptr; // b2 struct ggml_tensor * ffn_up_b = nullptr; // b3 struct ggml_tensor * ffn_act; // mamba proj struct ggml_tensor * ssm_in; struct ggml_tensor * ssm_x; struct ggml_tensor * ssm_dt; struct ggml_tensor * ssm_out; // mamba struct ggml_tensor * ssm_conv1d; struct ggml_tensor * ssm_a; struct ggml_tensor * ssm_d; // mamba bias struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_dt_b; // long rope factors struct ggml_tensor * rope_long = nullptr; struct ggml_tensor * rope_short = nullptr; }; struct llama_kv_cell { llama_pos pos = -1; llama_pos delta = 0; int32_t src = 0; // used by recurrent state models to copy states std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const llama_kv_cell & other) const { return seq_id == other.seq_id; } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; bool do_defrag = false; bool do_copy = false; bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token bool v_trans = true; // the value tensor is transposed // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector cells; std::vector k_l; // per layer std::vector v_l; std::vector ctxs; std::vector bufs; size_t total_size() const { size_t size = 0; for (ggml_backend_buffer_t buf : bufs) { size += ggml_backend_buffer_get_size(buf); } return size; } ~llama_kv_cache() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_control_vector { std::vector tensors; // per layer std::vector ctxs; std::vector bufs; int32_t layer_start = -1; int32_t layer_end = -1; ggml_tensor * tensor_for(int il) const { if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { return nullptr; } return tensors[il]; } ~llama_control_vector() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_vocab { using id = int32_t; using token = std::string; using tattr = llama_token_attr; struct token_data { token text; float score; tattr attr; }; enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; std::unordered_map token_to_id; std::vector id_to_token; std::vector cache_special_tokens; std::vector cache_token_to_piece; // llama_token_to_piece(special = true); std::map, int> bpe_ranks; // default LLaMA special tokens id special_bos_id = 1; id special_eos_id = 2; id special_unk_id = 0; id special_sep_id = -1; id special_pad_id = -1; id special_cls_id = -1; id special_mask_id = -1; int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add. id linefeed_id = 13; id special_prefix_id = -1; id special_suffix_id = -1; id special_middle_id = -1; id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token bool add_space_prefix = true; int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { GGML_ASSERT(token_left.find(' ') == std::string::npos); GGML_ASSERT(token_left.find('\n') == std::string::npos); GGML_ASSERT(token_right.find(' ') == std::string::npos); GGML_ASSERT(token_right.find('\n') == std::string::npos); auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); if (it == bpe_ranks.end()) { return -1; } return it->second; } }; struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::string name = "n/a"; llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embd; struct ggml_tensor * type_embd; struct ggml_tensor * pos_embd; struct ggml_tensor * tok_norm; struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; struct ggml_tensor * output; struct ggml_tensor * output_b; std::vector layers; llama_split_mode split_mode; int main_gpu; int n_gpu_layers; std::vector rpc_servers; // gguf metadata std::unordered_map gguf_kv; // layer -> buffer type mapping struct layer_buft { layer_buft() : buft_matrix(nullptr), buft(nullptr) {} layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication ggml_backend_buffer_type_t buft; // everything else }; layer_buft buft_input; layer_buft buft_output; std::vector buft_layer; // contexts where the model tensors metadata is stored std::vector ctxs; // the model memory buffers for the tensor data std::vector bufs; // model memory mapped files llama_mmaps mappings; // objects representing data potentially being locked in memory llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; // for quantize-stats only std::vector> tensors_by_name; int64_t t_load_us = 0; int64_t t_start_us = 0; ~llama_model() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { #ifdef GGML_USE_CUDA if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); } #endif ggml_backend_buffer_free(buf); } } }; struct llama_context { llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { ggml_backend_sched_free(sched); for (ggml_backend_t backend : backends) { ggml_backend_free(backend); } ggml_backend_buffer_free(buf_output); } llama_cparams cparams; std::vector backends; #ifdef GGML_USE_METAL ggml_backend_t backend_metal = nullptr; #endif #ifdef GGML_USE_BLAS ggml_backend_t backend_blas = nullptr; #endif ggml_backend_t backend_cpu = nullptr; const llama_model & model; // key + value cache for the self attention struct llama_kv_cache kv_self; std::mt19937 rng; bool has_evaluated_once = false; int64_t t_start_us; int64_t t_load_us; int64_t t_sample_us = 0; int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; int64_t t_compute_start_us = 0; int64_t n_queued_tokens = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) ggml_backend_buffer_t buf_output = nullptr; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; std::vector output_ids; // map batch token positions to ids of the logits and embd buffers size_t output_size = 0; // capacity (of tokens positions) for the output buffers int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch bool logits_all = false; // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE std::map> embd_seq; // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; // input tensors struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] // control vectors struct llama_control_vector cvec; }; static size_t llama_get_device_count(const llama_model & model) { size_t count = 1; #if defined(GGML_USE_CUDA) count = ggml_backend_cuda_get_device_count(); #elif defined(GGML_USE_SYCL) count = ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) count = ggml_backend_vk_get_device_count(); #endif #if defined(GGML_USE_RPC) count += model.rpc_servers.size(); #endif return count; GGML_UNUSED(model); } static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { ggml_backend_buffer_type_t buft = nullptr; #if defined(GGML_USE_RPC) int dev_count = (int)llama_get_device_count(model); int rpc_count = (int)model.rpc_servers.size(); if (gpu >= dev_count - rpc_count) { const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str(); return ggml_backend_rpc_buffer_type(endpoint); } #endif #if defined(GGML_USE_METAL) buft = ggml_backend_metal_buffer_type(); #elif defined(GGML_USE_CUDA) buft = ggml_backend_cuda_buffer_type(gpu); #elif defined(GGML_USE_VULKAN) buft = ggml_backend_vk_buffer_type(gpu); #elif defined(GGML_USE_SYCL) buft = ggml_backend_sycl_buffer_type(gpu); #elif defined(GGML_USE_KOMPUTE) buft = ggml_backend_kompute_buffer_type(gpu); if (buft == nullptr) { LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); } #endif if (buft == nullptr) { buft = llama_default_buffer_type_cpu(true); } return buft; GGML_UNUSED(model); GGML_UNUSED(gpu); } static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { ggml_backend_buffer_type_t buft = nullptr; #ifdef GGML_USE_CUDA if (ggml_backend_cuda_get_device_count() > 1) { buft = ggml_backend_cuda_split_buffer_type(tensor_split); } #endif #ifdef GGML_USE_SYCL if (ggml_backend_sycl_get_device_count() > 1) { buft = ggml_backend_sycl_split_buffer_type(tensor_split); } #endif if (buft == nullptr) { buft = llama_default_buffer_type_offload(model, fallback_gpu); } return buft; GGML_UNUSED(tensor_split); } static size_t llama_get_device_memory(const llama_model & model, int device) { #if defined(GGML_USE_RPC) int dev_count = (int)llama_get_device_count(model); int rpc_count = (int)model.rpc_servers.size(); if (device >= dev_count - rpc_count) { size_t total; size_t free; const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str(); ggml_backend_rpc_get_device_memory(endpoint, &free, &total); return free; } #endif #if defined(GGML_USE_CUDA) size_t total; size_t free; ggml_backend_cuda_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_SYCL) size_t total; size_t free; ggml_backend_sycl_get_device_memory(device, &free, &total); return free; #elif defined(GGML_USE_VULKAN) size_t total; size_t free; ggml_backend_vk_get_device_memory(device, &free, &total); return free; #else return 1; #endif GGML_UNUSED(model); GGML_UNUSED(device); } // // kv cache helpers // static bool llama_kv_cache_init( struct llama_kv_cache & cache, const llama_context * ctx, ggml_type type_k, ggml_type type_v, uint32_t kv_size, bool offload) { const llama_model & model = ctx->model; const llama_cparams & cparams = ctx->cparams; const struct llama_hparams & hparams = model.hparams; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); const int64_t n_layer = hparams.n_layer; cache.has_shift = false; // TODO: find a nicer way to add other recurrent model architectures cache.recurrent = model.arch == LLM_ARCH_MAMBA; cache.v_trans = !cparams.flash_attn; // TODO: support mixed recurrent Transformer architectures // NOTE: (!a || b) is a logical implication (a -> b) GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s()); GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s()); GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa()); GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa()); cache.head = 0; cache.size = kv_size; cache.used = 0; cache.type_k = type_k; cache.type_v = type_v; cache.cells.clear(); cache.cells.resize(kv_size); if (cache.recurrent) { // init state copy sources for (uint32_t i = 0; i < cache.size; ++i) { cache.cells[i].src = i; } } // count used buffer types std::map buft_layer_count; if (offload) { for (int64_t i = 0; i < n_layer; ++i) { buft_layer_count[model.buft_layer[i].buft]++; } } else { buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; } // create a context for each buffer type std::map ctx_map; for (auto & it : buft_layer_count) { int n_layers = it.second; struct ggml_init_params params = { /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); return false; } ctx_map[it.first] = ctx; cache.ctxs.push_back(ctx); } cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); for (int i = 0; i < (int) n_layer; i++) { struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); cache.v_l.push_back(v); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); return false; } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); cache.bufs.push_back(buf); } return true; } // find an empty slot of size "n_tokens" in the cache // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_batch & batch) { const uint32_t n_tokens = batch.n_tokens; if (cache.recurrent) { // For recurrent state architectures (like Mamba), // each KV cache cell can store the state for a whole sequence. llama_seq_id min = cache.size - 1; llama_seq_id max = 0; for (uint32_t i = 0; i < n_tokens; ++i) { for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) { llama_seq_id seq_id = batch.seq_id[i][j]; // make sure it's a valid seq_id if ((uint32_t) seq_id < cache.size) { if (seq_id > max) { max = seq_id; } if (seq_id < min) { min = seq_id; } // Assuming the tokens are in-order if (batch.pos[i] != cache.cells[seq_id].pos + 1) { // What should happen when the pos backtracks or skips a value? // Clearing the state mid-batch would require special-casing which isn't done. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n", __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id); } if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) { cache.used += 1; } cache.cells[seq_id].pos = batch.pos[i]; // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set } else { // too big seq_id // TODO: would it be possible to resize the KV cache size instead? LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); return false; } } } // allow getting the range of used cells, from head to head + n cache.head = min; cache.n = max - min + 1; // sanity check return max >= min; } // otherwise, one cell per token. if (n_tokens > cache.size) { LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); return false; } uint32_t n_tested = 0; while (true) { if (cache.head + n_tokens > cache.size) { n_tested += cache.size - cache.head; cache.head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cache.cells[cache.head + i].pos >= 0) { found = false; cache.head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= cache.size) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t i = 0; i < n_tokens; i++) { cache.cells[cache.head + i].pos = batch.pos[i]; for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); } } cache.used += n_tokens; return true; } // find how many cells are currently in use static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { for (uint32_t i = cache.size; i > 0; --i) { const llama_kv_cell & cell = cache.cells[i - 1]; if (cell.pos >= 0 && !cell.is_empty()) { return i; } } return 0; } static void llama_kv_cache_clear(struct llama_kv_cache & cache) { for (int32_t i = 0; i < (int32_t) cache.size; ++i) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); } cache.head = 0; cache.used = 0; for (auto & buf : cache.bufs) { ggml_backend_buffer_clear(buf, 0); } } static bool llama_kv_cache_seq_rm( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); // models like Mamba can't have a state partially erased if (cache.recurrent) { if (seq_id >= (int64_t) cache.size) { // could be fatal return false; } if (0 <= seq_id) { // partial intersection is invalid if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) { return false; } } else { // seq_id is negative, then the range should include everything or nothing if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { return false; } } } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { if (seq_id < 0) { cache.cells[i].seq_id.clear(); } else if (cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].seq_id.erase(seq_id); } else { continue; } if (cache.cells[i].is_empty()) { // keep count of the number of used cells if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; if (new_head == cache.size) new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; return true; } static void llama_kv_cache_seq_cp( struct llama_kv_cache & cache, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { seq_id_src = cache.cells[seq_id_src].src; GGML_ASSERT((uint32_t) seq_id_src < cache.size); // intent to "copy from" // supports copy chains thanks to taking the source of the source cache.cells[seq_id_dst].src = seq_id_src; // preserve the "keep or clear" status of the copied sequence if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) { cache.cells[seq_id_dst].seq_id.insert(seq_id_dst); } else { cache.cells[seq_id_dst].seq_id.erase(seq_id_dst); } cache.do_copy = true; cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos; } return; } // otherwise, this is the KV cache of a Transformer-like model cache.head = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { uint32_t new_head = cache.size; for (uint32_t i = 0; i < cache.size; ++i) { if (!cache.cells[i].has_seq_id(seq_id)) { if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) new_head = i; } else { cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; } static void llama_kv_cache_seq_add( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { // for Mamba-like models, only the pos needs to be shifted if (0 <= seq_id && seq_id < (int64_t) cache.size) { llama_kv_cell & cell = cache.cells[seq_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos += delta; } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; cache.cells[i].pos += delta; cache.cells[i].delta += delta; if (cache.cells[i].pos < 0) { if (!cache.cells[i].is_empty()) { cache.used--; } cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. cache.head = new_head != cache.size ? new_head : 0; } static void llama_kv_cache_seq_div( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { // for Mamba-like models, only the pos needs to be changed if (0 <= seq_id && seq_id < (int64_t) cache.size) { llama_kv_cell & cell = cache.cells[seq_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos /= d; } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; { llama_pos p_old = cache.cells[i].pos; cache.cells[i].pos /= d; cache.cells[i].delta += cache.cells[i].pos - p_old; } } } } static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { llama_pos result = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id)) { result = std::max(result, cache.cells[i].pos); } } return result; } static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { cache.do_defrag = true; } static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { // the FA kernels require padding to avoid extra runtime boundary checks return cparams.flash_attn ? 256u : 32u; } // // model loading and saving // enum llama_fver { GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V2 = 2, GGUF_FILE_VERSION_V3 = 3, }; static const char * llama_file_version_name(llama_fver version) { switch (version) { case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; case GGUF_FILE_VERSION_V2: return "GGUF V2"; case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; } return "unknown"; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); } return buf; } static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); for (int i = 1; i < GGML_MAX_DIMS; i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); } return buf; } namespace GGUFMeta { template struct GKV_Base_Type { static constexpr gguf_type gt = gt_; static T getter(const gguf_context * ctx, const int kid) { return gfun(ctx, kid); } }; template struct GKV_Base; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base { static constexpr gguf_type gt = GGUF_TYPE_STRING; static std::string getter(const gguf_context * ctx, const int kid) { return gguf_get_val_str(ctx, kid); } }; struct ArrayInfo { const gguf_type gt; const size_t length; const void * data; }; template<> struct GKV_Base { public: static constexpr gguf_type gt = GGUF_TYPE_ARRAY; static ArrayInfo getter(const gguf_context *ctx, const int k) { return ArrayInfo { gguf_get_arr_type(ctx, k), size_t(gguf_get_arr_n(ctx, k)), gguf_get_arr_data(ctx, k), }; } }; template class GKV : public GKV_Base { GKV() = delete; public: static T get_kv(const gguf_context * ctx, const int k) { const enum gguf_type kt = gguf_get_kv_type(ctx, k); if (kt != GKV::gt) { throw std::runtime_error(format("key %s has wrong type %s but expected type %s", gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); } return GKV::getter(ctx, k); } static const char * override_type_to_str(const llama_model_kv_override_type ty) { switch (ty) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; } return "unknown"; } static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { if (!ovrd) { return false; } if (ovrd->tag == expected_type) { LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", __func__, override_type_to_str(ovrd->tag), ovrd->key); switch (ovrd->tag) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: { LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_TYPE_INT: { LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); } break; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); } break; case LLAMA_KV_OVERRIDE_TYPE_STR: { LLAMA_LOG_INFO("%s\n", ovrd->val_str); } break; default: // Shouldn't be possible to end up here, but just in case... throw std::runtime_error( format("Unsupported attempt to override %s type for metadata key %s\n", override_type_to_str(ovrd->tag), ovrd->key)); } return true; } LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); return false; } template static typename std::enable_if::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { target = ovrd->val_bool; return true; } return false; } template static typename std::enable_if::value && std::is_integral::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { target = ovrd->val_i64; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { target = ovrd->val_f64; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { target = ovrd->val_str; return true; } return false; } static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { if (try_override(target, ovrd)) { return true; } if (k < 0) { return false; } target = get_kv(ctx, k); return true; } static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, gguf_find_key(ctx, key), target, ovrd); } static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, key.c_str(), target, ovrd); } }; } using llama_buf_map = std::unordered_map; struct llama_model_loader { int n_kv = 0; int n_tensors = 0; int n_created = 0; int64_t n_elements = 0; size_t n_bytes = 0; bool use_mmap = false; bool check_tensors; llama_files files; llama_ftype ftype; llama_fver fver; llama_mmaps mappings; // Holds information on a model weight struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); } } }; std::vector weights; std::unordered_map kv_overrides; struct gguf_context * meta = NULL; std::vector contexts; std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { int trace = 0; if (getenv("LLAMA_TRACE")) { trace = atoi(getenv("LLAMA_TRACE")); } if (param_overrides_p != nullptr) { for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) { kv_overrides.insert({std::string(p->key), *p}); } } struct ggml_context * ctx = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; meta = gguf_init_from_file(fname.c_str(), params); if (!meta) { throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); } get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); llm_kv = LLM_KV(llm_arch_from_string(arch_name)); files.emplace_back(new llama_file(fname.c_str(), "rb")); contexts.emplace_back(ctx); // Save tensors data offset of the main file. // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); } uint16_t n_split = 0; get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); // Load additional GGML contexts if (n_split > 1) { uint16_t idx = 0; get_key(llm_kv(LLM_KV_SPLIT_NO), idx); if (idx != 0) { throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); } char split_prefix[PATH_MAX] = {0}; if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { throw std::runtime_error(format("invalid split file: %s", fname.c_str())); } if (trace > 0) { LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); } char split_path[PATH_MAX] = {0}; for (idx = 1; idx < n_split; idx++) { llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); struct gguf_init_params split_params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); if (!ctx_gguf) { throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); } gguf_free(ctx_gguf); } get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); // sanity check { const int n_tensors_loaded = (int) weights.size(); if (n_tensors != n_tensors_loaded) { throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); } } LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); } n_kv = gguf_get_n_kv(meta); n_tensors = weights.size(); fver = (enum llama_fver) gguf_get_version(meta); std::set tensor_names; for (auto & w : weights) { n_elements += ggml_nelements(w.tensor); n_bytes += ggml_nbytes(w.tensor); // make sure there is no duplicated tensor names const std::string name(w.tensor->name); auto found = tensor_names.find(name); if (found != tensor_names.end()) { throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); } tensor_names.insert(name); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); // determine file type based on the number of tensors for each quantization and print meta data // TODO: make optional { std::map n_type; uint32_t n_type_max = 0; enum ggml_type type_max = GGML_TYPE_F32; for (int i = 0; i < n_tensors; i++) { const ggml_tensor * tensor = weights.at(i).tensor; enum ggml_type type = tensor->type; n_type[type]++; if (n_type_max < n_type[type]) { n_type_max = n_type[type]; type_max = type; } if (trace > 0) { const uint16_t sid = weights.at(i).idx; LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); } } switch (type_max) { case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; default: { LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); ftype = LLAMA_FTYPE_ALL_F32; } break; } // this is a way to mark that we have "guessed" the file type ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); { const int kid = gguf_find_key(meta, "general.file_type"); if (kid >= 0) { ftype = (llama_ftype) gguf_get_val_u32(meta, kid); } } LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(meta, i); const enum gguf_type type = gguf_get_kv_type(meta, i); const std::string type_name = type == GGUF_TYPE_ARRAY ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) : gguf_type_name(type); std::string value = gguf_kv_to_str(meta, i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); } replace_all(value, "\n", "\\n"); LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } if (!llama_mmap::SUPPORTED) { LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); use_mmap = false; } this->use_mmap = use_mmap; this->check_tensors = check_tensors; } ~llama_model_loader() { if (meta) { gguf_free(meta); } for (auto * ctx : contexts) { ggml_free(ctx); } } template typename std::enable_if::value, bool>::type get_arr_n(const std::string & key, T & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0) { if (required) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); result = arr_info.length; return true; } template typename std::enable_if::value, bool>::type get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { return get_arr_n(llm_kv(kid), result, required); } template bool get_arr(const std::string & key, std::vector & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0) { if (required) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) { throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str())); } // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T)); GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same::value)); GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same::value)); result.resize(arr_info.length); result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); return true; } template bool get_arr(const enum llm_kv kid, T& result, const bool required = true) { return get_arr(llm_kv(kid), result, required); } template bool get_key(const std::string & key, T & result, const bool required = true) { auto it = kv_overrides.find(key); const struct llama_model_kv_override * override = it != kv_overrides.end() ? &it->second : nullptr; const bool found = GGUFMeta::GKV::set(meta, key, result, override); if (required && !found) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return found; } template bool get_key(const enum llm_kv kid, T & result, const bool required = true) { return get_key(llm_kv(kid), result, required); } std::string get_arch_name() const { return arch_name; } enum llm_arch get_arch() const { return llm_kv.arch; } const char * get_tensor_name(int i) const { return weights.at(i).tensor->name; } const llama_tensor_weight * get_weight(const char * name) const { for (const auto & weight : weights) { if (strcmp(name, weight.tensor->name) == 0) { return &weight; } } return nullptr; } const llama_tensor_weight * get_weight(int i) const { return get_weight(get_tensor_name(i)); } const llama_tensor_weight & require_weight(const char * name) const { const llama_tensor_weight * weight = get_weight(name); if (!weight) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return *weight; } struct ggml_tensor * get_tensor_meta(const char * name) const { const auto * weight = get_weight(name); if (!weight) { return nullptr; } return weight->tensor; } struct ggml_tensor * require_tensor_meta(const char * name) const { struct ggml_tensor * tensor = get_tensor_meta(name); if (!tensor) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return tensor; } struct ggml_tensor * get_tensor_meta(int i) const { return get_tensor_meta(get_tensor_name(i)); } struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); ggml_set_name(tensor, ggml_get_name(cur)); if (duplicated) { size_data += ggml_nbytes(cur); } else { n_created++; } return tensor; } const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); if (cur == NULL) { if (!required) { return NULL; } throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } { bool is_ok = true; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { is_ok = false; break; } } if (!is_ok) { throw std::runtime_error( format("%s: tensor '%s' has wrong shape; expected %s, got %s", __func__, name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(cur).c_str())); } } return cur; } static const int TENSOR_NOT_REQUIRED = 1; static const int TENSOR_DUPLICATED = 2; struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, int flags = 0) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); if (cur == NULL) { return NULL; } return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); } struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); if (cur == NULL) { return NULL; } if (cur->type != base->type) { throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); } std::array dims; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { dims[i] = i < ne.size() ? ne[i] : 1; } struct ggml_tensor * tensor = ggml_view_4d(ctx, base, dims[0], dims[1], dims[2], dims[3], cur->nb[1], cur->nb[2], cur->nb[3], offset); ggml_set_name(tensor, name.c_str()); n_created++; return tensor; } void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); } } void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { if (use_mmap) { mappings.reserve(files.size()); mmaps_used.reserve(files.size()); for (const auto & file : files) { std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); mmaps_used.emplace_back(mapping->size, 0); if (mlock_mmaps) { std::unique_ptr mlock_mmap(new llama_mlock()); mlock_mmap->init(mapping->addr); mlock_mmaps->emplace_back(std::move(mlock_mmap)); } mappings.emplace_back(std::move(mapping)); } } // compute the total size of all tensors for progress reporting for (auto & w : weights) { size_data += ggml_nbytes(w.tensor); } } void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { GGML_ASSERT(!mappings.empty()); const auto & mapping = mappings.at(idx); *first = mapping->size; *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { try { const auto * weight = get_weight(ggml_get_name(tensor)); if (!weight) { continue; } if (weight->idx != idx) { continue; } *first = std::min(*first, weight->offs); *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); } catch(...) { // the tensor is not in the model } } } // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const { const auto & w = require_weight(ggml_get_name(cur)); if (use_mmap) { const auto & mapping = mappings.at(w.idx); if (cur->data == nullptr) { cur->data = (uint8_t *)mapping->addr + w.offs; } else { memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); } } else { GGML_ASSERT(cur->data != nullptr); GGML_ASSERT(w.idx < files.size()); const auto & file = files.at(w.idx); file->seek(w.offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); } } size_t size_done = 0; size_t size_data = 0; std::vector> mmaps_used; // Returns false if cancelled by progress_callback bool load_all_data( struct ggml_context * ctx, llama_buf_map & bufs_mmap, llama_mlocks * lmlocks, llama_progress_callback progress_callback, void * progress_callback_user_data) { GGML_ASSERT(size_data != 0 && "call init_mappings() first"); std::vector> read_buf; std::vector>> validation_result; for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); if (weight == nullptr) { // this can happen with split experts models continue; } if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; } } size_t n_size = ggml_nbytes(cur); if (use_mmap) { const auto & mapping = mappings.at(weight->idx); ggml_backend_buffer_t buf_mmap = nullptr; if (bufs_mmap.count(weight->idx)) { buf_mmap = bufs_mmap.at(weight->idx); } uint8_t * data = (uint8_t *) mapping->addr + weight->offs; if (check_tensors) { validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); })); } GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { ggml_backend_tensor_alloc(buf_mmap, cur, data); if (lmlocks) { const auto & lmlock = lmlocks->at(weight->idx); lmlock->grow_to(weight->offs + n_size); } auto & mmap_used = mmaps_used[weight->idx]; mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { ggml_backend_tensor_set(cur, data, 0, n_size); } } else { GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); file->read_raw(cur->data, n_size); if (check_tensors) { validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); })); } } else { read_buf.resize(n_size); file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), n_size); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); } } } size_done += n_size; } // check validation results bool validation_failed = false; for (auto & future : validation_result) { auto result = future.get(); if (!result.second) { LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); validation_failed = true; } } if (validation_failed) { throw std::runtime_error("found tensors with invalid data"); } // check if this is the last call and do final cleanup if (size_done >= size_data) { // unmap offloaded tensors and metadata if (use_mmap) { for (uint32_t idx = 0; idx < mappings.size(); idx++) { const auto & mmap_used = mmaps_used.at(idx); auto & mapping = mappings.at(idx); mapping->unmap_fragment(0, mmap_used.first); if (mmap_used.second != 0) { mapping->unmap_fragment(mmap_used.second, mapping->size); } } } if (progress_callback) { // Even though the model is done loading, we still honor // cancellation since we need to free allocations. return progress_callback(1.0f, progress_callback_user_data); } } return true; } }; template<> bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { uint32_t tmp; const bool found = get_key(kid, tmp, required); if (found) { result = (enum llama_pooling_type) tmp; } else { result = LLAMA_POOLING_TYPE_UNSPECIFIED; } return found; } // // load LLaMA models // static const char * llama_model_arch_name(llm_arch arch) { auto it = LLM_ARCH_NAMES.find(arch); if (it == LLM_ARCH_NAMES.end()) { return "unknown"; } return it->second; } static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "F16"; case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; default: return "unknown, may not work"; } } static const char * llama_model_type_name(e_model type) { switch (type) { case MODEL_14M: return "14M"; case MODEL_17M: return "17M"; case MODEL_22M: return "22M"; case MODEL_33M: return "33M"; case MODEL_70M: return "70M"; case MODEL_109M: return "109M"; case MODEL_137M: return "137M"; case MODEL_160M: return "160M"; case MODEL_335M: return "335M"; case MODEL_410M: return "410M"; case MODEL_0_5B: return "0.5B"; case MODEL_1B: return "1B"; case MODEL_1_4B: return "1.4B"; case MODEL_2B: return "2B"; case MODEL_2_8B: return "2.8B"; case MODEL_3B: return "3B"; case MODEL_4B: return "4B"; case MODEL_6_9B: return "6.9B"; case MODEL_7B: return "7B"; case MODEL_8B: return "8B"; case MODEL_12B: return "12B"; case MODEL_13B: return "13B"; case MODEL_14B: return "14B"; case MODEL_15B: return "15B"; case MODEL_16B: return "16B"; case MODEL_20B: return "20B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_35B: return "35B"; case MODEL_40B: return "40B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; case MODEL_236B: return "236B"; case MODEL_314B: return "314B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; case MODEL_LARGE: return "0.8B"; case MODEL_XL: return "1.5B"; case MODEL_A2_7B: return "A2.7B"; case MODEL_8x7B: return "8x7B"; case MODEL_8x22B: return "8x22B"; case MODEL_16x12B: return "16x12B"; case MODEL_10B_128x3_66B: return "10B+128x3.66B"; default: return "?B"; } } static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ switch (type) { case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; case LLAMA_VOCAB_TYPE_SPM: return "SPM"; case LLAMA_VOCAB_TYPE_BPE: return "BPE"; case LLAMA_VOCAB_TYPE_WPM: return "WPM"; default: return "unknown"; } } static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } static void llm_load_hparams( llama_model_loader & ml, llama_model & model) { auto & hparams = model.hparams; const gguf_context * ctx = ml.meta; // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { enum gguf_type type = gguf_get_kv_type(ctx, i); if (type == GGUF_TYPE_ARRAY) { continue; } const char * name = gguf_get_key(ctx, i); const std::string value = gguf_kv_to_str(ctx, i); model.gguf_kv.emplace(name, value); } // get general kv ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); // get hparams kv ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); // everything past this point is not vocab-related if (hparams.vocab_only) { return; } ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff); ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); } else { GGML_ASSERT(hparams.n_expert_used == 0); } // n_head_kv is optional, default to n_head hparams.n_head_kv = hparams.n_head; ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false); bool rope_finetuned = false; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; hparams.n_ctx_orig_yarn = hparams.n_ctx_train; ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { // try the old key name ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); // sanity check for n_rot (optional) { hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd / hparams.n_head) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head)); } } // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim } hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); // arch-specific KVs switch (model.arch) { case LLM_ARCH_LLAMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 8) { switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_8x7B; break; case 56: model.type = e_model::MODEL_8x22B; break; default: model.type = e_model::MODEL_UNKNOWN; } } else { switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 26: model.type = e_model::MODEL_3B; break; // granite uses a vocab with len 49152 case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break; case 36: model.type = e_model::MODEL_8B; break; // granite case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_2B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GROK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 64: model.type = e_model::MODEL_314B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_FALCON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 60: model.type = e_model::MODEL_40B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } if (model.type == e_model::MODEL_13B) { // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } } break; case LLM_ARCH_STARCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 36: model.type = e_model::MODEL_3B; break; case 42: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: model.type = e_model::MODEL_17M; break; // bge-micro case 6: model.type = e_model::MODEL_22M; break; // MiniLM-L6 case 12: switch (hparams.n_embd) { case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small case 768: model.type = e_model::MODEL_109M; break; // bge-base } break; case 24: model.type = e_model::MODEL_335M; break; // bge-large } } break; case LLM_ARCH_JINA_BERT_V2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); hparams.f_max_alibi_bias = 8.0f; switch (hparams.n_layer) { case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base } } break; case LLM_ARCH_NOMIC_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { model.type = e_model::MODEL_137M; } } break; case LLM_ARCH_BLOOM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 30: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; case 4096: model.type = e_model::MODEL_7B; break; } break; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_30B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STABLELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_12B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN2MOE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_A2_7B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PHI3: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PLAMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GPT2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 12: model.type = e_model::MODEL_SMALL; break; case 24: model.type = e_model::MODEL_MEDIUM; break; case 36: model.type = e_model::MODEL_LARGE; break; case 48: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_CODESHELL: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 42: model.type = e_model::MODEL_SMALL; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_ORION: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_INTERNLM2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_20B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GEMMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: model.type = e_model::MODEL_2B; break; case 28: model.type = e_model::MODEL_7B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 30: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; case 52: model.type = e_model::MODEL_20B; break; // granite case 88: model.type = e_model::MODEL_34B; break; // granite default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_MAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: model.type = e_model::MODEL_SMALL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: model.type = e_model::MODEL_MEDIUM; break; case 1536: model.type = e_model::MODEL_LARGE; break; case 2048: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_XVERSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_65B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_COMMAND_R: { ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_35B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_DBRX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_16x12B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_OLMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GPTNEOX: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); switch (hparams.n_layer) { case 6: switch (hparams.n_ff) { case 512: model.type = e_model::MODEL_14M; break; case 2048: model.type = e_model::MODEL_70M; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 12: switch (hparams.n_ff) { case 3072: model.type = e_model::MODEL_160M; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 16: switch (hparams.n_ff) { case 8192: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 24: switch (hparams.n_ff) { case 4096: model.type = e_model::MODEL_410M; break; case 8192: model.type = e_model::MODEL_1_4B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 32: switch (hparams.n_ff) { case 10240: model.type = e_model::MODEL_2_8B; break; case 16384: model.type = e_model::MODEL_6_9B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 36: switch (hparams.n_ff) { case 20480: model.type = e_model::MODEL_12B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 44: switch (hparams.n_ff) { case 24576: model.type = e_model::MODEL_20B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_ARCTIC: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); if (hparams.n_expert == 128) { switch (hparams.n_layer) { case 35: model.type = e_model::MODEL_10B_128x3_66B; break; default: model.type = e_model::MODEL_UNKNOWN; } } else { model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_DEEPSEEK2: { bool is_lite = (hparams.n_layer == 27); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); if (!is_lite) { ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); } ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); switch (hparams.n_layer) { case 27: model.type = e_model::MODEL_16B; break; case 60: model.type = e_model::MODEL_236B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; default: (void)0; } model.ftype = ml.ftype; if (hparams.f_max_alibi_bias > 0.0f) { hparams.use_alibi = true; } hparams.rope_type = llama_rope_type(&model); } // TODO: This should probably be in llama.h static std::vector llama_tokenize_internal( const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false ); static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); static void llm_load_vocab( llama_model_loader & ml, llama_model & model) { auto & vocab = model.vocab; struct gguf_context * ctx = ml.meta; const auto kv = LLM_KV(model.arch); // determine vocab type { std::string tokenizer_model; std::string tokenizer_pre; ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); if (tokenizer_model == "no_vocab") { vocab.type = LLAMA_VOCAB_TYPE_NONE; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = -1; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; vocab.linefeed_id = -1; return; } else if (tokenizer_model == "llama") { vocab.type = LLAMA_VOCAB_TYPE_SPM; // default special tokens vocab.special_bos_id = 1; vocab.special_eos_id = 2; vocab.special_unk_id = 0; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); if (add_space_prefix_keyidx != -1) { vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); } // The default value of add_space_prefix is true. } else if (tokenizer_model == "bert") { vocab.type = LLAMA_VOCAB_TYPE_WPM; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = -1; vocab.special_unk_id = 100; vocab.special_sep_id = 102; vocab.special_pad_id = 0; vocab.special_cls_id = 101; vocab.special_mask_id = 103; vocab.add_space_prefix = false; } else if (tokenizer_model == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); if (add_space_prefix_keyidx != -1) { vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); } // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { throw std::runtime_error("cannot find tokenizer merges in model file\n"); } const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); for (int i = 0; i < n_merges; i++) { const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); std::string first; std::string second; const size_t pos = word.find(' ', 1); if (pos != std::string::npos) { first = word.substr(0, pos); second = word.substr(pos + 1); } vocab.bpe_ranks.emplace(std::make_pair(first, second), i); } // default special tokens vocab.special_bos_id = 11; vocab.special_eos_id = 11; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; } else { throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); } // for now, only BPE models have pre-tokenizers if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { if (tokenizer_pre.empty()) { LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__); LLAMA_LOG_WARN("%s: \n", __func__); LLAMA_LOG_WARN("%s: ************************************ \n", __func__); LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__); LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); LLAMA_LOG_WARN("%s: ************************************ \n", __func__); LLAMA_LOG_WARN("%s: \n", __func__); vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } else if (tokenizer_pre == "default") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } else if ( tokenizer_pre == "llama3" || tokenizer_pre == "llama-v3" || tokenizer_pre == "llama-bpe") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; } else if ( tokenizer_pre == "deepseek-llm") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; } else if ( tokenizer_pre == "deepseek-coder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; } else if ( tokenizer_pre == "falcon") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; } else if ( tokenizer_pre == "mpt") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT; } else if ( tokenizer_pre == "starcoder") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; } else if ( tokenizer_pre == "gpt-2" || tokenizer_pre == "jina-es" || tokenizer_pre == "jina-de" || tokenizer_pre == "jina-v2-es" || tokenizer_pre == "jina-v2-de" || tokenizer_pre == "jina-v2-code") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; } else if ( tokenizer_pre == "refact") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT; } else if ( tokenizer_pre == "command-r") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; } else if ( tokenizer_pre == "qwen2") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; } else if ( tokenizer_pre == "stablelm2") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2; } else if ( tokenizer_pre == "olmo") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO; } else if ( tokenizer_pre == "dbrx") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX; } else if ( tokenizer_pre == "smaug-bpe") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG; } else if ( tokenizer_pre == "poro-chat") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } } else { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } } const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); if (token_idx == -1) { throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); if (score_idx != -1) { scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); if (toktype_idx != -1) { toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); vocab.id_to_token.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { std::string word = gguf_get_arr_str(ctx, token_idx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); vocab.token_to_id[word] = i; auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); token_data.score = scores ? scores[i] : 0.0f; token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file switch(toktypes[i]) { case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break; case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break; case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break; case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break; case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break; case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break; case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; } } } GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { // For Fill-In-the-Middle (FIM)/infill models which where converted // prior to support of FIM special tokens in GGUF, the following // will allow those models to continue to work. The general names // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once // new versions of these models have been published. std::string gen_name; ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false); std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(), [](unsigned char c){ return std::tolower(c); }); if (gen_name.find("code") != std::string::npos) { if (model.arch == LLM_ARCH_LLAMA && 32010 < vocab.id_to_token.size() && vocab.id_to_token[32007].text == "
"
              && vocab.id_to_token[32008].text == ""
              && vocab.id_to_token[32009].text == ""
              && vocab.id_to_token[32010].text == "") {
                vocab.special_prefix_id = 32007;
                vocab.special_suffix_id = 32008;
                vocab.special_middle_id = 32009;
                vocab.special_eot_id    = 32010;
            } else if (model.arch == LLM_ARCH_GEMMA
              && 107 < vocab.id_to_token.size()
              && vocab.id_to_token[67].text == "<|fim_prefix|>"
              && vocab.id_to_token[69].text == "<|fim_suffix|>"
              && vocab.id_to_token[68].text == "<|fim_middle|>"
              && vocab.id_to_token[107].text == "") {
                vocab.special_prefix_id = 67;
                vocab.special_suffix_id = 69;
                vocab.special_middle_id = 68;
                // TODO: this is not EOT, it is "file separator" token, needs fix
                //       https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
                //vocab.special_eot_id    = 70;
                vocab.special_eot_id    = 107;
            }
        }

        try {
            vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
        } catch (const std::exception & e) {
            LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
            vocab.linefeed_id = vocab.special_pad_id;
        }
    } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
        vocab.linefeed_id = vocab.special_pad_id;
    } else {
        const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
        GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
        vocab.linefeed_id = ids[0];
    }

    // special tokens
    {
        const std::vector> special_token_types = {
            { LLM_KV_TOKENIZER_BOS_ID,    vocab.special_bos_id    },
            { LLM_KV_TOKENIZER_EOS_ID,    vocab.special_eos_id    },
            { LLM_KV_TOKENIZER_UNK_ID,    vocab.special_unk_id    },
            { LLM_KV_TOKENIZER_SEP_ID,    vocab.special_sep_id    },
            { LLM_KV_TOKENIZER_PAD_ID,    vocab.special_pad_id    },
            { LLM_KV_TOKENIZER_CLS_ID,    vocab.special_cls_id    },
            { LLM_KV_TOKENIZER_MASK_ID,   vocab.special_mask_id   },
            { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
            { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
            { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
            { LLM_KV_TOKENIZER_EOT_ID,    vocab.special_eot_id    },
        };

        for (const auto & it : special_token_types) {
            const std::string & key = kv(std::get<0>(it));
            int32_t & id = std::get<1>(it);

            uint32_t new_id;
            if (!ml.get_key(std::get<0>(it), new_id, false)) {
                continue;
            }
            if (new_id >= vocab.id_to_token.size()) {
                LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
                    __func__, key.c_str(), new_id, id);
            } else {
                id = new_id;
            }
        }

        // Handle add_bos_token and add_eos_token
        {
            bool temp = true;

            if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
                vocab.special_add_bos = int(temp);
            }
            if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
                vocab.special_add_eos = int(temp);
            }
        }

        // find EOT token: "<|eot_id|>", "<|im_end|>", "", etc.
        //
        // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
        //       for now, we apply this workaround to find the EOT token based on its text
        if (vocab.special_eot_id == -1) {
            for (const auto & t : vocab.token_to_id) {
                if (
                        // TODO: gemma "" is exported as a normal token, so the following check does not work
                        //       need to fix convert script
                        //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
                        (t.first == "<|eot_id|>" ||
                         t.first == "<|im_end|>" ||
                         t.first == "<|end|>" ||
                         t.first == "" ||
                         t.first == "<|endoftext|>"
                        )
                   ) {
                    vocab.special_eot_id = t.second;
                    break;
                }
            }
        }
    }

    // build special tokens cache
    {
        for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
            if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
                vocab.cache_special_tokens.push_back(id);
            }
        }

        std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
            [&] (const llama_vocab::id a, const llama_vocab::id b) {
                return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
            }
        );

        LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
    }

    // build token to piece cache
    {
        size_t size_cache = 0;

        std::vector cache_token_to_piece(n_vocab);

        for (uint32_t id = 0; id < n_vocab; ++id) {
            cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);

            size_cache += cache_token_to_piece[id].size();
        }

        std::swap(vocab.cache_token_to_piece, cache_token_to_piece);

        LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
    }

    // Handle per token attributes
    //NOTE: Each model customizes per token attributes.
    //NOTE: Per token attributes are missing from the GGUF file.
    //TODO: Extract attributes from GGUF file.
    {
        auto _contains_any = [] (const std::string &str, const std::vector &substrs) -> bool {
            for (auto substr : substrs) {
                if (str.find(substr) < std::string::npos) {
                    return true;
                }
            }
            return false;
        };

        auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
            uint32_t current = vocab.id_to_token.at(id).attr;
            current = value ? (current | attr) : (current & ~attr);
            vocab.id_to_token[id].attr = (llama_token_attr) current;
        };

        auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
            _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
        };

        std::string model_name;
        std::string tokenizer_pre;

        ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
        ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);

        // model name to lowercase
        std::transform(model_name.begin(), model_name.end(), model_name.begin(),
            [] (const std::string::value_type x) {
                return std::tolower(x);
            }
        );

        // set attributes by model/tokenizer name
        if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
            _set_token_attr("", LLAMA_TOKEN_ATTR_LSTRIP, true);
        } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
            for (auto id : vocab.cache_special_tokens) {
                _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (auto token : {""}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (auto token : {"", "", "<|endoftext|>"}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
            }
        }
    }
}

static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
    const auto & hparams = model.hparams;
    const auto & vocab   = model.vocab;

    const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);

    // hparams
    LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver));
    LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch));
    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type));
    LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab);
    LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size());
    LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
    LLAMA_LOG_INFO("%s: n_embd           = %u\n",     __func__, hparams.n_embd);
    LLAMA_LOG_INFO("%s: n_head           = %u\n",     __func__, hparams.n_head);
    LLAMA_LOG_INFO("%s: n_head_kv        = %u\n",     __func__, hparams.n_head_kv);
    LLAMA_LOG_INFO("%s: n_layer          = %u\n",     __func__, hparams.n_layer);
    LLAMA_LOG_INFO("%s: n_rot            = %u\n",     __func__, hparams.n_rot);
    LLAMA_LOG_INFO("%s: n_embd_head_k    = %u\n",     __func__, hparams.n_embd_head_k);
    LLAMA_LOG_INFO("%s: n_embd_head_v    = %u\n",     __func__, hparams.n_embd_head_v);
    LLAMA_LOG_INFO("%s: n_gqa            = %u\n",     __func__, hparams.n_gqa());
    LLAMA_LOG_INFO("%s: n_embd_k_gqa     = %u\n",     __func__, hparams.n_embd_k_gqa());
    LLAMA_LOG_INFO("%s: n_embd_v_gqa     = %u\n",     __func__, hparams.n_embd_v_gqa());
    LLAMA_LOG_INFO("%s: f_norm_eps       = %.1e\n",   __func__, hparams.f_norm_eps);
    LLAMA_LOG_INFO("%s: f_norm_rms_eps   = %.1e\n",   __func__, hparams.f_norm_rms_eps);
    LLAMA_LOG_INFO("%s: f_clamp_kqv      = %.1e\n",   __func__, hparams.f_clamp_kqv);
    LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n",   __func__, hparams.f_max_alibi_bias);
    LLAMA_LOG_INFO("%s: f_logit_scale    = %.1e\n",   __func__, hparams.f_logit_scale);
    LLAMA_LOG_INFO("%s: n_ff             = %u\n",     __func__, hparams.n_ff);
    LLAMA_LOG_INFO("%s: n_expert         = %u\n",     __func__, hparams.n_expert);
    LLAMA_LOG_INFO("%s: n_expert_used    = %u\n",     __func__, hparams.n_expert_used);
    LLAMA_LOG_INFO("%s: causal attn      = %d\n",     __func__, hparams.causal_attn);
    LLAMA_LOG_INFO("%s: pooling type     = %d\n",     __func__, hparams.pooling_type);
    LLAMA_LOG_INFO("%s: rope type        = %d\n",     __func__, hparams.rope_type);
    LLAMA_LOG_INFO("%s: rope scaling     = %s\n",     __func__, rope_scaling_type);
    LLAMA_LOG_INFO("%s: freq_base_train  = %.1f\n",   __func__, hparams.rope_freq_base_train);
    LLAMA_LOG_INFO("%s: freq_scale_train = %g\n",     __func__, hparams.rope_freq_scale_train);
    LLAMA_LOG_INFO("%s: n_ctx_orig_yarn  = %u\n",     __func__, hparams.n_ctx_orig_yarn);
    LLAMA_LOG_INFO("%s: rope_finetuned   = %s\n",     __func__, hparams.rope_finetuned ? "yes" : "unknown");
    LLAMA_LOG_INFO("%s: ssm_d_conv       = %u\n",     __func__, hparams.ssm_d_conv);
    LLAMA_LOG_INFO("%s: ssm_d_inner      = %u\n",     __func__, hparams.ssm_d_inner);
    LLAMA_LOG_INFO("%s: ssm_d_state      = %u\n",     __func__, hparams.ssm_d_state);
    LLAMA_LOG_INFO("%s: ssm_dt_rank      = %u\n",     __func__, hparams.ssm_dt_rank);
    LLAMA_LOG_INFO("%s: model type       = %s\n",     __func__, llama_model_type_name(model.type));
    LLAMA_LOG_INFO("%s: model ftype      = %s\n",     __func__, llama_model_ftype_name(model.ftype).c_str());
    if (ml.n_elements >= 1e12) {
        LLAMA_LOG_INFO("%s: model params     = %.2f T\n", __func__, ml.n_elements*1e-12);
    } else if (ml.n_elements >= 1e9) {
        LLAMA_LOG_INFO("%s: model params     = %.2f B\n", __func__, ml.n_elements*1e-9);
    } else if (ml.n_elements >= 1e6) {
        LLAMA_LOG_INFO("%s: model params     = %.2f M\n", __func__, ml.n_elements*1e-6);
    } else {
        LLAMA_LOG_INFO("%s: model params     = %.2f K\n", __func__, ml.n_elements*1e-3);
    }
    if (ml.n_bytes < GiB) {
        LLAMA_LOG_INFO("%s: model size       = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0,        ml.n_bytes*8.0/ml.n_elements);
    } else {
        LLAMA_LOG_INFO("%s: model size       = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
    }

    // general kv
    LLAMA_LOG_INFO("%s: general.name     = %s\n",    __func__, model.name.c_str());

    // special tokens
    if (vocab.special_bos_id    != -1) { LLAMA_LOG_INFO( "%s: BOS token        = %d '%s'\n", __func__, vocab.special_bos_id,  vocab.id_to_token[vocab.special_bos_id].text.c_str() );  }
    if (vocab.special_eos_id    != -1) { LLAMA_LOG_INFO( "%s: EOS token        = %d '%s'\n", __func__, vocab.special_eos_id,  vocab.id_to_token[vocab.special_eos_id].text.c_str() );  }
    if (vocab.special_unk_id    != -1) { LLAMA_LOG_INFO( "%s: UNK token        = %d '%s'\n", __func__, vocab.special_unk_id,  vocab.id_to_token[vocab.special_unk_id].text.c_str() );  }
    if (vocab.special_sep_id    != -1) { LLAMA_LOG_INFO( "%s: SEP token        = %d '%s'\n", __func__, vocab.special_sep_id,  vocab.id_to_token[vocab.special_sep_id].text.c_str() );  }
    if (vocab.special_pad_id    != -1) { LLAMA_LOG_INFO( "%s: PAD token        = %d '%s'\n", __func__, vocab.special_pad_id,  vocab.id_to_token[vocab.special_pad_id].text.c_str() );  }
    if (vocab.special_cls_id    != -1) { LLAMA_LOG_INFO( "%s: CLS token        = %d '%s'\n", __func__, vocab.special_cls_id,  vocab.id_to_token[vocab.special_cls_id].text.c_str() );  }
    if (vocab.special_mask_id   != -1) { LLAMA_LOG_INFO( "%s: MASK token       = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }

    if (vocab.linefeed_id       != -1) { LLAMA_LOG_INFO( "%s: LF token         = %d '%s'\n", __func__, vocab.linefeed_id,       vocab.id_to_token[vocab.linefeed_id].text.c_str() );       }
    if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token        = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
    if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token        = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
    if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token        = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
    if (vocab.special_eot_id    != -1) { LLAMA_LOG_INFO( "%s: EOT token        = %d '%s'\n", __func__, vocab.special_eot_id,    vocab.id_to_token[vocab.special_eot_id].text.c_str() );    }

    if (model.arch == LLM_ARCH_DEEPSEEK2) {
        LLAMA_LOG_INFO("%s: n_layer_dense_lead   = %d\n",     __func__, hparams.n_layer_dense_lead);
        LLAMA_LOG_INFO("%s: n_lora_q             = %d\n",     __func__, hparams.n_lora_q);
        LLAMA_LOG_INFO("%s: n_lora_kv            = %d\n",     __func__, hparams.n_lora_kv);
        LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
        LLAMA_LOG_INFO("%s: n_expert_shared      = %d\n",     __func__, hparams.n_expert_shared);
        LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n",   __func__, hparams.expert_weights_scale);
        LLAMA_LOG_INFO("%s: rope_yarn_log_mul    = %.4f\n",   __func__, hparams.rope_yarn_log_mul);
    }
}

// Returns false if cancelled by progress_callback
static bool llm_load_tensors(
        llama_model_loader & ml,
        llama_model & model,
        int n_gpu_layers,
        enum llama_split_mode split_mode,
        int main_gpu,
        const float * tensor_split,
        bool use_mlock,
        llama_progress_callback progress_callback,
        void * progress_callback_user_data) {
    model.t_start_us = ggml_time_us();

    auto & hparams = model.hparams;

#ifdef GGML_USE_SYCL
    // disable MoE with SYCL until mul_mat_id is updated
    if (hparams.n_expert > 0) {
        n_gpu_layers = 0;
    }
#endif

    model.split_mode   = split_mode;
    model.main_gpu     = main_gpu;
    model.n_gpu_layers = n_gpu_layers;

    const int64_t n_layer     = hparams.n_layer;
    const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
    bool use_mmap_buffer = true;

    // there is very little benefit to offloading the input layer, so always keep it on the CPU
    model.buft_input = llama_default_buffer_type_cpu(true);
    //model.buft_input = llama_default_buffer_type_offload(main_gpu);

    model.buft_layer.resize(n_layer);

    // assign cpu layers
    for (int64_t i = 0; i < i_gpu_start; ++i) {
        model.buft_layer[i] = llama_default_buffer_type_cpu(true);
    }

    if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
        // calculate the split points
        int device_count = llama_get_device_count(model);
        bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
        std::vector splits(device_count);
        if (all_zero) {
            // default split, by free memory
            for (int i = 0; i < device_count; ++i) {
                splits[i] = llama_get_device_memory(model, i);
            }
        } else {
            std::copy(tensor_split, tensor_split + device_count, splits.begin());
        }

        // sum and normalize the splits to get the split points
        float split_sum = 0.0f;
        for (int i = 0; i < device_count; ++i) {
            split_sum += splits[i];
            splits[i] = split_sum;
        }
        for (int i = 0; i < device_count; ++i) {
            splits[i] /= split_sum;
        }

        // assign the repeating layers to the devices according to the splits
        int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
        for (int64_t i = i_gpu_start; i < n_layer; ++i) {
            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
            model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
        }
        // assign the output layer
        if (n_gpu_layers > n_layer) {
            int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
            model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
        } else {
            model.buft_output = llama_default_buffer_type_cpu(true);
        }
    } else {
        ggml_backend_buffer_type_t split_buft;
        if (split_mode == LLAMA_SPLIT_MODE_ROW) {
            split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
        } else {
            // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
            split_buft = llama_default_buffer_type_offload(model, main_gpu);
        }
        // assign the repeating layers
        for (int64_t i = i_gpu_start; i < n_layer; ++i) {
            model.buft_layer[i] = {
                split_buft,
                llama_default_buffer_type_offload(model, main_gpu)
            };
        }
        // assign the output layer
        if (n_gpu_layers > n_layer) {
            model.buft_output = {
                split_buft,
                llama_default_buffer_type_offload(model, main_gpu)
            };
        } else {
            model.buft_output = llama_default_buffer_type_cpu(true);
        }
    }

    // count used buffer types
    std::map buft_layer_count;
    buft_layer_count[model.buft_input.buft]++;
    buft_layer_count[model.buft_input.buft_matrix]++;
    buft_layer_count[model.buft_output.buft]++;
    buft_layer_count[model.buft_output.buft_matrix]++;
    for (int64_t i = 0; i < n_layer; ++i) {
        buft_layer_count[model.buft_layer[i].buft]++;
        buft_layer_count[model.buft_layer[i].buft_matrix]++;
    }

    // create one context per buffer type
    size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output

    // for moe merged tensors
    ctx_size += ggml_tensor_overhead()*n_layer*3;

    std::map ctx_map;
    for (auto & it : buft_layer_count) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx_size,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ggml_context * ctx = ggml_init(params);
        if (!ctx) {
            throw std::runtime_error(format("failed to create context"));
        }
        ctx_map[it.first] = ctx;
        model.ctxs.push_back(ctx);
    }

    LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);

    // create tensors for the weights
    {
        const int64_t n_embd       = hparams.n_embd;
        const int64_t n_embd_head  = n_embd / hparams.n_head;
        const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
        const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
        const int64_t n_embd_gqa   = n_embd_v_gqa;
        const int64_t n_vocab      = hparams.n_vocab;
        const int64_t n_vocab_type = hparams.n_vocab_type;
        const int64_t n_ff         = hparams.n_ff;
        const int64_t n_expert     = hparams.n_expert;

        if (n_expert > 0 && hparams.n_expert_used == 0) {
            throw std::runtime_error("model has expert layers but no expert layers are used");
        }

        ggml_context * ctx_input        = ctx_map.at(model.buft_input.buft);
        ggml_context * ctx_output       = ctx_map.at(model.buft_output.buft);
        ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
        auto ctx_for_layer              = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
        auto ctx_for_layer_split        = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };

        model.layers.resize(n_layer);

        const auto tn = LLM_TN(model.arch);
        switch (model.arch) {
            case LLM_ARCH_LLAMA:
            case LLM_ARCH_REFACT:
            case LLM_ARCH_MINICPM:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        if (n_expert == 0) {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});

                            // optional MLP bias
                            layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            layer.ffn_up_b   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        } else {
                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
                            if (layer.ffn_gate_exps) {
                                layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                                layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                            } else {
                                // merge split expert into a single tensor for compatibility with older models
                                // requires disabling mmap
                                use_mmap_buffer = false;

                                ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
                                ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
                                ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;

                                layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
                                layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
                                layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);

                                ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
                                ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
                                ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());

                                for (uint32_t x = 0; x < n_expert; ++x) {
                                    // the individual experts are loaded into a view of the merged tensor
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
                                    ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
                                }
                            }
                        }
                    }
                } break;
            case LLM_ARCH_GROK:
                {
                    if (n_expert == 0) {
                        throw std::runtime_error("Grok model cannot have zero experts");
                    }

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (layer.ffn_gate_exps) {
                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                        } else {
                            // merge split expert into a single tensor for compatibility with older models
                            // requires disabling mmap
                            use_mmap_buffer = false;

                            ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
                            ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
                            ggml_type type_up   = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, 0).c_str())->type;

                            layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd,   n_ff, n_expert);
                            layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down,   n_ff, n_embd, n_expert);
                            layer.ffn_up_exps   = ggml_new_tensor_3d(ctx_split, type_up,   n_embd,   n_ff, n_expert);

                            ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
                            ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
                            ggml_set_name(layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i).c_str());

                            for (uint32_t x = 0; x < n_expert; ++x) {
                                // the individual experts are loaded into a view of the merged tensor
                                ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
                                ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
                                ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps,   tn(LLM_TENSOR_FFN_UP_EXP,   "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
                            }
                        }

                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
                    }
                } break;
            case LLM_ARCH_DBRX:
            {
                if (n_expert == 0) {
                    throw std::runtime_error("DBRX model cannot have zero experts");
                }

                model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                // output
                {
                    model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                }

                for (int i = 0; i < n_layer; ++i) {
                    ggml_context * ctx_layer = ctx_for_layer(i);
                    ggml_context * ctx_split = ctx_for_layer_split(i);

                    auto & layer = model.layers[i];

                    layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,  "weight", i), {n_embd});

                    layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                    layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                    layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});

                    layer.ffn_gate_inp  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert});
                    layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff,   n_expert});
                    layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff,   n_embd, n_expert});
                    layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff,   n_expert});
                }
            } break;
            case LLM_ARCH_BAICHUAN:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_FALCON:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});

                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_STARCODER:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, hparams.n_ctx_train});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            // needs to be on GPU
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
                    }
                } break;
            case LLM_ARCH_BERT:
            case LLM_ARCH_NOMIC_BERT:
                {
                    model.tok_embd     = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
                    model.type_embd    = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
                    if (model.arch == LLM_ARCH_BERT) {
                        model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,    "weight"), {n_embd, hparams.n_ctx_train});
                    }

                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        if (model.arch == LLM_ARCH_BERT) {
                            layer.wq   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                            layer.bq   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd});

                            layer.wk   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                            layer.bk   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa});

                            layer.wv   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                            layer.bv   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa});
                        } else {
                            layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        }

                        layer.wo              = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd});

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd});

                        layer.ffn_up          = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,        "weight", i), {n_embd, n_ff});
                        layer.ffn_down        = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,      "weight", i), {n_ff, n_embd});

                        if (model.arch == LLM_ARCH_BERT) {
                            layer.bo         = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});
                            layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});

                            layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});
                        } else {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
                        }

                        layer.layer_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i),   {n_embd});
                    }
                } break;
            case LLM_ARCH_JINA_BERT_V2:
                {
                    model.tok_embd     = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}); // word_embeddings
                    model.type_embd    = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd}); //LayerNorm bias

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i]; // JinaBertLayer

                        layer.wq   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.bq   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i),   {n_embd});

                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wk   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.bk   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i),   {n_embd_gqa});

                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wv   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.bv   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i),   {n_embd_gqa});

                        layer.wo              = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "weight", i), {n_embd, n_embd}); //output_dens
                        layer.bo              = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT,      "bias", i), {n_embd}); //output_dens

                        layer.attn_out_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
                        layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i),   {n_embd});

                        layer.attn_norm_2   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,        "weight", i), {n_embd, n_ff});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE,    "weight", i), {n_embd, n_ff});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN,        "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN,      "bias", i), {n_embd});

                        layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM,        "weight", i), {n_embd});
                        layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM,        "bias", i), {n_embd});
                    }
                } break;
            case LLM_ARCH_BLOOM:
                {
                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
                    model.tok_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
                    model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"),   {n_embd});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_MPT:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        if (!model.output) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.attn_q_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.attn_k_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias",   i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // AWQ ScaleActivation layer
                        layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
                    }
                } break;
            case LLM_ARCH_STABLELM:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm =   ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors, present in Stable LM 2 1.6B
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // optional q and k layernorms, present in StableLM 2 12B
                        layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_QWEN:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd*3});
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff/2});
                    }
                } break;
            case LLM_ARCH_QWEN2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_QWEN2MOE:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                        GGML_ASSERT(hparams.n_expert      > 0);
                        GGML_ASSERT(hparams.n_expert_used > 0);

                        // MoE branch
                        auto n_ff_exp = n_ff / hparams.n_expert_used;
                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});

                        // Shared expert branch
                        layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
                        layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_PHI2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                        model.output_b      = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT,      "bias"),   {n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);

                        if (layer.wqkv == nullptr) {
                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
                            layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i),   {n_embd});

                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
                            layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i),   {n_embd_gqa});

                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
                            layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i),   {n_embd_gqa});
                        }

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_PHI3:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context* ctx_layer = ctx_for_layer(i);
                        ggml_context* ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
                        layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });

                        layer.rope_long  = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                        layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                    }
                } break;
            case LLM_ARCH_PLAMO:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_GPT2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD,   "weight"),   {n_embd, hparams.n_ctx_train});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_CODESHELL:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i),   {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i),     {n_ff});
                    }
                } break;
            case LLM_ARCH_ORION:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }
                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_INTERNLM2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});

                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_GEMMA:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading

                    const int64_t n_ff          = hparams.n_ff;
                    const int64_t n_embd_head_k = hparams.n_embd_head_k;
                    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
                    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();

                    for (uint32_t i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                    }
                } break;
            case LLM_ARCH_STARCODER2:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }

                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        // optional bias tensors
                        layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd});
                        layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa});
                        layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa});
                        layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});

                        // optional bias tensors
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP ,  "bias", i), {  n_ff});
                    }
                } break;
            case LLM_ARCH_MAMBA:
                {
                    const int64_t d_conv  = hparams.ssm_d_conv;
                    const int64_t d_inner = hparams.ssm_d_inner;
                    const int64_t d_state = hparams.ssm_d_state;
                    const int64_t dt_rank = hparams.ssm_dt_rank;
                    // only an expansion factor of 2 is supported for now
                    GGML_ASSERT(2 * n_embd == d_inner);

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});

                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed, duplicated to allow offloading
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        // norm
                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});

                        layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
                        layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});

                        layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});

                        layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
                        layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});

                        // no "weight" suffix for these
                        layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
                        layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});

                        // out_proj
                        layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
                    }
                } break;
            case LLM_ARCH_XVERSE:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }
                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);
                        auto & layer = model.layers[i];
                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_COMMAND_R:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        // init output from the input tok embed
                        model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        if (n_layer >= 64){
                            layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
                            layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
                        }

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});


                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                    }
                } break;
            case LLM_ARCH_GPTNEOX:
                {
                    model.tok_embd   = ml.create_tensor(ctx_input,  tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab});
                    // output
                    {
                        model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i),   {n_embd});

                        layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
                        layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa});

                        layer.wo   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
                        layer.bo   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd});

                        layer.ffn_norm   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
                        layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd});

                        layer.ffn_down   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
                        layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd});

                        layer.ffn_up     = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff});
                        layer.ffn_up_b   = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff});
                    }
                } break;
            case LLM_ARCH_ARCTIC:
                {
                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
                        // if output is NULL, init from the input tok embed
                        if (model.output == NULL) {
                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
                        }
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});

                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_embd});

                        layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
                        layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
                        layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, false);
                        layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert});
                        layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert});
                    }
                } break;
            case LLM_ARCH_DEEPSEEK2:
                {
                    bool is_lite = (hparams.n_layer == 27);

                    const uint32_t n_embd_head_qk_rope = hparams.n_rot;
                    const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
                    const uint32_t q_lora_rank = hparams.n_lora_q;
                    const uint32_t kv_lora_rank = hparams.n_lora_kv;
                    const uint32_t n_ff_exp = hparams.n_ff_exp;

                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});

                    // output
                    {
                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
                    }

                    for (int i = 0; i < n_layer; ++i) {
                        ggml_context * ctx_layer = ctx_for_layer(i);
                        ggml_context * ctx_split = ctx_for_layer_split(i);

                        auto & layer = model.layers[i];

                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
                        if (!is_lite) {
                            layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
                        }
                        layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});

                        if (!is_lite) {
                            layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A,   "weight", i), {n_embd, q_lora_rank});
                            layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B,   "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
                        } else {
                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_k_gqa});
                        }
                        layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA,   "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
                        layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B,   "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});

                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});

                        if ((uint32_t) i < hparams.n_layer_dense_lead) {
                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                        } else {
                            layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});

                            GGML_ASSERT(hparams.n_expert      > 0);
                            GGML_ASSERT(hparams.n_expert_used > 0);

                            // MoE branch
                            layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert});
                            layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert});
                            layer.ffn_up_exps   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert});

                            // Shared expert branch
                            layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd,   n_ff_exp * hparams.n_expert_shared});
                            layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {  n_ff_exp * hparams.n_expert_shared, n_embd});
                            layer.ffn_up_shexp   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd,   n_ff_exp * hparams.n_expert_shared});
                        }
                    }
                } break;
            default:
                throw std::runtime_error("unknown architecture");
        }
    }

    ml.done_getting_tensors();

    ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
    model.mappings.reserve(ml.mappings.size());

    // create the backend buffers
    std::vector> ctx_bufs;
    ctx_bufs.reserve(ctx_map.size());

    // Ensure we have enough capacity for the maximum backend buffer we will potentially create
    size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
    model.bufs.reserve(n_max_backend_buffer);

    for (auto & it : ctx_map) {
        ggml_backend_buffer_type_t buft = it.first;
        ggml_context * ctx              = it.second;

        llama_buf_map bufs;
        bufs.reserve(n_max_backend_buffer);

        // only the mmap region containing the tensors in the model is mapped to the backend buffer
        // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
        // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
        if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                void * addr = nullptr;
                size_t first, last;
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
                if (buf == nullptr) {
                    throw std::runtime_error("unable to allocate backend CPU buffer");
                }
                model.bufs.push_back(buf);
                bufs.emplace(idx, buf);
#ifdef GGML_USE_CUDA
                if (n_layer >= n_gpu_layers) {
                    ggml_backend_cuda_register_host_buffer(
                        ggml_backend_buffer_get_base(buf),
                        ggml_backend_buffer_get_size(buf));
                }
#endif
            }
        }
#ifdef GGML_USE_METAL
        else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                const size_t max_size = ggml_get_max_tensor_size(ctx);
                void * addr = nullptr;
                size_t first, last;
                ml.get_mapping_range(&first, &last, &addr, idx, ctx);
                if (first >= last) {
                    continue;
                }
                ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
                if (buf == nullptr) {
                    throw std::runtime_error("unable to allocate backend metal buffer");
                }
                model.bufs.push_back(buf);
                bufs.emplace(idx, buf);
            }
        }
#endif
        else {
            ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
            if (buf == nullptr) {
                throw std::runtime_error("unable to allocate backend buffer");
            }
            model.bufs.push_back(buf);
            if (use_mlock && ggml_backend_buffer_is_host(buf)) {
                model.mlock_bufs.emplace_back(new llama_mlock);
                auto & mlock_buf = model.mlock_bufs.back();
                mlock_buf->init   (ggml_backend_buffer_get_base(buf));
                mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
            }
            for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
                bufs.emplace(idx, buf);
            }
        }

        if (bufs.empty()) {
            throw std::runtime_error("failed to allocate buffer");
        }

        for (auto & buf : bufs) {
            // indicate that this buffer contains weights
            // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
            ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
        }

        ctx_bufs.emplace_back(ctx, bufs);
    }

    if (llama_supports_gpu_offload()) {
        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));

        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
        if (n_gpu_layers > (int) hparams.n_layer) {
            LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
        }

        const int max_backend_supported_layers = hparams.n_layer + 1;
        const int max_offloadable_layers       = hparams.n_layer + 1;

        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
    }

    // print memory requirements
    for (ggml_backend_buffer_t buf : model.bufs) {
        LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
    }

    // populate tensors_by_name
    for (ggml_context * ctx : model.ctxs) {
        for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
            model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
        }
    }

    // load tensor data
    for (auto & it : ctx_bufs) {
        ggml_context * ctx = it.first;
        auto & bufs = it.second;
        if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
            return false;
        }
    }

    if (use_mmap_buffer) {
        for (auto & mapping : ml.mappings) {
            model.mappings.emplace_back(std::move(mapping));
        }
    }

    // loading time will be recalculate after the first eval, so
    // we take page faults deferred by mmap() into consideration
    model.t_load_us = ggml_time_us() - model.t_start_us;
    return true;
}

// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
    try {
        llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);

        model.hparams.vocab_only = params.vocab_only;

        try {
            llm_load_arch(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
        }
        try {
            llm_load_hparams(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
        }
        try {
            llm_load_vocab(ml, model);
        } catch(const std::exception & e) {
            throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
        }

        llm_load_print_meta(ml, model);

        if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
            model.hparams.n_vocab != model.vocab.id_to_token.size()) {
            throw std::runtime_error("vocab size mismatch");
        }

        if (params.vocab_only) {
            LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
            return 0;
        }

#ifdef GGML_USE_KOMPUTE
        if (params.n_gpu_layers > 0 && (
            !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
            || !(
                model.ftype == LLAMA_FTYPE_ALL_F32 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
                model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
            )
        )) {
            // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
            LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
            params.n_gpu_layers = 0;
        }
#endif

        if (!llm_load_tensors(
            ml, model, params.n_gpu_layers, params.split_mode,  params.main_gpu, params.tensor_split, params.use_mlock,
            params.progress_callback, params.progress_callback_user_data
        )) {
            return -2;
        }
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
        return -1;
    }

    return 0;
}

//
// llm_build
//

using llm_build_cb = std::function;

enum llm_ffn_op_type {
    LLM_FFN_SILU,
    LLM_FFN_GELU,
    LLM_FFN_RELU,
    LLM_FFN_RELU_SQR,
};

enum llm_ffn_gate_type {
    LLM_FFN_SEQ,
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
};

static struct ggml_tensor * llm_build_inp_embd(
        struct ggml_context * ctx,
       struct llama_context & lctx,
        const llama_hparams & hparams,
          const llama_batch & batch,
         struct ggml_tensor * tok_embd,
         const llm_build_cb & cb) {
    const int64_t n_embd = hparams.n_embd;

    struct ggml_tensor * inpL;

    if (batch.token) {
        lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
        cb(lctx.inp_tokens, "inp_tokens", -1);
        ggml_set_input(lctx.inp_tokens);

        inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
    } else {
       lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
        inpL = lctx.inp_embd;
        ggml_set_input(lctx.inp_embd);
    }

    cb(inpL, "inp_embd", -1);

    return inpL;
}

static void llm_build_kv_store(
        struct ggml_context * ctx,
        const llama_hparams & hparams,
        const llama_cparams & cparams,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * k_cur,
         struct ggml_tensor * v_cur,
                    int32_t   n_tokens,
                    int32_t   kv_head,
         const llm_build_cb & cb,
                    int64_t   il) {
    const int64_t n_ctx = cparams.n_ctx;

    const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
    const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();

    GGML_ASSERT(kv.size == n_ctx);

    struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
            (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
    cb(k_cache_view, "k_cache_view", il);

    // note: storing RoPE-ed version of K in the KV cache
    ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));

    assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);

    struct ggml_tensor * v_cache_view = nullptr;

    if (cparams.flash_attn) {
        v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
                (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
    } else {
        // note: the V cache is transposed when not using flash attention
        v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
                (  n_ctx)*ggml_element_size(kv.v_l[il]),
                (kv_head)*ggml_element_size(kv.v_l[il]));

        v_cur = ggml_transpose(ctx, v_cur);
    }
    cb(v_cache_view, "v_cache_view", il);

    ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
}

static struct ggml_tensor * llm_build_norm(
        struct ggml_context * ctx,
         struct ggml_tensor * cur,
        const llama_hparams & hparams,
         struct ggml_tensor * mw,
         struct ggml_tensor * mb,
              llm_norm_type   type,
         const llm_build_cb & cb,
                        int   il) {
    switch (type) {
        case LLM_NORM:     cur = ggml_norm    (ctx, cur, hparams.f_norm_eps);     break;
        case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
    }

    if (mw || mb) {
        cb(cur, "norm", il);
    }

    if (mw) {
        cur = ggml_mul(ctx, cur, mw);
        if (mb) {
            cb(cur, "norm_w", il);
        }
    }

    if (mb) {
        cur = ggml_add(ctx, cur, mb);
    }

    return cur;
}

static struct ggml_tensor * llm_build_ffn(
        struct ggml_context * ctx,
         struct ggml_tensor * cur,
         struct ggml_tensor * up,
         struct ggml_tensor * up_b,
         struct ggml_tensor * gate,
         struct ggml_tensor * gate_b,
         struct ggml_tensor * down,
         struct ggml_tensor * down_b,
         struct ggml_tensor * act_scales,
            llm_ffn_op_type   type_op,
          llm_ffn_gate_type   type_gate,
         const llm_build_cb & cb,
                        int   il) {
    struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
    cb(tmp, "ffn_up", il);

    if (up_b) {
        tmp = ggml_add(ctx, tmp, up_b);
        cb(tmp, "ffn_up_b", il);
    }

    if (gate) {
        switch (type_gate) {
            case LLM_FFN_SEQ:
                {
                    cur = ggml_mul_mat(ctx, gate, tmp);
                    cb(cur, "ffn_gate", il);
                } break;
            case LLM_FFN_PAR:
                {
                    cur = ggml_mul_mat(ctx, gate, cur);
                    cb(cur, "ffn_gate", il);
                } break;
        }

        if (gate_b) {
            cur = ggml_add(ctx, cur, gate_b);
            cb(cur, "ffn_gate_b", il);
        }
    } else {
        cur = tmp;
    }

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                cur = ggml_silu(ctx, cur);
                cb(cur, "ffn_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                cur = ggml_gelu(ctx, cur);
                cb(cur, "ffn_gelu", il);
                if (act_scales != NULL) {
                    cur = ggml_div(ctx, cur, act_scales);
                    cb(cur, "ffn_act", il);
                }
            } break;
        case LLM_FFN_RELU:
            {
                cur = ggml_relu(ctx, cur);
                cb(cur, "ffn_relu", il);
            } break;
        case LLM_FFN_RELU_SQR:
            {
                cur = ggml_relu(ctx, cur);
                cb(cur, "ffn_relu", il);

                cur = ggml_sqr(ctx, cur);
                cb(cur, "ffn_sqr(relu)", il);
            } break;
    }

    if (type_gate == LLM_FFN_PAR) {
        cur = ggml_mul(ctx, cur, tmp);
        cb(cur, "ffn_gate_par", il);
    }

    cur = ggml_mul_mat(ctx, down, cur);
    if (down_b) {
        cb(cur, "ffn_down", il);
    }

    if (down_b) {
        cur = ggml_add(ctx, cur, down_b);
    }

    return cur;
}

static struct ggml_tensor * llm_build_moe_ffn(
        struct ggml_context * ctx,
         struct ggml_tensor * cur,
         struct ggml_tensor * gate_inp,
         struct ggml_tensor * up_exps,
         struct ggml_tensor * gate_exps,
         struct ggml_tensor * down_exps,
                    int64_t   n_expert,
                    int64_t   n_expert_used,
            llm_ffn_op_type   type_op,
                       bool   norm_w,
                       bool   scale_w,
                      float   w_scale,
         const llm_build_cb & cb,
                        int   il) {
    int64_t n_embd = cur->ne[0];
    int64_t n_tokens = cur->ne[1];

    ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
    cb(logits, "ffn_moe_logits", il);

    ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
    cb(probs, "ffn_moe_probs", il);

    // select experts
    ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
    cb(selected_experts->src[0], "ffn_moe_argsort", il);
    cb(selected_experts, "ffn_moe_topk", il);

    ggml_tensor * weights = ggml_get_rows(ctx,
            ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
    cb(weights, "ffn_moe_weights", il);

    if (norm_w) {
        weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);

        ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
        cb(weights_sum, "ffn_moe_weights_sum", il);

        weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
        cb(weights, "ffn_moe_weights_norm", il);

        weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
    }
    if (scale_w) {
        weights = ggml_scale(ctx, weights, w_scale);
        cb(weights, "ffn_moe_weights_scaled", il);
    }

    cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
    ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(up, "ffn_moe_up", il);

    ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
    cb(gate, "ffn_moe_gate", il);

    switch (type_op) {
        case LLM_FFN_SILU:
            {
                gate = ggml_silu(ctx, gate);
                cb(gate, "ffn_moe_silu", il);
            } break;
        case LLM_FFN_GELU:
            {
                gate = ggml_gelu(ctx, gate);
                cb(gate, "ffn_moe_gelu", il);
            } break;
        default:
            GGML_ASSERT(false);
    }

    ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
    cb(par, "ffn_moe_gate_par", il);

    ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
    cb(experts, "ffn_moe_down", il);

    experts = ggml_mul(ctx, experts, weights);

    // aggregate experts
    ggml_tensor * moe_out = nullptr;
    for (int i = 0; i < n_expert_used; ++i) {
        ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
                experts->nb[2], i*experts->nb[1]);

        if (i == 0) {
            moe_out = cur_expert;
        } else {
            moe_out = ggml_add(ctx, moe_out, cur_expert);
        }
    }

    if (n_expert_used == 1) {
        // avoid returning a non-contiguous tensor
        moe_out = ggml_cont(ctx, moe_out);
    }

    return moe_out;
}

static struct ggml_tensor * llm_build_kqv(
        struct ggml_context * ctx,
          const llama_model & model,
        const llama_hparams & hparams,
        const llama_cparams & cparams,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * wo,
         struct ggml_tensor * wo_b,
         struct ggml_tensor * q_cur,
         struct ggml_tensor * kq_mask,
                    int32_t   n_tokens,
                    int32_t   n_kv,
                    float     kq_scale,
         const llm_build_cb & cb,
                    int       il) {
    const int64_t n_ctx         = cparams.n_ctx;
    const int64_t n_head        = hparams.n_head;
    const int64_t n_head_kv     = hparams.n_head_kv;
    const int64_t n_embd_head_k = hparams.n_embd_head_k;
    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
    const int64_t n_embd_head_v = hparams.n_embd_head_v;
    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();

    struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
    cb(q, "q", il);

    struct ggml_tensor * k =
        ggml_view_3d(ctx, kv.k_l[il],
                n_embd_head_k, n_kv, n_head_kv,
                ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
                ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
                0);
    cb(k, "k", il);

    struct ggml_tensor * cur;

    if (cparams.flash_attn) {
        GGML_UNUSED(model);
        GGML_UNUSED(n_ctx);

        // split cached v into n_head heads (not transposed)
        struct ggml_tensor * v =
            ggml_view_3d(ctx, kv.v_l[il],
                    n_embd_head_v, n_kv, n_head_kv,
                    ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
                    ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
                    0);
        cb(v, "v", il);

        cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);

        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
        }

        cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
    } else {
        struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
        cb(kq, "kq", il);

        if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
            // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
            // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
            ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
        }

        if (model.arch == LLM_ARCH_GROK) {
            // need to do the following:
            // multiply by attn_output_multiplyer of 0.08838834764831845
            // and then :
            // kq = 30 * tanh(kq / 30)
            // before the softmax below

            //try from phi2
            //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
            kq = ggml_scale(ctx, kq, 30);
        }

        kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
        cb(kq, "kq_soft_max_ext", il);

        GGML_ASSERT(kv.size == n_ctx);

        // split cached v into n_head heads
        struct ggml_tensor * v =
            ggml_view_3d(ctx, kv.v_l[il],
                    n_kv, n_embd_head_v, n_head_kv,
                    ggml_element_size(kv.v_l[il])*n_ctx,
                    ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
                    0);
        cb(v, "v", il);

        struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
        cb(kqv, "kqv", il);

        struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
        cb(kqv_merged, "kqv_merged", il);

        cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
        cb(cur, "kqv_merged_cont", il);
    }

    ggml_build_forward_expand(graph, cur);

    cur = ggml_mul_mat(ctx, wo, cur);
    if (wo_b) {
        cb(cur, "kqv_wo", il);
    }

    if (wo_b) {
        cur = ggml_add(ctx, cur, wo_b);
    }

    return cur;
}

static struct ggml_tensor * llm_build_kv(
        struct ggml_context * ctx,
          const llama_model & model,
        const llama_hparams & hparams,
        const llama_cparams & cparams,
       const llama_kv_cache & kv,
         struct ggml_cgraph * graph,
         struct ggml_tensor * wo,
         struct ggml_tensor * wo_b,
         struct ggml_tensor * k_cur,
         struct ggml_tensor * v_cur,
         struct ggml_tensor * q_cur,
         struct ggml_tensor * kq_mask,
                    int32_t   n_tokens,
                    int32_t   kv_head,
                    int32_t   n_kv,
                    float     kq_scale,
         const llm_build_cb & cb,
                    int       il) {

    // these nodes are added to the graph together so that they are not reordered
    // by doing so, the number of splits in the graph is reduced
    ggml_build_forward_expand(graph, q_cur);
    ggml_build_forward_expand(graph, k_cur);
    ggml_build_forward_expand(graph, v_cur);

    llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);

    struct ggml_tensor * cur;

    cur  = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
            q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
    cb(cur, "kqv_out", il);

    return cur;
}

struct llm_build_context {
    const llama_model    & model;
          llama_context  & lctx;
    const llama_hparams  & hparams;
    const llama_cparams  & cparams;
    const llama_batch    & batch;
    const llama_kv_cache & kv_self;

    const int64_t n_embd;
    const int64_t n_layer;
    const int64_t n_rot;
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
    const int64_t n_head;
    const int64_t n_head_kv;
    const int64_t n_embd_head_k;
    const int64_t n_embd_k_gqa;
    const int64_t n_embd_head_v;
    const int64_t n_embd_v_gqa;
    const int64_t n_expert;
    const int64_t n_expert_used;

    const float freq_base;
    const float freq_scale;
    const float ext_factor;
    const float attn_factor;
    const float beta_fast;
    const float beta_slow;
    const float norm_eps;
    const float norm_rms_eps;

    const int32_t n_tokens;
    const int32_t n_kv;     // size of KV cache to consider (n_kv <= kv_self.size)
    const int32_t n_outputs;
    const int32_t kv_head;  // index of where we store new KV data in the cache
    const int32_t n_ctx_orig;

    const bool flash_attn;

    const enum llama_pooling_type pooling_type;
    const enum llama_rope_type    rope_type;

    const llm_build_cb & cb;

    std::vector & buf_compute_meta;

    struct ggml_context * ctx0 = nullptr;

    // TODO: consider making the entire interface noexcept
    llm_build_context(
        llama_context  & lctx,
    const llama_batch  & batch,
    const llm_build_cb & cb,
                  bool   worst_case) :
        model            (lctx.model),
        lctx             (lctx),
        hparams          (model.hparams),
        cparams          (lctx.cparams),
        batch            (batch),
        kv_self          (lctx.kv_self),
        n_embd           (hparams.n_embd),
        n_layer          (hparams.n_layer),
        n_rot            (hparams.n_rot),
        n_ctx            (cparams.n_ctx),
        n_head           (hparams.n_head),
        n_head_kv        (hparams.n_head_kv),
        n_embd_head_k    (hparams.n_embd_head_k),
        n_embd_k_gqa     (hparams.n_embd_k_gqa()),
        n_embd_head_v    (hparams.n_embd_head_v),
        n_embd_v_gqa     (hparams.n_embd_v_gqa()),
        n_expert         (hparams.n_expert),
        n_expert_used    (hparams.n_expert_used),
        freq_base        (cparams.rope_freq_base),
        freq_scale       (cparams.rope_freq_scale),
        ext_factor       (cparams.yarn_ext_factor),
        attn_factor      (cparams.yarn_attn_factor),
        beta_fast        (cparams.yarn_beta_fast),
        beta_slow        (cparams.yarn_beta_slow),
        norm_eps         (hparams.f_norm_eps),
        norm_rms_eps     (hparams.f_norm_rms_eps),
        n_tokens         (batch.n_tokens),
        n_kv             (worst_case ? kv_self.size : kv_self.n),
        n_outputs        (worst_case ? n_tokens : lctx.n_outputs),
        kv_head          (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
        n_ctx_orig       (cparams.n_ctx_orig_yarn),
        flash_attn       (cparams.flash_attn),
        pooling_type     (cparams.pooling_type),
        rope_type        (hparams.rope_type),
        cb               (cb),
        buf_compute_meta (lctx.buf_compute_meta) {
            // all initializations should be done in init()
        }

    void init() {
        struct ggml_init_params params = {
            /*.mem_size   =*/ buf_compute_meta.size(),
            /*.mem_buffer =*/ buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };

        ctx0 = ggml_init(params);

        lctx.inp_tokens  = nullptr;
        lctx.inp_embd    = nullptr;
        lctx.inp_pos     = nullptr;
        lctx.inp_out_ids = nullptr;
        lctx.inp_KQ_mask = nullptr;
        lctx.inp_K_shift = nullptr;
        lctx.inp_mean    = nullptr;
        lctx.inp_cls     = nullptr;
        lctx.inp_s_copy  = nullptr;
        lctx.inp_s_mask  = nullptr;
        lctx.inp_s_seq   = nullptr;
    }

    void free() {
        if (ctx0) {
            ggml_free(ctx0);
            ctx0 = nullptr;
        }
    }

    struct ggml_cgraph * build_k_shift() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        GGML_ASSERT(kv_self.size == n_ctx);

        lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
        cb(lctx.inp_K_shift, "K_shift", -1);
        ggml_set_input(lctx.inp_K_shift);


        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * rope_factors = build_rope_factors(il);
            struct ggml_tensor * tmp =
                // we rotate only the first n_rot dimensions
                ggml_rope_ext_inplace(ctx0,
                        ggml_view_3d(ctx0, kv_self.k_l[il],
                            n_embd_head_k, n_head_kv, n_ctx,
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
                            ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                            0),
                        lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);

            cb(tmp, "K_shifted", il);
            ggml_build_forward_expand(gf, tmp);
        }

        return gf;
    }

    struct ggml_cgraph * build_s_copy() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        GGML_ASSERT(kv_self.recurrent);

        struct ggml_tensor * state_copy = build_inp_s_copy();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
            struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);

            conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
            ssm_states  = ggml_get_rows(ctx0,  ssm_states, state_copy);

            // TODO: name the intermediate tensors with cb()

            ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
            ggml_build_forward_expand(gf, ggml_cpy(ctx0,  ssm_states, kv_self.v_l[il]));
        }

        return gf;
    }

    struct ggml_cgraph * build_defrag(const std::vector & ids) {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        for (uint32_t i = 0; i < ids.size(); ++i) {
            const uint32_t id = ids[i];

            if (i == id || id == ids.size()) {
                continue;
            }

            uint32_t nm = 1;

            while (i + nm < ids.size() && ids[i + nm] == id + nm) {
                nm++;
            }

            for (int il = 0; il < n_layer; ++il) {
                ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
                        n_embd_k_gqa, nm,
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));

                ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
                        n_embd_k_gqa, nm,
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
                        ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));

                ggml_tensor * view_v_src;
                ggml_tensor * view_v_dst;

                if (flash_attn) {
                    // NOTE: the V cache is not transposed when using flash attention
                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
                            n_embd_v_gqa, nm,
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));

                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
                            n_embd_v_gqa, nm,
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
                            ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
                } else {
                    view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
                            nm, n_embd_v_gqa,
                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
                            ggml_row_size(kv_self.v_l[il]->type, i));

                    view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
                            nm, n_embd_v_gqa,
                            ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
                            ggml_row_size(kv_self.v_l[il]->type, id));
                }

                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
                ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
            }

            i += nm - 1;
        }

        //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);

        return gf;
    }

    struct ggml_tensor * build_inp_pos() {
        lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        cb(lctx.inp_pos, "inp_pos", -1);
        ggml_set_input(lctx.inp_pos);
        return lctx.inp_pos;
    }

    struct ggml_tensor * build_rope_factors(int il) {
        // choose long/short freq factors based on the context size
        const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;

        if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
            return model.layers[il].rope_long;
        }

        return model.layers[il].rope_short;
    }

    struct ggml_tensor * build_inp_out_ids() {
        lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
        cb(lctx.inp_out_ids, "inp_out_ids", -1);
        ggml_set_input(lctx.inp_out_ids);
        return lctx.inp_out_ids;
    }

    struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
        if (causal) {
            lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv,     GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        } else {
            lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
        }
        cb(lctx.inp_KQ_mask, "KQ_mask", -1);
        ggml_set_input(lctx.inp_KQ_mask);
        return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
    }

    struct ggml_tensor * build_inp_mean() {
        lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
        cb(lctx.inp_mean, "inp_mean", -1);
        ggml_set_input(lctx.inp_mean);
        return lctx.inp_mean;
    }

    struct ggml_tensor * build_inp_cls() {
        lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
        cb(lctx.inp_cls, "inp_cls", -1);
        ggml_set_input(lctx.inp_cls);
        return lctx.inp_cls;
    }

    struct ggml_tensor * build_inp_s_copy() {
        lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
        cb(lctx.inp_s_copy, "inp_s_copy", -1);
        ggml_set_input(lctx.inp_s_copy);
        return lctx.inp_s_copy;
    }

    struct ggml_tensor * build_inp_s_mask() {
        lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
        cb(lctx.inp_s_mask, "inp_s_mask", -1);
        ggml_set_input(lctx.inp_s_mask);
        return lctx.inp_s_mask;
    }

    struct ggml_tensor * build_inp_s_seq() {
        lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
        cb(lctx.inp_s_seq, "inp_s_seq", -1);
        ggml_set_input(lctx.inp_s_seq);
        return lctx.inp_s_seq;
    }

    struct ggml_cgraph * build_llama() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            if (model.layers[il].ffn_gate_inp == nullptr) {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            } else {
                // MoE branch
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_moe_ffn(ctx0, cur,
                        model.layers[il].ffn_gate_inp,
                        model.layers[il].ffn_up_exps,
                        model.layers[il].ffn_gate_exps,
                        model.layers[il].ffn_down_exps,
                        n_expert, n_expert_used,
                        LLM_FFN_SILU, true,
                        false, 0.0,
                        cb, il);
                cb(cur, "ffn_moe_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_baichuan() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                switch (model.type) {
                    case MODEL_7B:
                        Qcur = ggml_rope_ext(
                            ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow
                        );
                        Kcur = ggml_rope_ext(
                            ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow
                        );
                        break;
                    case MODEL_13B:
                        Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
                        Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
                        break;
                    default:
                        GGML_ASSERT(false);
                }
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_xverse() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);
                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,      cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_falcon() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * attn_norm;

            attn_norm = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm, "attn_norm", il);

            // self-attention
            {
                if (model.layers[il].attn_norm_2) {
                    // Falcon-40B
                    cur = llm_build_norm(ctx0, inpL, hparams,
                            model.layers[il].attn_norm_2,
                            model.layers[il].attn_norm_2_b,
                            LLM_NORM, cb, il);
                    cb(cur, "attn_norm_2", il);
                } else {
                    cur = attn_norm;
                }

                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                // using mode = 2 for neox mode
                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur       = ggml_get_rows(ctx0,       cur, inp_out_ids);
                inpL      = ggml_get_rows(ctx0,      inpL, inp_out_ids);
                attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = cur;

            // feed forward
            {
                cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
                        model.layers[il].ffn_up,   NULL,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        // norm
        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_grok() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // multiply by embedding_multiplier_scale of 78.38367176906169
        inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);


            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            // Grok
            // if attn_out_norm is present then apply it before adding the input
            if (model.layers[il].attn_out_norm) {
                cur = llm_build_norm(ctx0, cur, hparams,
                        model.layers[il].attn_out_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "attn_out_norm", il);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_moe_ffn(ctx0, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_GELU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            // Grok
            // if layer_out_norm is present then apply it before adding the input
            // Idea: maybe ffn_out_norm is a better name
            if (model.layers[il].layer_out_norm) {
                cur = llm_build_norm(ctx0, cur, hparams,
                        model.layers[il].layer_out_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "layer_out_norm", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);

        // Grok
        // multiply logits by output_multiplier_scale of 0.5773502691896257

        cur = ggml_scale(ctx0, cur, 0.5773502691896257f);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_dbrx() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                                 model.layers[il].attn_norm, NULL,
                                 LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                cb(cur, "wqkv_clamped", il);

                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                                 model.layers[il].attn_out_norm, NULL,
                                 LLM_NORM, cb, il);
            cb(cur, "attn_out_norm", il);

            cur = llm_build_moe_ffn(ctx0, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                             model.output_norm, NULL,
                             LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_starcoder() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
        cb(pos, "pos_embd", -1);

        inpL = ggml_add(ctx0, inpL, pos);
        cb(inpL, "inpL", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_refact() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
                cb(Kcur, "Kcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                cb(Qcur, "Qcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_bert() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();

        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;
        struct ggml_tensor * inp_pos = nullptr;

        if (model.arch != LLM_ARCH_JINA_BERT_V2) {
            inp_pos = build_inp_pos();
        }
        struct ggml_tensor * inp_mean = build_inp_mean();
        struct ggml_tensor * inp_cls  = build_inp_cls();

        // construct input embeddings (token, type, position)
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // token types are hardcoded to zero ("Sentence A")
        struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
        inpL = ggml_add(ctx0, inpL, type_row0);
        if (model.arch == LLM_ARCH_BERT) {
            inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
        }
        cb(inpL, "inp_embd", -1);

        // embed layer norm
        inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
        cb(inpL, "inp_norm", -1);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);

        // iterate layers
        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * cur = inpL;

            struct ggml_tensor * Qcur;
            struct ggml_tensor * Kcur;
            struct ggml_tensor * Vcur;

            // self-attention
            if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
                Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            model.layers[il].attn_q_norm_b,
                            LLM_NORM, cb, il);
                }

                Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                if (model.layers[il].attn_k_norm) {
                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            model.layers[il].attn_k_norm_b,
                            LLM_NORM, cb, il);
                }
                Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
            } else {
                // compute Q and K and RoPE them
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);
            }

            struct ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
            struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));

            struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            cb(kq, "kq", il);

            kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
            cb(kq, "kq_soft_max_ext", il);

            struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
            cb(v, "v", il);

            struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
            cb(kqv, "kqv", il);

            struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cb(kqv_merged, "kqv_merged", il);

            cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
            cb(cur, "kqv_merged_cont", il);

            ggml_build_forward_expand(gf, cur);

            cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
            if (model.layers[il].bo) {
                cb(cur, "kqv_wo", il);
            }

            if (model.layers[il].bo) {
                cur = ggml_add(ctx0, cur, model.layers[il].bo);
            }
            cb(cur, "kqv_out", il);

            if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // re-add the layer input
            cur = ggml_add(ctx0, cur, inpL);

            // attention layer norm
            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);

            if (model.layers[il].attn_norm_2 != nullptr) {
                cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
                cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
            }

            struct ggml_tensor * ffn_inp = cur;
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            if (model.arch == LLM_ARCH_BERT) {
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
            } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
            } else {
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            }
            cb(cur, "ffn_out", il);

            // attentions bypass the intermediate layer
            cur = ggml_add(ctx0, cur, ffn_inp);

            // output layer norm
            cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);

            // input for next layer
            inpL = cur;
        }

        // final output
        cur = inpL;
        cb(cur, "result_embd", -1);

        // pooling layer
        switch (pooling_type) {
            case LLAMA_POOLING_TYPE_NONE:
                {
                    // nop
                } break;
            case LLAMA_POOLING_TYPE_MEAN:
                {
                    cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
                    cb(cur, "result_embd_pooled", -1);
                } break;
            case LLAMA_POOLING_TYPE_CLS:
                {
                    cur = ggml_get_rows(ctx0, cur, inp_cls);
                    cb(cur, "result_embd_pooled", -1);
                } break;
            case LLAMA_POOLING_TYPE_UNSPECIFIED:
                {
                    GGML_ASSERT(false && "Invalid pooling type");
                } break;
        }

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_bloom() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        inpL = llm_build_norm(ctx0, inpL, hparams,
                model.tok_norm,
                model.tok_norm_b,
                LLM_NORM, cb, -1);
        cb(inpL, "inp_norm", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // Add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_mpt() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * pos;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        if (model.pos_embd) {
            // inp_pos - contains the positions
            struct ggml_tensor * inp_pos = build_inp_pos();
            pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
            cb(pos, "pos_embd", -1);

            inpL = ggml_add(ctx0, inpL, pos);
            cb(inpL, "inpL", -1);
        }

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * attn_norm;

            attn_norm = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm, "attn_norm", il);

            // self-attention
            {
                cur = attn_norm;

                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                if (model.layers[il].bqkv){
                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                    cb(cur, "bqkv", il);
                }

                if (hparams.f_clamp_kqv > 0.0f) {
                    cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(cur, "wqkv_clamped", il);
                }

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // Q/K Layernorm
                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            model.layers[il].attn_q_norm_b,
                            LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);

                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            model.layers[il].attn_k_norm_b,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);

                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                    cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                            model.layers[il].wo, model.layers[il].bo,
                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
                } else {
                    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                    cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                            model.layers[il].wo, model.layers[il].bo,
                            Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
                }
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // Add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // feed forward
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        model.layers[il].ffn_act,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_stablelm() {
        struct ggml_cgraph * gf = ggml_new_graph(ctx0);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {


            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            struct ggml_tensor * inpSA = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                cb(Qcur, "Qcur", il);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
                cb(Kcur, "Kcur", il);

                if (model.layers[il].attn_q_norm) {
                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                            model.layers[il].attn_q_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);
                }
                if (model.layers[il].attn_k_norm) {
                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);
                }


                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpL  = ggml_get_rows(ctx0,  inpL, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                if (model.layers[il].ffn_norm) {
                    cur = llm_build_norm(ctx0, ffn_inp, hparams,
                            model.layers[il].ffn_norm,
                            model.layers[il].ffn_norm_b,
                            LLM_NORM, cb, il);
                    cb(cur, "ffn_norm", il);
                } else {
                    // parallel residual
                    cur = inpSA;
                }
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                // using mode = 2 for neox mode
                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward forward
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                    model.layers[il].ffn_up,   NULL,
                    model.layers[il].ffn_gate, NULL,
                    model.layers[il].ffn_down, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_qwen2moe() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self_attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // MoE branch
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            ggml_tensor * moe_out =
                    llm_build_moe_ffn(ctx0, cur,
                        model.layers[il].ffn_gate_inp,
                        model.layers[il].ffn_up_exps,
                        model.layers[il].ffn_gate_exps,
                        model.layers[il].ffn_down_exps,
                        n_expert, n_expert_used,
                        LLM_FFN_SILU, false,
                        false, 0.0,
                        cb, il);
            cb(cur, "ffn_moe_out", il);

            // FFN shared expert
            {
                ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
                cb(cur_gate_inp, "ffn_shexp_gate_inp", il);

                // sigmoid
                ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
                cb(cur_gate, "ffn_shexp_gate", il);

                ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up_shexp,   NULL,
                        model.layers[il].ffn_gate_shexp, NULL,
                        model.layers[il].ffn_down_shexp, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur_ffn, "ffn_shexp", il);

                ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
                cb(ffn_shexp_out, "ffn_shexp_out", il);

                moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
                cb(moe_out, "ffn_out", il);

                cur = moe_out;
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_phi2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * attn_norm_output;
        struct ggml_tensor * ffn_output;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(attn_norm_output, "attn_norm", il);

            // self-attention
            {
                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                if (model.layers[il].wqkv) {
                    cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
                    cb(cur, "wqkv", il);

                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                    cb(cur, "bqkv", il);

                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
                } else {
                    Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
                    Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
                    Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
                }

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                // with phi2, we scale the Q to avoid precision issues
                // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
                Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur              = ggml_get_rows(ctx0,              cur, inp_out_ids);
                inpL             = ggml_get_rows(ctx0,             inpL, inp_out_ids);
                attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
            }

            // FF
            {
                ffn_output = llm_build_ffn(ctx0, attn_norm_output,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(ffn_output, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, ffn_output);
            cb(cur, "l_out", il);

            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "l_out", il);

            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output_no_bias", -1);

        cur = ggml_add(ctx0, cur, model.output_b);
        cb(cur, "result_output", -1);
        ggml_build_forward_expand(gf, cur);
        return gf;
    }

    struct ggml_cgraph * build_phi3() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            auto residual = inpL;

            // self-attention
            {
                // rope freq factors for 128k context
                struct ggml_tensor * rope_factors = build_rope_factors(il);

                struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    NULL,
                    LLM_NORM_RMS, cb, il);
                cb(attn_norm_output, "attn_norm", il);

                struct ggml_tensor * Qcur = nullptr;
                struct ggml_tensor * Kcur = nullptr;
                struct ggml_tensor * Vcur = nullptr;

                if (model.layers[il].wqkv) {
                    cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
                    cb(cur, "wqkv", il);

                    Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
                    Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
                    Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
                }
                else {
                    Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
                    Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
                    Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
                }

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);

                Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
                    freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor* inp_out_ids = build_inp_out_ids();
                cur = ggml_get_rows(ctx0, cur, inp_out_ids);
                residual = ggml_get_rows(ctx0, residual, inp_out_ids);
            }

            cur = ggml_add(ctx0, cur, residual);
            residual = cur;

            cur = llm_build_norm(ctx0, cur, hparams,
                model.layers[il].ffn_norm, NULL,
                LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            // FF
            // special-case: the up and gate tensors are merged into a single tensor
            // TOOD: support into llm_build_ffn
            {
                struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
                cb(up, "ffn_up", il);

                auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
                auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));

                y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
                cb(y, "ffn_gate", il);

                auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
                cb(down, "ffn_down", il);

                cur = down;
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, residual, cur);
            cb(cur, "l_out", il);

            inpL = cur;
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
            model.output_norm,
            NULL,
            LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }


    struct ggml_cgraph * build_plamo() {
        struct ggml_cgraph * gf = ggml_new_graph(ctx0);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            struct ggml_tensor * attention_norm = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens), inp_pos, nullptr,
                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
                        n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }
            struct ggml_tensor * sa_out = cur;

            cur = attention_norm;

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur    = ggml_get_rows(ctx0,    cur, inp_out_ids);
                sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
                inpL   = ggml_get_rows(ctx0,   inpL, inp_out_ids);
            }

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up, NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, sa_out);
            cb(cur, "l_out", il);

            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gpt2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * pos;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
        cb(pos, "pos_embd", -1);

        inpL = ggml_add(ctx0, inpL, pos);
        cb(inpL, "inpL", -1);

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_codeshell() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(tmpq, "tmpq", il);
                cb(tmpk, "tmpk", il);
                cb(Vcur, "Vcur", il);

                struct ggml_tensor * Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // add the input
            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
            cb(ffn_inp, "ffn_inp", il);

            // FF
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);
            }

            inpL = ggml_add(ctx0, cur, ffn_inp);
            cb(inpL, "l_out", il);
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_orion() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                // if (model.layers[il].bq) {
                //     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                //     cb(Qcur, "Qcur", il);
                // }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                // if (model.layers[il].bk) {
                //     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                //     cb(Kcur, "Kcur", il);
                // }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                // if (model.layers[il].bv) {
                //     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                //     cb(Vcur, "Vcur", il);
                // }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                    model.layers[il].ffn_up,   NULL,
                    model.layers[il].ffn_gate, NULL,
                    model.layers[il].ffn_down, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_internlm2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                    model.layers[il].ffn_up,   NULL,
                    model.layers[il].ffn_gate, NULL,
                    model.layers[il].ffn_down, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    // ref: https://arxiv.org/abs/2203.03466
    //      https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
    // based on the original build_llama() function
    struct ggml_cgraph * build_minicpm() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        const int64_t n_embd = hparams.n_embd;
        //TODO: if the model varies, these parameters need to be read from the model
        const int64_t n_embd_base = 256;
        const float scale_embd  = 12.0f;
        const float scale_depth = 1.4f;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // scale the input embeddings
        inpL = ggml_scale(ctx0, inpL, scale_embd);
        cb(inpL, "inp_scaled", -1);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            // scale_res - scale the hidden states for residual connection
            const float scale_res = scale_depth/sqrtf(float(n_layer));
            cur = ggml_scale(ctx0, cur, scale_res);
            cb(cur, "hidden_scaled", -1);

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            // scale the hidden states for residual connection
            cur = ggml_scale(ctx0, cur, scale_res);
            cb(cur, "hidden_scaled_ffn", -1);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head scaling
        const float scale_lmhead = float(n_embd_base)/float(n_embd);
        cur = ggml_scale(ctx0, cur, scale_lmhead);
        cb(cur, "lmhead_scaling", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gemma() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head_k = hparams.n_embd_head_k;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
        cb(inpL, "inp_scaled", -1);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Qcur, "Qcur", il);

                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
                cb(Qcur, "Qcur_scaled", il);

                Kcur = ggml_rope_ext(
                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
                        ext_factor, attn_factor, beta_fast, beta_slow);
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
            cb(sa_out, "sa_out", il);

            cur = llm_build_norm(ctx0, sa_out, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up, NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            cur = ggml_add(ctx0, cur, sa_out);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_starcoder2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network

            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
            cb(cur, "ffn_out", il);
            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_mamba() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t d_model = n_embd;
        const int64_t d_conv  = hparams.ssm_d_conv;
        const int64_t d_inner = hparams.ssm_d_inner;
        GGML_ASSERT(2 * d_model == d_inner);
        const int64_t d_state = hparams.ssm_d_state;
        const int64_t dt_rank = hparams.ssm_dt_rank;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        // {n_embd, n_tokens}
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        struct ggml_tensor * state_mask = build_inp_s_mask();
        struct ggml_tensor * state_seq  = build_inp_s_seq();

        for (int il = 0; il < n_layer; ++il) {
            // (ab)using the KV cache to store the states
            struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
            struct ggml_tensor * ssm_states  = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);

            // clear states of sequences which are starting at the beginning of this batch
            {
                conv_states = ggml_mul(ctx0,
                    ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
                    state_mask);
                ssm_states  = ggml_mul(ctx0,
                    ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
                    state_mask);
            }

            conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
            ssm_states  = ggml_reshape_3d(ctx0,  ssm_states,    d_state, d_inner, n_kv);

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
            struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
            // split the above in two
            // => {d_inner, n_tokens}
            struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
            struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);

            // conv
            {
                // Custom operator which is needed only to ease simultaneous sequence processing.
                // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
                // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
                // then element-wise multiply that with the conv1d weigth,
                // then sum the elements of each row,
                // (the last two steps are a dot product over rows (also doable with mul_mat))
                // then permute away the ne[0] dimension,
                // and then you're left with the resulting x tensor.
                // The new conv_states is the last (d_conv - 1) columns
                // of the last 3rd dimensional "layer" of the self-overlapping view.
                // For simultaneous sequences, it's more complicated.
                struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);

                // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
                ggml_build_forward_expand(gf,
                    ggml_cpy(ctx0,
                        ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
                        ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));

                // extract x from x_conv
                x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);

                // bias
                x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);

                x = ggml_silu(ctx0, x);
            }

            // ssm
            {
                // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
                struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
                // split
                struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
                struct ggml_tensor * B  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
                struct ggml_tensor * C  = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));

                // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
                dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
                dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);

                // Custom operator to optimize the parallel associative scan
                // as described in the Annex D of the Mamba paper.
                // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
                // because only a single tensor can be returned.
                struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);

                // store last states (the second part of y_ssm_states)
                ggml_build_forward_expand(gf,
                    ggml_cpy(ctx0,
                        ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
                        ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));

                struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);

                if (il == n_layer - 1) {
                    // skip computing output for unused tokens
                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                    x    = ggml_get_rows(ctx0,    x, inp_out_ids);
                    y    = ggml_get_rows(ctx0,    y, inp_out_ids);
                    z    = ggml_get_rows(ctx0,    z, inp_out_ids);
                    inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
                }

                // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
                y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
                y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));

                // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
                cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
            }

            // residual
            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        // final rmsnorm
        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_command_r() {

        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        const float f_logit_scale = hparams.f_logit_scale;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);
            struct ggml_tensor * ffn_inp = cur;

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                    cb(Vcur, "Vcur", il);
                }

                if (model.layers[il].attn_q_norm) {
                    Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
                                ggml_element_size(Qcur) * n_embd_head,
                                ggml_element_size(Qcur) * n_embd_head * n_head,
                                0);
                    cb(Qcur, "Qcur", il);
                    Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
                                ggml_element_size(Kcur) * n_embd_head,
                                ggml_element_size(Kcur) * n_embd_head * n_head_kv,
                                0);
                    cb(Kcur, "Kcur", il);

                    Qcur = llm_build_norm(ctx0, Qcur, hparams,
                                model.layers[il].attn_q_norm,
                                NULL,
                                LLM_NORM, cb, il);
                    cb(Qcur, "Qcur", il);

                    Kcur = llm_build_norm(ctx0, Kcur, hparams,
                            model.layers[il].attn_k_norm,
                            NULL,
                            LLM_NORM, cb, il);
                    cb(Kcur, "Kcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur     = ggml_get_rows(ctx0,     cur, inp_out_ids);
                inpL    = ggml_get_rows(ctx0,    inpL, inp_out_ids);
                ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
            }

            struct ggml_tensor * attn_out = cur;

            // feed-forward network
            {
                cur = llm_build_ffn(ctx0, ffn_inp,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            }

            // add together residual + FFN + self-attention
            cur = ggml_add(ctx0, cur, inpL);
            cur = ggml_add(ctx0, cur, attn_out);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);

        if (f_logit_scale) {
            cur = ggml_scale(ctx0, cur, f_logit_scale);
        }

        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;

    }

    // ref: https://allenai.org/olmo
    // based on the original build_llama() function, changes:
    //   * non-parametric layer norm
    //   * clamp qkv
    //   * removed bias
    //   * removed MoE
    struct ggml_cgraph * build_olmo() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    NULL, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Qcur, "Qcur", il);
                }

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Kcur, "Kcur", il);
                }

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);
                if (hparams.f_clamp_kqv > 0.0f) {
                    Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
                    cb(Vcur, "Vcur", il);
                }

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, nullptr,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    NULL, NULL,
                    LLM_NORM, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                    model.layers[il].ffn_up,   NULL,
                    model.layers[il].ffn_gate, NULL,
                    model.layers[il].ffn_down, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                NULL, NULL,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_gptneox() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        const int64_t n_embd_head = hparams.n_embd_head_v;
        const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm,
                    model.layers[il].attn_norm_b,
                    LLM_NORM, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);

                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                cb(cur, "bqkv", il);

                struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd,     n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
                struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
                struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, model.layers[il].bo,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
            }

            // ffn
            if (hparams.use_par_res) {
                // attention and ffn are computed in parallel
                // x = x + attn(ln1(x)) + ffn(ln2(x))

                struct ggml_tensor * attn_out = cur;

                cur = llm_build_norm(ctx0, inpL, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);

                cur = ggml_add(ctx0, cur, inpL);
                cb(cur, "ffn_out", il);

                inpL = ggml_add(ctx0, cur, attn_out);
                cb(inpL, "l_out", il);
            } else {
                // attention and ffn are computed sequentially
                // x = x + attn(ln1(x))
                // x = x + ffn(ln2(x))

                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
                cb(ffn_inp, "ffn_inp", il);

                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm,
                        model.layers[il].ffn_norm_b,
                        LLM_NORM, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,
                        NULL,                      NULL,
                        model.layers[il].ffn_down, model.layers[il].ffn_down_b,
                        NULL,
                        LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
                cb(cur, "ffn_out", il);

                inpL = ggml_add(ctx0, cur, ffn_inp);
                cb(inpL, "l_out", il);
            }
        }

        cur = llm_build_norm(ctx0, inpL, hparams,
                model.output_norm,
                model.output_norm_b,
                LLM_NORM, cb, -1);
        cb(cur, "result_norm", -1);

        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_arctic() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        const int64_t n_embd_head = hparams.n_embd_head_v;
        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
        GGML_ASSERT(n_embd_head == hparams.n_rot);

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self-attention
            {
                // compute Q and K and RoPE them
                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                cb(Qcur, "Qcur", il);

                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
                cb(Kcur, "Kcur", il);

                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
                cb(Vcur, "Vcur", il);

                Qcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Qcur, "Qcur", il);

                Kcur = ggml_rope_ext(
                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                );
                cb(Kcur, "Kcur", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            // feed-forward network
            cur = llm_build_norm(ctx0, ffn_inp, hparams,
                    model.layers[il].ffn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm", il);

            cur = llm_build_ffn(ctx0, cur,
                    model.layers[il].ffn_up,   NULL,
                    model.layers[il].ffn_gate, NULL,
                    model.layers[il].ffn_down, NULL,
                    NULL,
                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
            cb(cur, "ffn_out", il);

            struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
            cb(ffn_out, "ffn_out", il);

            // MoE
            cur = llm_build_norm(ctx0, inpSA, hparams,
                    model.layers[il].ffn_norm_exps, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "ffn_norm_exps", il);

            cur = llm_build_moe_ffn(ctx0, cur,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    model.layers[il].ffn_gate_exps,
                    model.layers[il].ffn_down_exps,
                    n_expert, n_expert_used,
                    LLM_FFN_SILU, true,
                    false, 0.0,
                    cb, il);
            cb(cur, "ffn_moe_out", il);

            cur = ggml_add(ctx0, cur, ffn_out);
            cb(cur, "ffn_out", il);

            ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
            if (layer_dir != nullptr) {
                cur = ggml_add(ctx0, cur, layer_dir);
            }
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

    struct ggml_cgraph * build_deepseek2() {
        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

        // mutable variable, needed during the last layer of the computation to skip unused tokens
        int32_t n_tokens = this->n_tokens;

        bool is_lite = (hparams.n_layer == 27);

        // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
        // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
        const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
        const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
        const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));

        const uint32_t n_embd_head_qk_rope = hparams.n_rot;
        const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
        const uint32_t kv_lora_rank = hparams.n_lora_kv;

        struct ggml_tensor * cur;
        struct ggml_tensor * inpL;

        // {n_embd, n_tokens}
        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);

        // inp_pos - contains the positions
        struct ggml_tensor * inp_pos = build_inp_pos();

        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();

        for (int il = 0; il < n_layer; ++il) {
            struct ggml_tensor * inpSA = inpL;

            // norm
            cur = llm_build_norm(ctx0, inpL, hparams,
                    model.layers[il].attn_norm, NULL,
                    LLM_NORM_RMS, cb, il);
            cb(cur, "attn_norm", il);

            // self_attention
            {
                struct ggml_tensor * q = NULL;
                if (!is_lite) {
                    // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
                    q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
                    cb(q, "q", il);

                    q = llm_build_norm(ctx0, q, hparams,
                            model.layers[il].attn_q_a_norm, NULL,
                            LLM_NORM_RMS, cb, il);
                    cb(q, "q", il);

                    // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
                    q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
                    cb(q, "q", il);
                } else {
                    q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
                    cb(q, "q", il);
                }

                // split into {n_head * n_embd_head_qk_nope, n_tokens}
                struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
                        ggml_row_size(q->type, hparams.n_embd_head_k),
                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
                        0);
                cb(q_nope, "q_nope", il);

                // and {n_head * n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
                        ggml_row_size(q->type, hparams.n_embd_head_k),
                        ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
                        ggml_row_size(q->type, n_embd_head_qk_nope));
                cb(q_pe, "q_pe", il);

                // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
                cb(kv_pe_compresseed, "kv_pe_compresseed", il);

                // split into {kv_lora_rank, n_tokens}
                struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
                        kv_pe_compresseed->nb[1],
                        0);
                cb(kv_compressed, "kv_compressed", il);

                // and {n_embd_head_qk_rope, n_tokens}
                struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
                        kv_pe_compresseed->nb[1],
                        kv_pe_compresseed->nb[1],
                        ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
                cb(k_pe, "k_pe", il);

                kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
                kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
                        model.layers[il].attn_kv_a_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(kv_compressed, "kv_compressed", il);

                // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
                struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
                cb(kv, "kv", il);

                // split into {n_head * n_embd_head_qk_nope, n_tokens}
                struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
                        ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
                        ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
                        0);
                cb(k_nope, "k_nope", il);

                // and {n_head * n_embd_head_v, n_tokens}
                struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
                        ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
                        ggml_row_size(kv->type, (n_embd_head_qk_nope)));
                cb(v_states, "v_states", il);

                v_states = ggml_cont(ctx0, v_states);
                cb(v_states, "v_states", il);

                v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
                    ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
                    0);
                cb(v_states, "v_states", il);

                q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
                q_pe = ggml_rope_ext(
                    ctx0, q_pe, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
                );
                cb(q_pe, "q_pe", il);

                // shared RoPE key
                k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
                k_pe = ggml_rope_ext(
                    ctx0, k_pe, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor_scaled, beta_fast, beta_slow
                );
                cb(k_pe, "k_pe", il);

                struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
                cb(q_states, "q_states", il);

                struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
                cb(k_states, "k_states", il);

                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
                        model.layers[il].wo, NULL,
                        k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
            }

            if (il == n_layer - 1) {
                // skip computing output for unused tokens
                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
                n_tokens = n_outputs;
                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
            }

            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
            cb(ffn_inp, "ffn_inp", il);

            if ((uint32_t) il < hparams.n_layer_dense_lead) {
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                cur = llm_build_ffn(ctx0, cur,
                        model.layers[il].ffn_up,   NULL,
                        model.layers[il].ffn_gate, NULL,
                        model.layers[il].ffn_down, NULL,
                        NULL,
                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                cb(cur, "ffn_out", il);
            } else {
                // MoE branch
                cur = llm_build_norm(ctx0, ffn_inp, hparams,
                        model.layers[il].ffn_norm, NULL,
                        LLM_NORM_RMS, cb, il);
                cb(cur, "ffn_norm", il);

                ggml_tensor * moe_out =
                        llm_build_moe_ffn(ctx0, cur,
                            model.layers[il].ffn_gate_inp,
                            model.layers[il].ffn_up_exps,
                            model.layers[il].ffn_gate_exps,
                            model.layers[il].ffn_down_exps,
                            n_expert, n_expert_used,
                            LLM_FFN_SILU, false,
                            true, hparams.expert_weights_scale,
                            cb, il);
                cb(moe_out, "ffn_moe_out", il);

                // FFN shared expert
                {
                    ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
                            model.layers[il].ffn_up_shexp,   NULL,
                            model.layers[il].ffn_gate_shexp, NULL,
                            model.layers[il].ffn_down_shexp, NULL,
                            NULL,
                            LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
                    cb(ffn_shexp, "ffn_shexp", il);

                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
                    cb(cur, "ffn_out", il);
                }
            }

            cur = ggml_add(ctx0, cur, ffn_inp);
            cb(cur, "l_out", il);

            // input for next layer
            inpL = cur;
        }

        cur = inpL;

        cur = llm_build_norm(ctx0, cur, hparams,
                model.output_norm, NULL,
                LLM_NORM_RMS, cb, -1);
        cb(cur, "result_norm", -1);

        // lm_head
        cur = ggml_mul_mat(ctx0, model.output, cur);
        cb(cur, "result_output", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

};

static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) {
    llama_batch dummy;
    dummy.n_tokens = 0;

    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };

    struct llm_build_context llm(lctx, dummy, cb, false);

    llm.init();

    struct ggml_cgraph * result = llm.build_defrag(ids);

    llm.free();

    return result;
}

static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
    llama_batch dummy;
    dummy.n_tokens = 0;

    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };

    struct llm_build_context llm(lctx, dummy, cb, false);

    llm.init();

    struct ggml_cgraph * result = llm.build_k_shift();

    llm.free();

    return result;
}

static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
    llama_batch dummy;
    dummy.n_tokens = 0;

    llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };

    struct llm_build_context llm(lctx, dummy, cb, false);

    llm.init();

    struct ggml_cgraph * result = llm.build_s_copy();

    llm.free();

    return result;
}

static struct ggml_cgraph * llama_build_graph(
         llama_context & lctx,
     const llama_batch & batch,
                  bool   worst_case) {
    const auto & model = lctx.model;

    // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
    llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
        if (il >= 0) {
            ggml_format_name(cur, "%s-%d", name, il);
        } else {
            ggml_set_name(cur, name);
        }

        if (!lctx.cparams.offload_kqv) {
            if (strcmp(name, "kqv_merged_cont") == 0) {
                // all nodes between the KV store and the attention output are run on the CPU
                ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
            }
        }

        // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
        // FIXME: fix in ggml_backend_sched
        const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
        if (batch.n_tokens < 32 || full_offload) {
            if (il != -1 && strcmp(name, "norm") == 0) {
                for (auto * backend : lctx.backends) {
                    if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
                        (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
                        ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
                        break;
                    }
                }
            }
        }
    };

    struct ggml_cgraph * result = NULL;

    struct llm_build_context llm(lctx, batch, cb, worst_case);

    llm.init();

    switch (model.arch) {
        case LLM_ARCH_LLAMA:
            {
                result = llm.build_llama();
            } break;
        case LLM_ARCH_BAICHUAN:
            {
                result = llm.build_baichuan();
            } break;
        case LLM_ARCH_FALCON:
            {
                result = llm.build_falcon();
            } break;
        case LLM_ARCH_GROK:
            {
                result = llm.build_grok();
            } break;
        case LLM_ARCH_STARCODER:
            {
                result = llm.build_starcoder();
            } break;
        case LLM_ARCH_REFACT:
            {
                result = llm.build_refact();
            } break;
        case LLM_ARCH_BERT:
        case LLM_ARCH_JINA_BERT_V2:
        case LLM_ARCH_NOMIC_BERT:
            {
                result = llm.build_bert();
            } break;
        case LLM_ARCH_BLOOM:
            {
                result = llm.build_bloom();
            } break;
        case LLM_ARCH_MPT:
            {
                result = llm.build_mpt();
            } break;
         case LLM_ARCH_STABLELM:
            {
                result = llm.build_stablelm();
            } break;
        case LLM_ARCH_QWEN:
            {
                result = llm.build_qwen();
            } break;
        case LLM_ARCH_QWEN2:
            {
                result = llm.build_qwen2();
            } break;
        case LLM_ARCH_QWEN2MOE:
            {
                result = llm.build_qwen2moe();
            } break;
        case LLM_ARCH_PHI2:
            {
                result = llm.build_phi2();
            } break;
        case LLM_ARCH_PHI3:
            {
                result = llm.build_phi3();
            } break;
        case LLM_ARCH_PLAMO:
            {
                result = llm.build_plamo();
            } break;
        case LLM_ARCH_GPT2:
            {
                result = llm.build_gpt2();
            } break;
        case LLM_ARCH_CODESHELL:
            {
                result = llm.build_codeshell();
            } break;
        case LLM_ARCH_ORION:
            {
                result = llm.build_orion();
            } break;
        case LLM_ARCH_INTERNLM2:
            {
                result = llm.build_internlm2();
            } break;
        case LLM_ARCH_MINICPM:
            {
                result = llm.build_minicpm();
            } break;
        case LLM_ARCH_GEMMA:
            {
                result = llm.build_gemma();
            } break;
        case LLM_ARCH_STARCODER2:
            {
                result = llm.build_starcoder2();
            } break;
        case LLM_ARCH_MAMBA:
            {
                result = llm.build_mamba();
            } break;
        case LLM_ARCH_XVERSE:
            {
                result = llm.build_xverse();
            } break;
        case LLM_ARCH_COMMAND_R:
            {
                result = llm.build_command_r();
            } break;
        case LLM_ARCH_DBRX:
            {
                result = llm.build_dbrx();
            } break;
        case LLM_ARCH_OLMO:
            {
                result = llm.build_olmo();
            } break;
        case LLM_ARCH_GPTNEOX:
            {
                result = llm.build_gptneox();
            } break;
        case LLM_ARCH_ARCTIC:
            {
                result = llm.build_arctic();
            } break;
        case LLM_ARCH_DEEPSEEK2:
            {
                result = llm.build_deepseek2();
            } break;
        default:
            GGML_ASSERT(false);
    }

    llm.free();

    return result;
}

static void llama_set_k_shift(llama_context & lctx) {
    const int64_t kv_size = lctx.kv_self.size;

    assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));

    int32_t * data = (int32_t *) lctx.inp_K_shift->data;

    for (int i = 0; i < kv_size; ++i) {
        data[i] = lctx.kv_self.cells[i].delta;
    }
}

static void llama_set_s_copy(llama_context & lctx) {
    const int64_t kv_size = lctx.kv_self.size;

    assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));

    int32_t * data = (int32_t *) lctx.inp_s_copy->data;

    for (int i = 0; i < kv_size; ++i) {
        data[i] = lctx.kv_self.cells[i].src;
    }
}

static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
    //
    // set input data
    //

    const auto & hparams = lctx.model.hparams;
    const auto & cparams = lctx.cparams;
    const auto & kv_self = lctx.kv_self;

    if (batch.token) {
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
    }

    if (batch.embd) {
        const int64_t n_embd   = hparams.n_embd;
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
    }

    if (batch.pos && lctx.inp_pos) {
        const int64_t n_tokens = batch.n_tokens;

        ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
    }

    if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
        GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
        int32_t * data = (int32_t *) lctx.inp_out_ids->data;

        if (lctx.n_outputs == n_tokens) {
            for (int i = 0; i < n_tokens; ++i) {
                data[i] = i;
            }
        } else if (batch.logits) {
            int32_t n_outputs = 0;
            for (int i = 0; i < n_tokens; ++i) {
                if (batch.logits[i]) {
                    data[n_outputs++] = i;
                }
            }
            // the graph needs to have been passed the correct number of outputs
            GGML_ASSERT(lctx.n_outputs == n_outputs);
        } else if (lctx.n_outputs == 1) {
            // only keep last output
            data[0] = n_tokens - 1;
        } else {
            GGML_ASSERT(lctx.n_outputs == 0);
        }
    }

    GGML_ASSERT(
        // (!a || b) is a logical implication (a -> b)
        // !hparams.causal_attn -> !cparams.causal_attn
        (hparams.causal_attn || !cparams.causal_attn) &&
        "causal attention with embedding models is not supported"
    );

    if (lctx.inp_KQ_mask) {
        // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
        if (cparams.causal_attn) {
            const int64_t n_kv     = kv_self.n;
            const int64_t n_tokens = batch.n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));

            float * data = (float *) lctx.inp_KQ_mask->data;

            // For causal attention, use only the previous KV cells
            // of the correct sequence for each token of the batch.
            // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
            for (int h = 0; h < 1; ++h) {
                for (int j = 0; j < n_tokens; ++j) {
                    const llama_pos    pos    = batch.pos[j];
                    const llama_seq_id seq_id = batch.seq_id[j][0];

                    for (int i = 0; i < n_kv; ++i) {
                        float f;
                        if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
                            f = -INFINITY;
                        } else {
                            if (hparams.use_alibi) {
                                f = -fabs(lctx.kv_self.cells[i].pos - pos);
                            } else {
                                f = 0.0f;
                            }
                        }
                        data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
                    }
                }

                for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
                    for (int j = 0; j < n_kv; ++j) {
                        data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
                    }
                }
            }
        } else {
            // when using kv cache, the mask needs to match the kv cache size
            const int64_t n_tokens = batch.n_tokens;
            const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));

            float * data = (float *) lctx.inp_KQ_mask->data;

            for (int h = 0; h < 1; ++h) {
                for (int j = 0; j < n_tokens; ++j) {
                    const llama_seq_id seq_id = batch.seq_id[j][0];

                    for (int i = 0; i < n_tokens; ++i) {
                        float f = -INFINITY;
                        for (int s = 0; s < batch.n_seq_id[i]; ++s) {
                            if (batch.seq_id[i][s] == seq_id) {
                                if (hparams.use_alibi) {
                                    f = -fabs(batch.pos[i] - batch.pos[j]);
                                } else {
                                    f = 0.0f;
                                }
                                break;
                            }
                        }

                        data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
                    }

                    for (int i = n_tokens; i < n_stride; ++i) {
                        data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
                    }
                }
            }
        }
    }

    if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(lctx.inp_mean);
        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));

        float * data = (float *) lctx.inp_mean->data;
        memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));

        std::vector sum(n_tokens, 0);
        for (int i = 0; i < n_tokens; ++i) {
            const llama_seq_id seq_id = batch.seq_id[i][0];

            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");

            sum[seq_id] += 1;
        }

        std::vector div(n_tokens, 0.0f);
        for (int i = 0; i < n_tokens; ++i) {
            const uint64_t s = sum[i];
            if (s > 0) {
                div[i] = 1.0f/float(s);
            }
        }

        for (int i = 0; i < n_tokens; ++i) {
            const llama_seq_id seq_id = batch.seq_id[i][0];
            data[seq_id*n_tokens + i] = div[seq_id];
        }
    }

    if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
        const int64_t n_tokens = batch.n_tokens;

        GGML_ASSERT(lctx.inp_cls);
        GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));

        uint32_t * data = (uint32_t *) lctx.inp_cls->data;
        memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));

        for (int i = 0; i < n_tokens; ++i) {
            const llama_seq_id seq_id = batch.seq_id[i][0];
            const llama_pos    pos    = batch.pos[i];

            GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");

            if (pos == 0) {
                data[seq_id] = i;
            }
        }
    }

    if (kv_self.recurrent) {
        const int64_t n_kv = kv_self.n;

        if (lctx.inp_s_mask) {
            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
            float * data = (float *) lctx.inp_s_mask->data;

            // states which are not affected by the current batch are left untouched
            for (int i = 0; i < n_kv; ++i) {
                llama_seq_id    seq_id       = i + lctx.kv_self.head;
                llama_kv_cell & kv_cell      = lctx.kv_self.cells[seq_id];
                bool            has_self_seq = kv_cell.has_seq_id(seq_id);

                data[i] = (float) has_self_seq;

                // ensure current sequences will be kept
                if (!has_self_seq && kv_cell.pos >= 0) {
                    kv_cell.seq_id.insert(seq_id);
                }
            }
        }
        // For Mamba (and other recurrent architectures),
        // update the correct state(s)/sequence(s) for each token of the batch.
        // Like with the KQ_mask, if a token in the batch has multiple sequences,
        // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
        if (lctx.inp_s_seq) {
            const int64_t n_tokens = batch.n_tokens;

            GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
            int32_t * data = (int32_t *) lctx.inp_s_seq->data;

            for (int j = 0; j < n_tokens; ++j) {
                const int32_t n_seq = batch.n_seq_id[j];
                GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence

                for (int i = 0; i < n_kv; ++i) {
                    if (i < n_seq) {
                        // for this type of model, the head is the minimum seq_id of the batch
                        data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
                    } else {
                        data[j*n_kv + i] = -1;
                    }
                }
            }
        }
    }
}

// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
    const auto & cparams = lctx.cparams;
    const auto & hparams = lctx.model.hparams;

    const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);

    const auto n_batch = cparams.n_batch;
    const auto n_vocab = hparams.n_vocab;
    const auto n_embd  = hparams.n_embd;

    // TODO: use a per-batch flag for logits presence instead
    const bool has_logits = cparams.causal_attn;
    const bool has_embd   = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);

    const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
    const size_t embd_size   = has_embd   ?  n_embd*n_outputs_max : 0;

    if (lctx.output_ids.empty()) {
        // init, never resized afterwards
        lctx.output_ids.resize(n_batch);
    }

    const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
    const size_t new_size  = (logits_size + embd_size) * sizeof(float);

    // alloc only when more than the current capacity is required
    // TODO: also consider shrinking the buffer
    if (!lctx.buf_output || prev_size < new_size) {
        if (lctx.buf_output) {
#ifndef NDEBUG
            // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
            LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
            ggml_backend_buffer_free(lctx.buf_output);
            lctx.buf_output = nullptr;
            lctx.logits = nullptr;
            lctx.embd = nullptr;
        }

        lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
        if (lctx.buf_output == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
            return 0;
        }
    }

    float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);

    lctx.logits = has_logits ? output_base               : nullptr;
    lctx.embd   = has_embd   ? output_base + logits_size : nullptr;

    lctx.output_size = n_outputs_max;
    lctx.logits_size = logits_size;
    lctx.embd_size   = embd_size;

    // set all ids as invalid (negative)
    std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);

    ggml_backend_buffer_clear(lctx.buf_output, 0);

    lctx.n_outputs = 0;

    return n_outputs_max;
}


static void llama_graph_compute(
        llama_context & lctx,
          ggml_cgraph * gf,
                  int   n_threads) {
#ifdef GGML_USE_METAL
    if (ggml_backend_is_metal(lctx.backend_metal)) {
        ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
    }
#endif

    if (lctx.backend_cpu != nullptr) {
        ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
        ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
    }
#ifdef GGML_USE_BLAS
    if (lctx.backend_blas != nullptr) {
        ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
    }
#endif

    ggml_backend_sched_graph_compute_async(lctx.sched, gf);

    // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
}

// decode a batch of tokens by evaluating the transformer
//
//   - lctx:      llama context
//   - batch:     batch to evaluate
//
// return 0 on success
// return positive int on warning
// return negative int on error
//
static int llama_decode_internal(
         llama_context & lctx,
           llama_batch   batch_all) { // TODO: rename back to batch

    const uint32_t n_tokens_all = batch_all.n_tokens;

    if (n_tokens_all == 0) {
        LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
        return -1;
    }

    const auto & model   = lctx.model;
    const auto & hparams = model.hparams;
    const auto & cparams = lctx.cparams;

    GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT

    GGML_ASSERT(n_tokens_all <= cparams.n_batch);

    GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");

    if (lctx.t_compute_start_us == 0) {
        lctx.t_compute_start_us = ggml_time_us();
    }
    lctx.n_queued_tokens += n_tokens_all;

    auto & kv_self = lctx.kv_self;

    const int64_t n_embd  = hparams.n_embd;
    const int64_t n_vocab = hparams.n_vocab;

    uint32_t n_outputs = 0;
    uint32_t n_outputs_prev = 0;

    const auto n_ubatch = cparams.n_ubatch;

    std::vector pos;
    std::vector                   n_seq_id;
    std::vector            seq_id_arr;
    std::vector> seq_id;

    // count outputs
    if (batch_all.logits) {
        for (uint32_t i = 0; i < n_tokens_all; ++i) {
            n_outputs += batch_all.logits[i] != 0;
        }
    } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
        n_outputs = n_tokens_all;
    } else {
        // keep last output only
        n_outputs = 1;
    }

    // reserve output buffer
    if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
        LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
        return -2;
    };

    // set output mappings
    if (batch_all.logits) {
        int32_t i_logits = 0;
        for (uint32_t i = 0; i < n_tokens_all; ++i) {
            if (batch_all.logits[i]) {
                lctx.output_ids[i] = i_logits++;
            }
        }
    } else {
        for (uint32_t i = 0; i < n_outputs; ++i) {
            lctx.output_ids[i] = i;
        }
    }

    for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
        const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
        llama_batch u_batch = {
            /* .n_tokens   = */ (int32_t) n_tokens,
            /* .token      = */ batch_all.token     ? batch_all.token    + cur_token        : nullptr,
            /* .embd       = */ batch_all.embd      ? batch_all.embd     + cur_token*n_embd : nullptr,
            /* .pos        = */ batch_all.pos       ? batch_all.pos      + cur_token        : nullptr,
            /* .n_seq_id   = */ batch_all.n_seq_id  ? batch_all.n_seq_id + cur_token        : nullptr,
            /* .seq_id     = */ batch_all.seq_id    ? batch_all.seq_id   + cur_token        : nullptr,
            /* .logits     = */ batch_all.logits    ? batch_all.logits   + cur_token        : nullptr,
            /* .all_pos_0  = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
            /* .all_pos_1  = */ batch_all.all_pos_1,
            /* .all_seq_id = */ batch_all.all_seq_id,
        };

        // count the outputs in this u_batch
        {
            int32_t n_outputs_new = 0;

            if (u_batch.logits) {
                for (uint32_t i = 0; i < n_tokens; i++) {
                    n_outputs_new += u_batch.logits[i] != 0;
                }
            } else if (n_outputs == n_tokens_all) {
                n_outputs_new = n_tokens;
            } else {
                // keep last output only
                if (cur_token + n_tokens >= n_tokens_all) {
                    n_outputs_new = 1;
                }
            }

            // needs to happen before the graph is built
            lctx.n_outputs = n_outputs_new;
        }

        int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
        GGML_ASSERT(n_threads > 0);

        // helpers for smoother batch API transition
        // after deprecating the llama_eval calls, these will be removed
        if (u_batch.pos == nullptr) {
            pos.resize(n_tokens);
            for (uint32_t i = 0; i < n_tokens; i++) {
                pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
            }

            u_batch.pos = pos.data();
        }

        if (u_batch.seq_id == nullptr) {
            n_seq_id.resize(n_tokens);
            seq_id.resize(n_tokens);
            seq_id_arr.resize(n_tokens);
            for (uint32_t i = 0; i < n_tokens; i++) {
                n_seq_id[i] = 1;
                seq_id[i].resize(1);
                seq_id[i][0] = u_batch.all_seq_id;
                seq_id_arr[i] = seq_id[i].data();
            }

            u_batch.n_seq_id = n_seq_id.data();
            u_batch.seq_id = seq_id_arr.data();
        }

        // non-causal masks do not use the KV cache
        if (hparams.causal_attn) {
            llama_kv_cache_update(&lctx);

            // if we have enough unused cells before the current head ->
            //   better to start searching from the beginning of the cache, hoping to fill it
            if (kv_self.head > kv_self.used + 2*n_tokens) {
                kv_self.head = 0;
            }

            if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
                return 1;
            }

            if (!kv_self.recurrent) {
                // a heuristic, to avoid attending the full cache if it is not yet utilized
                // after enough generations, the benefit from this heuristic disappears
                // if we start defragmenting the cache, the benefit from this will be more important
                const uint32_t pad = llama_kv_cache_get_padding(cparams);
                kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
                //kv_self.n = llama_kv_cache_cell_max(kv_self);
            }
        }

        //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);

        ggml_backend_sched_reset(lctx.sched);
        ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);

        ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);

        // the output is always the last tensor in the graph
        struct ggml_tensor * res  = gf->nodes[gf->n_nodes - 1];
        struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];

        if (lctx.n_outputs == 0) {
            // no output
            res  = nullptr;
            embd = nullptr;
        } else if (!hparams.causal_attn) {
            res = nullptr; // do not extract logits for embedding models such as BERT

            // token or sequence embeddings
            embd = gf->nodes[gf->n_nodes - 1];

            GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
        } else if (cparams.embeddings) {
            // the embeddings could be in the second to last tensor, or any of the previous tensors
            int i_embd = gf->n_nodes - 2;
            for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
                i_embd = gf->n_nodes - i;
                if (i_embd < 0) { break; }
                embd = gf->nodes[i_embd];
            }
            GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");

            // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
            if (!cparams.causal_attn) {
                res = nullptr; // do not extract logits when not needed
                // skip computing logits
                // TODO: is this safe?
                gf->n_nodes = i_embd + 1;
            }
        } else {
            embd = nullptr; // do not extract embeddings when not needed
            GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
        }
        // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);

        ggml_backend_sched_alloc_graph(lctx.sched, gf);

        llama_set_inputs(lctx, u_batch);

        llama_graph_compute(lctx, gf, n_threads);

        // update the kv ring buffer
        {
            kv_self.head += n_tokens;

            // Ensure kv cache head points to a valid index.
            if (kv_self.head >= kv_self.size) {
                kv_self.head = 0;
            }
        }

#ifdef GGML_PERF
        // print timing information per ggml operation (for debugging purposes)
        // requires GGML_PERF to be defined
        ggml_graph_print(gf);
#endif

        // plot the computation graph in dot format (for debugging purposes)
        //if (n_past%100 == 0) {
        //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
        //}

        // extract logits
        if (res) {
            ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
            GGML_ASSERT(backend_res != nullptr);
            GGML_ASSERT(lctx.logits != nullptr);

            float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
            const int32_t n_outputs_new = lctx.n_outputs;

            if (n_outputs_new) {
                GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
                GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
                ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
            }
        }

        // extract embeddings
        if (embd) {
            ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
            GGML_ASSERT(backend_embd != nullptr);

            switch (cparams.pooling_type) {
                case LLAMA_POOLING_TYPE_NONE:
                    {
                        // extract token embeddings
                        GGML_ASSERT(lctx.embd != nullptr);
                        float * embd_out = lctx.embd + n_outputs_prev*n_embd;
                        const int32_t n_outputs_new = lctx.n_outputs;

                        if (n_outputs_new) {
                            GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
                            GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
                            ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_CLS:
                case LLAMA_POOLING_TYPE_MEAN:
                    {
                        GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);

                        // extract sequence embeddings
                        auto & embd_seq_out = lctx.embd_seq;
                        embd_seq_out.clear();

                        for (uint32_t i = 0; i < n_tokens; i++) {
                            const llama_seq_id seq_id = u_batch.seq_id[i][0];
                            if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
                                continue;
                            }
                            embd_seq_out[seq_id].resize(n_embd);
                            ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
                        }
                    } break;
                case LLAMA_POOLING_TYPE_UNSPECIFIED:
                    {
                        GGML_ASSERT(false && "unknown pooling type");
                    } break;
            }
        }
        n_outputs_prev += lctx.n_outputs;
    }

    // set to total number of outputs in the batch, for use in llama_get_logits_ith
    lctx.n_outputs = n_outputs;

    // wait for the computation to finish (automatically done when obtaining the model output)
    //llama_synchronize(&lctx);

    // decide if we need to defrag the kv cache
    if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
        const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;

        // queue defragmentation for next llama_kv_cache_update
        if (fragmentation > cparams.defrag_thold) {
            //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);

            llama_kv_cache_defrag(kv_self);
        }
    }

    // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
    // overlap with device computation.
    ggml_backend_sched_reset(lctx.sched);

    return 0;
}


// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
    auto & kv_self = lctx.kv_self;

    const auto & hparams = lctx.model.hparams;

    const uint32_t n_layer = hparams.n_layer;

    const uint32_t n_kv   = llama_kv_cache_cell_max(kv_self);
    const uint32_t n_used = kv_self.used;

    assert(n_used <= n_kv);

    //const int64_t t_start = ggml_time_us();

    // number of cells moved
    uint32_t n_moves = 0;

    // each move requires 6*n_layer tensors (see build_defrag)
    //   - source view, destination view, copy operation
    //   - x2 for keys and values
    //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
    // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
    const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);

    // determine which KV cells to move where
    //
    //  cell i moves to ids[i]
    //
    //  if ids[i] == i || ids[i] == n_kv, then cell i is not moved
    //
    std::vector ids(n_kv, n_kv);

    for (uint32_t i0 = 0; i0 < n_used; ++i0) {
        const auto & cell0 = kv_self.cells[i0];

        if (!cell0.is_empty()) {
            ids[i0] = i0;

            continue;
        }

        // found a hole - fill it with data from the end of the cache

        uint32_t nh = 1;

        // determine the size of the hole
        while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
            nh++;
        }

        uint32_t nf = 0;
        uint32_t is = n_kv - 1;

        // starting from the end, find nh non-empty cells
        for (; is > i0; --is) {
            const auto & cell1 = kv_self.cells[is];

            if (cell1.is_empty() || ids[is] != n_kv) {
                continue;
            }

            // non-empty cell which is not yet moved
            nf++;

            if (nf == nh) {
                break;
            }
        }

        // this can only happen if `n_used` is not accurate, which would be a bug
        GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");

        nf = 0;

        uint32_t i1 = is;

        // are we moving a continuous block of memory?
        bool cont = false;

        // should we stop searching for the next move?
        bool stop = false;

        // go back and move the nf cells to the hole
        for (; i1 < n_kv; ++i1) {
            auto & cell1 = kv_self.cells[i1];

            if (cell1.is_empty() || ids[i1] != n_kv) {
                if (n_moves == max_moves) {
                    stop = true;
                    break;
                }

                cont = false;
                continue;
            }

            // this cell goes to (i0 + nf)
            ids[i1] = i0 + nf;

            // move the cell meta data
            kv_self.cells[i0 + nf] = cell1;

            // clear the old cell and move the head there
            cell1 = llama_kv_cell();
            kv_self.head = n_used;

            if (!cont) {
                n_moves++;
                cont = true;
            }

            nf++;

            if (nf == nh) {
                break;
            }
        }

        if (stop || n_moves == max_moves) {
            break;
        }

        //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);

        i0 += nh - 1;
    }

    if (n_moves == 0) {
        return;
    }

    //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);

    //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);

#if 0
    // CPU defrag
    //
    // TODO: optimizations are possible:
    //       - multiple threads
    //       - avoid copying to the host memory when already there
    //
    // likely not worth the effort, as we have ggml_graph based defrag
    //

    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();

    const uint32_t kv_size = kv_self.size;

    std::vector buf_k;
    std::vector buf_v;

    for (uint32_t il = 0; il < n_layer; ++il) {
        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
        const size_t k_size     = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);

        const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
        const size_t v_size    = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);

        buf_k.resize(k_size);
        buf_v.resize(v_size);

        ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());

        // batch move [i, i+nm) to [id, id+nm)
        // note: cells can move only to a lower index
        for (uint32_t i = 0; i < n_kv; ++i) {
            const uint32_t id = ids[i];

            if (i == id || id == n_kv) {
                continue;
            }

            uint32_t nm = 1;

            while (i + nm < n_kv && ids[i + nm] == id + nm) {
                nm++;
            }

            // move keys
            {
                const int64_t os =  i*k_size_row;
                const int64_t od = id*k_size_row;

                memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
            }

            // move values (note: they are transposed)
            {
                const int64_t os =  i;
                const int64_t od = id;

                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
                }
            }

            i += nm - 1;
        }

        ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
        ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
    }
#else
    // ggml_graph defrag

    ggml_backend_sched_reset(lctx.sched);

    ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);

    llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
#endif

    //const int64_t t_end = ggml_time_us();

    //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
}

static void llama_kv_cache_update_internal(struct llama_context & lctx) {
    bool need_reserve = false;

    // apply K-shift if needed
    if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
        {
            ggml_backend_sched_reset(lctx.sched);

            ggml_cgraph * gf = llama_build_graph_k_shift(lctx);

            ggml_backend_sched_alloc_graph(lctx.sched, gf);

            llama_set_k_shift(lctx);

            llama_graph_compute(lctx, gf, lctx.cparams.n_threads);

            need_reserve = true;
        }

        {
            auto & kv_self = lctx.kv_self;

            kv_self.has_shift = false;

            for (uint32_t i = 0; i < kv_self.size; ++i) {
                kv_self.cells[i].delta = 0;
            }
        }
    }

    if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
        {
            ggml_backend_sched_reset(lctx.sched);

            ggml_cgraph * gf = llama_build_graph_s_copy(lctx);

            ggml_backend_sched_alloc_graph(lctx.sched, gf);

            llama_set_s_copy(lctx);

            llama_graph_compute(lctx, gf, lctx.cparams.n_threads);

            need_reserve = true;
        }

        {
            auto & kv_self = lctx.kv_self;

            kv_self.do_copy = false;

            for (uint32_t i = 0; i < kv_self.size; ++i) {
                kv_self.cells[i].src = i;
            }
        }
    }

    // defragment the KV cache if needed
    if (lctx.kv_self.do_defrag) {
        llama_kv_cache_defrag_internal(lctx);

        need_reserve = true;

        lctx.kv_self.do_defrag = false;
    }

    // reserve a worst case graph again
    if (need_reserve) {
        // TODO: extract to a function
        // build worst-case graph
        int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
        int n_past = lctx.cparams.n_ctx - n_tokens;
        llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
        ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);

        // initialize scheduler with the worst-case graph
        ggml_backend_sched_reset(lctx.sched);
        if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
            LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
        }
    }
}

//
// tokenizer
//

static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
    return vocab.type;
}

static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
}

static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
}

static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
}

static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
}

static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
    GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
}

static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
    GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
    GGML_ASSERT(llama_is_byte_token(vocab, id));
    const auto & token_data = vocab.id_to_token.at(id);
    switch (llama_vocab_get_type(vocab)) {
        case LLAMA_VOCAB_TYPE_SPM: {
            auto buf = token_data.text.substr(3, 2);
            return strtol(buf.c_str(), NULL, 16);
        }
        case LLAMA_VOCAB_TYPE_BPE: {
            GGML_ASSERT(false);
            return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
        }
        case LLAMA_VOCAB_TYPE_WPM: {
            GGML_ASSERT(false);
        }
        default:
            GGML_ASSERT(false);
    }
}

static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
    GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
    static const char * hex = "0123456789ABCDEF";
    switch (llama_vocab_get_type(vocab)) {
        case LLAMA_VOCAB_TYPE_SPM: {
            const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
            auto token = vocab.token_to_id.find(buf);
            if (token != vocab.token_to_id.end()) {
                return (*token).second;
            }
            // Try to fall back to just the byte as a string
            const char buf2[2] = { (char)ch, 0 };
            return vocab.token_to_id.at(buf2);
        }
        case LLAMA_VOCAB_TYPE_WPM:
        case LLAMA_VOCAB_TYPE_BPE: {
            return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
        }
        default:
            GGML_ASSERT(false);
    }
}

static void llama_escape_whitespace(std::string & text) {
    replace_all(text, " ", "\xe2\x96\x81");
}

static void llama_unescape_whitespace(std::string & word) {
    replace_all(word, "\xe2\x96\x81", " ");
}

struct llm_symbol {
    using index = int;
    index prev;
    index next;
    const char * text;
    size_t n;
};

static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable");

// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4

struct llm_bigram_spm {
    struct comparator {
        bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
        }
    };
    using queue_storage = std::vector;
    using queue = std::priority_queue;
    llm_symbol::index left;
    llm_symbol::index right;
    float score;
    size_t size;
};

struct llm_tokenizer_spm {
    llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}

    void tokenize(const std::string & text, std::vector & output) {
        // split string into utf8 chars
        int index = 0;
        size_t offs = 0;
        while (offs < text.size()) {
            llm_symbol sym;
            size_t len = utf8_len(text[offs]);
            sym.text = text.c_str() + offs;
            sym.n = std::min(len, text.size() - offs);
            offs += sym.n;
            sym.prev = index - 1;
            sym.next = offs == text.size() ? -1 : index + 1;
            index++;
            symbols.emplace_back(sym);
        }

        // seed the work queue with all possible 2-character tokens.
        for (size_t i = 1; i < symbols.size(); ++i) {
            try_add_bigram(i - 1, i);
        }

        // keep substituting the highest frequency pairs for as long as we can.
        while (!work_queue.empty()) {
            auto bigram = work_queue.top();
            work_queue.pop();

            auto & left_sym = symbols[bigram.left];
            auto & right_sym = symbols[bigram.right];

            // if one of the symbols already got merged, skip it.
            if (left_sym.n == 0 || right_sym.n == 0 ||
                left_sym.n + right_sym.n != bigram.size) {
                continue;
            }

            // merge the right sym into the left one
            left_sym.n += right_sym.n;
            right_sym.n = 0;

            //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);

            // remove the right sym from the chain
            left_sym.next = right_sym.next;
            if (right_sym.next >= 0) {
                symbols[right_sym.next].prev = bigram.left;
            }

            // find more substitutions
            try_add_bigram(left_sym.prev, bigram.left);
            try_add_bigram(bigram.left, left_sym.next);
        }

        for (int i = 0; i != -1; i = symbols[i].next) {
            auto & symbol = symbols[i];
            resegment(symbol, output);
        }
    }

private:
    void resegment(llm_symbol & symbol, std::vector & output) {
        auto text = std::string(symbol.text, symbol.n);
        auto token = vocab.token_to_id.find(text);

        // Do we need to support is_unused?
        if (token != vocab.token_to_id.end()) {
            output.push_back((*token).second);
            return;
        }

        const auto p = rev_merge.find(text);

        if (p == rev_merge.end()) {
            // output any symbols that did not form tokens as bytes.
            output.reserve(output.size() + symbol.n);
            for (int j = 0; j < (int)symbol.n; ++j) {
                llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
                output.push_back(token_id);
            }
            return;
        }

        resegment(symbols[p->second.first],  output);
        resegment(symbols[p->second.second], output);
    }

    void try_add_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }

        const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
        auto token = vocab.token_to_id.find(text);

        if (token == vocab.token_to_id.end()) {
            return;
        }

        if (static_cast((*token).second) >= vocab.id_to_token.size()) {
            return;
        }

        const auto & tok_data = vocab.id_to_token[(*token).second];

        llm_bigram_spm bigram;
        bigram.left  = left;
        bigram.right = right;
        bigram.score = tok_data.score;
        bigram.size  = text.size();

        work_queue.push(bigram);

        // Do we need to support is_unused?
        rev_merge[text] = std::make_pair(left, right);
    }

    const llama_vocab & vocab;

    std::vector symbols;
    llm_bigram_spm::queue work_queue;

    std::map> rev_merge;
};

// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!

// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused

struct llm_bigram_bpe {
    struct comparator {
        bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
            return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
        }
    };

    using queue_storage = std::vector;
    using queue = std::priority_queue;
    llm_symbol::index left;
    llm_symbol::index right;
    std::string text;
    int rank;
    size_t size;
};

struct llm_tokenizer_bpe {
    llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}

    void tokenize(const std::string & text, std::vector & output) {
        int final_prev_index = -1;
        bool ignore_merges = false;

        std::vector word_collection;
        switch (vocab.type) {
            case LLAMA_VOCAB_TYPE_BPE:
                switch (vocab.type_pre) {
                    case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
                        ignore_merges = true;
                        word_collection = unicode_regex_split(text, {
                            // original regex from tokenizer.json
                            //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",

                            // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
                            "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_DBRX:
                    case LLAMA_VOCAB_PRE_TYPE_SMAUG:
                        word_collection = unicode_regex_split(text, {
                            // same as llama3
                            "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
                        word_collection = unicode_regex_split(text, {
                            "[\r\n]",
                            "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
                            "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
                            "\\s+$",
                            "[一-龥ࠀ-一가-퟿]+",
                            "\\p{N}+",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
                        word_collection = unicode_regex_split(text, {
                            "[\r\n]",
                            "\\s?\\p{L}+",
                            "\\s?\\p{P}+",
                            "[一-龥ࠀ-一가-퟿]+",
                            "\\p{N}",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_FALCON:
                        word_collection = unicode_regex_split(text, {
                            "[\\p{P}\\$\\+<=>\\^~\\|]+",
                            "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                            "[0-9][0-9][0-9]",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_MPT:
                        // TODO: MPT pre-tokenization regexes are unknown
                        //       the following are close, but not exact. run the following:
                        //       ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
                        GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
                        word_collection = unicode_regex_split(text, {
                            "\\s?\\p{L}+",
                            "\\s?\\p{P}+",
                            "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_STARCODER:
                    case LLAMA_VOCAB_PRE_TYPE_REFACT:
                    case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
                        word_collection = unicode_regex_split(text, {
                            "\\p{N}",
                            "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_GPT2:
                    case LLAMA_VOCAB_PRE_TYPE_OLMO:
                        word_collection = unicode_regex_split(text, {
                            "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
                    case LLAMA_VOCAB_PRE_TYPE_QWEN2:
                        word_collection = unicode_regex_split(text, {
                            // original regex from tokenizer.json
                            // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
                            "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                        });
                        break;
                    case LLAMA_VOCAB_PRE_TYPE_PORO:
                        word_collection = unicode_regex_split(text, {
                            " ?[^(\\s|.,!?…。,、।۔،)]+",
                        });
                        break;
                    default:
                        // default regex for BPE tokenization pre-processing
                        word_collection = unicode_regex_split(text, {
                            "[\\p{P}\\$\\+<=>\\^~\\|]+",
                            "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                            "\\p{N}+",
                            "[0-9][0-9][0-9]",
                        });
                        break;
                }
                break;
            default:
                GGML_ASSERT(false);
                break;
        }

        symbols_final.clear();

        for (auto & word : word_collection) {
            work_queue = llm_bigram_bpe::queue();
            symbols.clear();

            int index = 0;
            size_t offset = 0;

            if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
                symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
                offset = word.size();
            }

            while (offset < word.size()) {
                llm_symbol sym;
                size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
                sym.text = word.c_str() + offset;
                sym.n = char_len;
                offset += sym.n;
                sym.prev = index - 1;
                sym.next = offset == word.size() ? -1 : index + 1;
                index++;
                symbols.emplace_back(sym);
            }
            for (size_t i = 1; i < symbols.size(); ++i) {
                add_new_bigram(i - 1, i);
            }

            // build token(s)
            while (!work_queue.empty()) {
                auto bigram = work_queue.top();
                work_queue.pop();

                auto & left_symbol = symbols[bigram.left];
                auto & right_symbol = symbols[bigram.right];

                if (left_symbol.n == 0 || right_symbol.n == 0) {
                    continue;
                }
                std::string left_token = std::string(left_symbol.text, left_symbol.n);
                std::string right_token = std::string(right_symbol.text, right_symbol.n);
                if (left_token + right_token != bigram.text) {
                    continue;  // Skip this bigram if it's outdated
                }

                // merge the right sym into the left one
                left_symbol.n += right_symbol.n;
                right_symbol.n = 0;

                // remove the right sym from the chain
                left_symbol.next = right_symbol.next;
                if (right_symbol.next >= 0) {
                    symbols[right_symbol.next].prev = bigram.left;
                }

                add_new_bigram(left_symbol.prev, bigram.left);  // left side of current symbol
                add_new_bigram(bigram.left, left_symbol.next);  // right side of current symbol
            }

            // add the finished tokens to the final list keeping correct order for next and prev
            for (auto & sym : symbols) {
                if (sym.n > 0) {
                    sym.prev = final_prev_index;
                    sym.next = -1;
                    if (final_prev_index != -1) {
                        symbols_final[final_prev_index].next = symbols_final.size();
                    }
                    symbols_final.emplace_back(sym);
                    final_prev_index = symbols_final.size() - 1;
                }
            }
        }

        symbols = symbols_final;

        if (!symbols.empty()) {
            for (int i = 0; i != -1; i = symbols[i].next) {
                auto & symbol = symbols[i];
                if (symbol.n == 0) {
                    continue;
                }

                const std::string str = std::string(symbol.text, symbol.n);
                const auto token = vocab.token_to_id.find(str);

                if (token == vocab.token_to_id.end()) {
                    for (auto j = str.begin(); j != str.end(); ++j) {
                        std::string byte_str(1, *j);
                        auto token_multibyte = vocab.token_to_id.find(byte_str);
                        if (token_multibyte == vocab.token_to_id.end()) {
                            throw std::runtime_error("ERROR: byte not found in vocab");
                        }
                        output.push_back((*token_multibyte).second);
                    }
                } else {
                    output.push_back((*token).second);
                }
            }
        }
    }

private:
    void add_new_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }

        std::string left_token  = std::string(symbols[left].text,  symbols[left].n);
        std::string right_token = std::string(symbols[right].text, symbols[right].n);

        int rank_found = -1;

        rank_found = vocab.find_bpe_rank(left_token, right_token);

        if (rank_found < 0) {
            return;
        }

        llm_bigram_bpe bigram;

        bigram.left  = left;
        bigram.right = right;
        bigram.text  = left_token + right_token;
        bigram.size  = left_token.size() + right_token.size();
        bigram.rank  = rank_found;

        work_queue.push(bigram);
    }

    const llama_vocab & vocab;

    std::vector symbols;
    std::vector symbols_final;

    llm_bigram_bpe::queue work_queue;
};

struct llm_tokenizer_wpm {
    llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}

    void tokenize(const std::string & text, std::vector & output) {
        const auto & token_map = vocab.token_to_id;

        // normalize and split by whitespace
        std::vector words = preprocess(text);

        // bos token prepended already

        // find the longest tokens that form the words
        for (const std::string &word : words) {
            // skip empty words
            if (word.size() == 0) {
                continue;
            }

            // prepend phantom space
            const std::string word1 = "\xe2\x96\x81" + word;
            const int n = word1.size();

            const size_t current_tokens = output.size();

            // we're at the start of a new word
            // move through character position in word
            for (int i = 0; i < n; ++i) {
                // loop through possible match length
                bool match = false;
                for (int j = n; j > i; j--) {
                    auto it = token_map.find(word1.substr(i, j - i));
                    if (it != token_map.end()) {
                        output.push_back(it->second);
                        match = true;
                        i = j - 1;
                        break;
                    }
                }

                if (!match) { // discard all
                    output.resize(current_tokens);
                    break;  // and discard next tokens
                }
            }

            // we didn't find any matches for this word
            if (current_tokens == output.size()) {
                output.push_back(vocab.special_unk_id);
            }
        }
    }

    std::vector preprocess(const std::string & text) {
        const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
        std::vector words(1, "");

        for (const char32_t cpt : cpts_nfd) {
            const auto flags = unicode_cpt_flags(cpt);

            if (flags.is_whitespace) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                continue;
            }

            assert (!flags.is_separator);
            if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
                continue;
            }

            const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
            if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                words.back() = s;       // single char word
                words.emplace_back();   // start a new word
            } else {
                words.back() += s;  // append char to word
            }
        }

        if (!words.back().size()) {
            words.pop_back();
        }

        return words;
    }

    static bool is_chinese_char(uint32_t cpt) {
        return
            (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
            (cpt >= 0x03400 && cpt <= 0x04DBF) ||
            (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
            (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
            (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
            (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
            (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
            (cpt >= 0x2F800 && cpt <= 0x2FA1F);
            //(cpt >= 0x3000  && cpt <= 0x303F)  ||
            //(cpt >= 0xFF00  && cpt <= 0xFFEF);
    }

    const llama_vocab & vocab;
};

typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
    FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
    FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
} FRAGMENT_BUFFER_VARIANT_TYPE;

struct fragment_buffer_variant {
    fragment_buffer_variant(llama_vocab::id _token)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
        token(_token),
        raw_text(_dummy),
        offset(0),
        length(0) {}

    fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
        token((llama_vocab::id) - 1),
        raw_text(_raw_text),
        offset(_offset),
        length(_length){
            GGML_ASSERT(_offset >= 0);
            GGML_ASSERT(_length >= 1);
            GGML_ASSERT(offset + length <= raw_text.length());
        }

    const FRAGMENT_BUFFER_VARIANT_TYPE type;
    const llama_vocab::id token;
    const std::string _dummy;
    const std::string & raw_text;
    const uint64_t offset;
    const uint64_t length;
};

// #define PRETOKENIZERDEBUG

static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) {
    // for each special token
    for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
        const auto & data = vocab.id_to_token[special_id];
        const auto & special_token = data.text;

        // for each text fragment
        std::forward_list::iterator it = buffer.begin();
        while (it != buffer.end()) {
            auto & fragment = (*it);

            // if a fragment is text ( not yet processed )
            if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                auto & raw_text = fragment.raw_text;

                auto raw_text_base_offset = fragment.offset;
                auto raw_text_base_length = fragment.length;

                // loop over the text
                while (true) {
                    // find the first occurrence of a given special token in this fragment
                    //  passing offset argument only limit the "search area" but match coordinates
                    //  are still relative to the source full raw_text
                    auto match = raw_text.find(special_token, raw_text_base_offset);

                    // no occurrences found, stop processing this fragment for a given special token
                    if (match == std::string::npos) break;

                    // check if match is within bounds of offset <-> length
                    if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;

#ifdef PRETOKENIZERDEBUG
                    LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    auto source = std::distance(buffer.begin(), it);

                    // if match is further than base offset
                    //  then we have some text to the left of it
                    if (match > raw_text_base_offset) {
                        // left
                        const int64_t left_reminder_offset = raw_text_base_offset + 0;
                        int64_t left_reminder_length = match - raw_text_base_offset;

                        if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
                            while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
                                left_reminder_length--;
                            }
                        }

                        if (left_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
#endif
                    }

                    // special token
                    buffer.emplace_after(it, special_id);
                    it++;

                    // right
                    if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
                        int64_t right_reminder_offset = match + special_token.length();
                        int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());

                        if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
                            while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
                                right_reminder_offset++;
                                right_reminder_length--;
                            }
                        }

                        if (right_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
#endif

                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source-1)));
                        }

                        // repeat for the right side
                        raw_text_base_offset = right_reminder_offset;
                        raw_text_base_length = right_reminder_length;

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    } else {
                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source-1)));
                        }
                        break;
                    }
                }
            }
            it++;
        }
    }
}

static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
    std::vector output;
    std::forward_list fragment_buffer;

    if (!raw_text.empty()) {
        fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
        if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
    }

    switch (vocab.type) {
        case LLAMA_VOCAB_TYPE_SPM:
            {
                // OG tokenizer behavior:
                //
                // tokenizer.encode('', add_special_tokens=True)  returns [1]
                // tokenizer.encode('', add_special_tokens=False) returns []

                bool is_prev_special = false;

                if (add_special && vocab.special_add_bos != 0) {
                    GGML_ASSERT(vocab.special_bos_id != -1);
                    output.push_back(vocab.special_bos_id);
                    is_prev_special = true;
                }

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

                        if (vocab.add_space_prefix) {
                            if (!output.size() || is_prev_special) {  // prefix with space if first token
                                raw_text = " " + raw_text;
                            }
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        llm_tokenizer_spm tokenizer(vocab);
                        llama_escape_whitespace(raw_text);
                        tokenizer.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                        is_prev_special = true;
                    }
                }

                if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && vocab.special_add_eos == 1) {
                    GGML_ASSERT(vocab.special_eos_id != -1);
                    output.push_back(vocab.special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_BPE:
            {
                if (add_special && vocab.special_add_bos != 0) {
                    GGML_ASSERT(vocab.special_bos_id != -1);
                    output.push_back(vocab.special_bos_id);
                }

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        llm_tokenizer_bpe tokenizer(vocab);
                        tokenizer.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && vocab.special_add_eos == 1) {
                    GGML_ASSERT(vocab.special_add_eos != -1);
                    output.push_back(vocab.special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_WPM:
            {
                if (add_special) {
                    GGML_ASSERT(vocab.special_cls_id != -1);
                    output.push_back(vocab.special_cls_id);
                }

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
                        llm_tokenizer_wpm tokenizer(vocab);
                        tokenizer.tokenize(raw_text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special) {
                    GGML_ASSERT(vocab.special_sep_id != -1);
                    output.push_back(vocab.special_sep_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_NONE:
            GGML_ASSERT(false);
    }

    return output;
}

//
// grammar - internal
//


// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
std::pair, llama_partial_utf8> decode_utf8(
        const std::string & src,
        llama_partial_utf8   partial_start) {
    static const int      lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
    const char          * pos      = src.c_str();
    std::vector code_points;
    // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
    code_points.reserve(src.size() + 1);
    uint32_t              value    = partial_start.value;
    int                   n_remain = partial_start.n_remain;

    // continue previous decode, if applicable
    while (*pos != 0 && n_remain > 0) {
        uint8_t next_byte = static_cast(*pos);
        if ((next_byte >> 6) != 2) {
            // invalid sequence, abort
            code_points.push_back(0);
            return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
        }
        value = (value << 6) + (next_byte & 0x3F);
        ++pos;
        --n_remain;
    }

    if (partial_start.n_remain > 0 && n_remain == 0) {
        code_points.push_back(value);
    }

    // decode any subsequent utf-8 sequences, which may end in an incomplete one
    while (*pos != 0) {
        uint8_t  first_byte = static_cast(*pos);
        uint8_t  highbits   = first_byte >> 4;
                 n_remain   = lookup[highbits] - 1;

        if (n_remain < 0) {
            // invalid sequence, abort
            code_points.clear();
            code_points.push_back(0);
            return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
        }

        uint8_t  mask       = (1 << (7 - n_remain)) - 1;
                 value      = first_byte & mask;
        ++pos;
        while (*pos != 0 && n_remain > 0) {
            value = (value << 6) + (static_cast(*pos) & 0x3F);
            ++pos;
            --n_remain;
        }
        if (n_remain == 0) {
            code_points.push_back(value);
        }
    }
    code_points.push_back(0);

    return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
}

// returns true iff pos points to the end of one of the definitions of a rule
static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
    switch (pos->type) {
        case LLAMA_GRETYPE_END: return true;  // NOLINT
        case LLAMA_GRETYPE_ALT: return true;  // NOLINT
        default:                return false;
    }
}

// returns true iff chr satisfies the char range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static std::pair llama_grammar_match_char(
        const llama_grammar_element * pos,
        const uint32_t                chr) {

    bool found            = false;
    bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;

    GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT

    do {
        if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
            // inclusive range, e.g. [a-z]
            found = found || (pos->value <= chr && chr <= pos[1].value);
            pos += 2;
        } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
            // Any character matches "."
            found = true;
            pos += 1;
        } else {
            // exact char match, e.g. [a] or "a"
            found = found || pos->value == chr;
            pos += 1;
        }
    } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);

    return std::make_pair(found == is_positive_char, pos);
}

// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
// range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static bool llama_grammar_match_partial_char(
        const llama_grammar_element * pos,
        const llama_partial_utf8      partial_utf8) {

    bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
    GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);

    uint32_t partial_value = partial_utf8.value;
    int      n_remain      = partial_utf8.n_remain;

    // invalid sequence or 7-bit char split across 2 bytes (overlong)
    if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
        return false;
    }

    // range of possible code points this partial UTF-8 sequence could complete to
    uint32_t low  = partial_value << (n_remain * 6);
    uint32_t high = low | ((1 << (n_remain * 6)) - 1);

    if (low == 0) {
        if (n_remain == 2) {
            low = 1 << 11;
        } else if (n_remain == 3) {
            low = 1 << 16;
        }
    }

    do {
        if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
            // inclusive range, e.g. [a-z]
            if (pos->value <= high && low <= pos[1].value) {
                return is_positive_char;
            }
            pos += 2;
        } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
            // Any character matches "."
            return true;
        } else {
            // exact char match, e.g. [a] or "a"
            if (low <= pos->value && pos->value <= high) {
                return is_positive_char;
            }
            pos += 1;
        }
    } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);

    return !is_positive_char;
}


// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
        const std::vector>   & rules,
        const std::vector        & stack,
        std::vector> & new_stacks) {

    if (stack.empty()) {
        if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
            new_stacks.emplace_back(stack);
        }
        return;
    }

    const llama_grammar_element * pos = stack.back();

    switch (pos->type) {
        case LLAMA_GRETYPE_RULE_REF: {
            const size_t                  rule_id = static_cast(pos->value);
            const llama_grammar_element * subpos  = rules[rule_id].data();
            do {
                // init new stack without the top (pos)
                std::vector new_stack(stack.begin(), stack.end() - 1);
                if (!llama_grammar_is_end_of_sequence(pos + 1)) {
                    // if this rule ref is followed by another element, add that to stack
                    new_stack.push_back(pos + 1);
                }
                if (!llama_grammar_is_end_of_sequence(subpos)) {
                    // if alternate is nonempty, add to stack
                    new_stack.push_back(subpos);
                }
                llama_grammar_advance_stack(rules, new_stack, new_stacks);
                while (!llama_grammar_is_end_of_sequence(subpos)) {
                    // scan to end of alternate def
                    subpos++;
                }
                if (subpos->type == LLAMA_GRETYPE_ALT) {
                    // there's another alternate def of this rule to process
                    subpos++;
                } else {
                    break;
                }
            } while (true);
            break;
        }
        case LLAMA_GRETYPE_CHAR:
        case LLAMA_GRETYPE_CHAR_NOT:
        case LLAMA_GRETYPE_CHAR_ANY:
            if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
                // only add the stack if it's not a duplicate of one we already have
                new_stacks.emplace_back(stack);
            }
            break;
        default:
            // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
            // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
            // those
            GGML_ASSERT(false);
    }
}

// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
void llama_grammar_accept(
        const std::vector>         & rules,
        const std::vector> & stacks,
        const uint32_t                                                  chr,
        std::vector>       & new_stacks) {

    new_stacks.clear();

    for (const auto & stack : stacks) {
        if (stack.empty()) {
            continue;
        }

        auto match = llama_grammar_match_char(stack.back(), chr);
        if (match.first) {
            const llama_grammar_element * pos = match.second;

            // update top of stack to next element, if any
            std::vector new_stack(stack.begin(), stack.end() - 1);
            if (!llama_grammar_is_end_of_sequence(pos)) {
                new_stack.push_back(pos);
            }
            llama_grammar_advance_stack(rules, new_stack, new_stacks);
        }
    }
}

static std::vector llama_grammar_reject_candidates(
        const std::vector>         & rules,
        const std::vector> & stacks,
        const std::vector                    & candidates);

static std::vector llama_grammar_reject_candidates_for_stack(
        const std::vector> & rules,
        const std::vector      & stack,
        const std::vector            & candidates) {

    std::vector rejects;
    rejects.reserve(candidates.size());

    if (stack.empty()) {
        for (const auto & tok : candidates) {
            if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
                rejects.push_back(tok);
            }
        }
        return rejects;
    }

    const llama_grammar_element * stack_pos = stack.back();

    std::vector next_candidates;
    next_candidates.reserve(candidates.size());

    for (const auto & tok : candidates) {
        if (*tok.code_points == 0) {
            // reached end of full codepoints in token, reject iff it ended in a partial sequence
            // that cannot satisfy this position in grammar
            if (tok.partial_utf8.n_remain != 0 &&
                    !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
                rejects.push_back(tok);
            }
        } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
            next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
        } else {
            rejects.push_back(tok);
        }
    }

    const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;

    // update top of stack to next element, if any
    std::vector stack_after(stack.begin(), stack.end() - 1);
    if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
        stack_after.push_back(stack_pos_after);
    }
    std::vector> next_stacks;
    llama_grammar_advance_stack(rules, stack_after, next_stacks);

    auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
    for (const auto & tok : next_rejects) {
        rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
    }

    return rejects;
}

static std::vector llama_grammar_reject_candidates(
        const std::vector>         & rules,
        const std::vector> & stacks,
        const std::vector                    & candidates) {
    GGML_ASSERT(!stacks.empty()); // REVIEW

    if (candidates.empty()) {
        return std::vector();
    }

    auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);

    for (size_t i = 1, size = stacks.size(); i < size; ++i) {
        rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
    }
    return rejects;
}

static bool llama_grammar_detect_left_recursion(
        const std::vector> & rules,
        size_t                                                  rule_index,
        std::vector                                     * rules_visited,
        std::vector                                     * rules_in_progress,
        std::vector                                     * rules_may_be_empty) {
    if ((*rules_in_progress)[rule_index]) {
        return true;
    }

    (*rules_in_progress)[rule_index] = true;

    const std::vector & rule = rules[rule_index];

    // First check if the rule might produce the empty string. This could be done combined with the second
    // step but it's more readable as two steps.
    bool at_rule_start = true;
    for (size_t i = 0; i < rule.size(); i++) {
        if (llama_grammar_is_end_of_sequence(&rule[i])) {
            if (at_rule_start) {
                (*rules_may_be_empty)[rule_index] = true;
                break;
            }
            at_rule_start = true;
        } else {
            at_rule_start = false;
        }
    }

    // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
    // be empty)
    bool recurse_into_nonterminal = true;
    for (size_t i = 0; i < rule.size(); i++) {
        if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
            if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
                return true;
            }
            if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
                recurse_into_nonterminal = false;
            }
        } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
            recurse_into_nonterminal = true;
        } else {
            recurse_into_nonterminal = false;
        }
    }

    (*rules_in_progress)[rule_index] = false;
    (*rules_visited)[rule_index] = true;
    return false;
}

//
// grammar - external
//

struct llama_grammar * llama_grammar_init(
            const llama_grammar_element ** rules,
                                 size_t    n_rules,
                                 size_t    start_rule_index) {
    const llama_grammar_element * pos;

    // copy rule definitions into vectors
    std::vector> vec_rules(n_rules);
    for (size_t i = 0; i < n_rules; i++) {
        for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
            vec_rules[i].push_back(*pos);
        }
        vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
    }

    // Check for left recursion
    std::vector rules_visited(n_rules);
    std::vector rules_in_progress(n_rules);
    std::vector rules_may_be_empty(n_rules);
    for (size_t i = 0; i < n_rules; i++) {
        if (rules_visited[i]) {
            continue;
        }
        if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
            throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
        }
    }

    // loop over alternates of start rule to build initial stacks
    std::vector> stacks;
    pos = vec_rules[start_rule_index].data();
    do {
        std::vector stack;
        if (!llama_grammar_is_end_of_sequence(pos)) {
            // if alternate is nonempty, add to stack
            stack.push_back(pos);
        }
        llama_grammar_advance_stack(vec_rules, stack, stacks);
        while (!llama_grammar_is_end_of_sequence(pos)) {
            // scan to end of alternate def
            pos++;
        }
        if (pos->type == LLAMA_GRETYPE_ALT) {
            // there's another alternate def of this rule to process
            pos++;
        } else {
            break;
        }
    } while (true);

    // Important: vec_rules has to be moved here, not copied, because stacks contains
    // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
    // then the pointers would be invalidated when the local vec_rules goes out of scope.
    return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
}

void llama_grammar_free(struct llama_grammar * grammar) {
    delete grammar;
}

struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
    llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };

    // redirect elements in stacks to point to new rules
    for (size_t is = 0; is < result->stacks.size(); is++) {
        for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
            for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
                for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
                    if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
                         result->stacks[is][ie]  =  &result->rules[ir0][ir1];
                    }
                }
            }
        }
    }

    return result;
}

//
// sampling
//

void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
    if (seed == LLAMA_DEFAULT_SEED) {
        seed = time(NULL);
    }
    ctx->rng.seed(seed);
}

void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
    GGML_ASSERT(candidates->size > 0);

    const int64_t t_start_sample_us = ggml_time_us();

    // Sort the logits in descending order
    if (!candidates->sorted) {
        std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        });
        candidates->sorted = true;
    }

    float max_l = candidates->data[0].logit;
    float cum_sum = 0.0f;
    for (size_t i = 0; i < candidates->size; ++i) {
        float p = expf(candidates->data[i].logit - max_l);
        candidates->data[i].p = p;
        cum_sum += p;
    }
    for (size_t i = 0; i < candidates->size; ++i) {
        candidates->data[i].p /= cum_sum;
    }

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
    // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
    // if (k >= (int32_t)candidates->size) {
    //     return;
    // }

    const int64_t t_start_sample_us = ggml_time_us();

    if (k <= 0) {
        k = candidates->size;
    }

    k = std::max(k, (int) min_keep);
    k = std::min(k, (int) candidates->size);

    // Sort scores in descending order
    if (!candidates->sorted) {
        auto comp = [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        };
        if (k <= 128) {
            std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
        } else {
            constexpr int   nbuckets     = 128;
            constexpr float bucket_low   = -10.0f;
            constexpr float bucket_high  =  10.0f;
            constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
            constexpr float bucker_inter = -bucket_low * bucket_scale;

            std::vector bucket_idx(candidates->size);
            std::vector histo(nbuckets, 0);

            for (int i = 0; i < (int)candidates->size; ++i) {
                const float val = candidates->data[i].logit;
                int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
                ib = std::max(0, std::min(nbuckets-1, ib));
                bucket_idx[i] = ib;
                ++histo[ib];
            }
            int nhave = 0;
            int ib = nbuckets - 1;
            for ( ; ib >= 0; --ib) {
                nhave += histo[ib];
                if (nhave >= k) break;
            }
            std::vector tmp_tokens(nhave);
            auto ptr = tmp_tokens.data();
            std::vector bucket_ptrs;
            bucket_ptrs.reserve(nbuckets - ib);
            for (int j = nbuckets - 1; j >= ib; --j) {
                bucket_ptrs.push_back(ptr);
                ptr += histo[j];
            }
            for (int i = 0; i < (int)candidates->size; ++i) {
                int j = bucket_idx[i];
                if (j >= ib) {
                    *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
                }
            }

            ptr = tmp_tokens.data();
            int ndone = 0;
            for (int j = nbuckets-1; j > ib; --j) {
                std::sort(ptr, ptr + histo[j], comp);
                ptr += histo[j];
                ndone += histo[j];
            }
            std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);

            std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));

        }
        candidates->sorted = true;
    }
    candidates->size = k;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    if (p >= 1.0f) {
        return;
    }

    llama_sample_softmax(ctx, candidates);

    const int64_t t_start_sample_us = ggml_time_us();

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = candidates->size;

    for (size_t i = 0; i < candidates->size; ++i) {
        cum_sum += candidates->data[i].p;

        // Check if the running sum is at least p or if we have kept at least min_keep tokens
        // we set the last index to i+1 to indicate that the current iterate should be included in the set
        if (cum_sum >= p && i + 1 >= min_keep) {
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the top-p tokens
    candidates->size = last_idx;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    if (p <= 0.0f || !candidates->size) {
        return;
    }

    const int64_t t_start_sample_us = ggml_time_us();

    bool min_p_applied = false;

    // if the candidates aren't sorted, try the unsorted implementation first
    if (!candidates->sorted) {
        std::vector filtered_tokens;

        float max_logit = -FLT_MAX;
        for (size_t i = 0; i < candidates->size; ++i) {
            max_logit = std::max(max_logit, candidates->data[i].logit);
        }
        const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max

        for (size_t i = 0; i < candidates->size; ++i) {
            if (candidates->data[i].logit >= min_logit) {
                filtered_tokens.push_back(candidates->data[i]);
            }
        }

        // if we have enough values the operation was a success
        if (filtered_tokens.size() >= min_keep) {
            memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
            candidates->size = filtered_tokens.size();
            min_p_applied = true;
        }
    }

    // if the candidates are sorted or the unsorted implementation failed, use this implementation
    if (!min_p_applied) {
        // Sort the logits in descending order
        if (!candidates->sorted) {
            std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
                return a.logit > b.logit;
            });
            candidates->sorted = true;
        }

        const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
        size_t i = 1; // first token always matches

        for (; i < candidates->size; ++i) {
            if (candidates->data[i].logit < min_logit && i >= min_keep) {
                break; // prob too small
            }
        }

        // Resize the output vector to keep only the matching tokens
        candidates->size = i;
    }

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
    if (z >= 1.0f || candidates->size <= 2) {
        return;
    }

    llama_sample_softmax(nullptr, candidates);
    const int64_t t_start_sample_us = ggml_time_us();

    // Compute the first and second derivatives
    std::vector first_derivatives(candidates->size - 1);
    std::vector second_derivatives(candidates->size - 2);

    for (size_t i = 0; i < first_derivatives.size(); ++i) {
        first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
    }
    for (size_t i = 0; i < second_derivatives.size(); ++i) {
        second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
    }

    // Calculate absolute value of second derivatives
    for (size_t i = 0; i < second_derivatives.size(); ++i) {
        second_derivatives[i] = std::abs(second_derivatives[i]);
    }

    // Normalize the second derivatives
    {
        const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);

        if (second_derivatives_sum > 1e-6f) {
            for (float & value : second_derivatives) {
                value /= second_derivatives_sum;
            }
        } else {
            for (float & value : second_derivatives) {
                value = 1.0f / second_derivatives.size();
            }
        }
    }

    float cum_sum = 0.0f;
    size_t last_idx = candidates->size;
    for (size_t i = 0; i < second_derivatives.size(); ++i) {
        cum_sum += second_derivatives[i];

        // Check if the running sum is greater than z or if we have kept at least min_keep tokens
        if (cum_sum > z && i >= min_keep) {
            last_idx = i;
            break;
        }
    }

    // Resize the output vector to keep only the tokens above the tail location
    candidates->size = last_idx;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
    // Reference implementation:
    // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
    if (p >= 1.0f) {
        return;
    }

    // Compute the softmax of logits and calculate entropy
    llama_sample_softmax(nullptr, candidates);

    const int64_t t_start_sample_us = ggml_time_us();

    float entropy = 0.0f;
    for (size_t i = 0; i < candidates->size; ++i) {
        entropy += -candidates->data[i].p * logf(candidates->data[i].p);
    }

    // Compute the absolute difference between negative log probability and entropy for each candidate
    std::vector shifted_scores;
    for (size_t i = 0; i < candidates->size; ++i) {
        float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
        shifted_scores.push_back(shifted_score);
    }

    // Sort tokens based on the shifted_scores and their corresponding indices
    std::vector indices(candidates->size);
    std::iota(indices.begin(), indices.end(), 0);

    std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
        return shifted_scores[a] < shifted_scores[b];
    });

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = indices.size();

    for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
        cum_sum += candidates->data[idx].p;

        // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
        if (cum_sum > p && i >= min_keep - 1) {
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the locally typical tokens
    std::vector new_candidates;
    for (size_t i = 0; i < last_idx; ++i) {
        size_t idx = indices[i];
        new_candidates.push_back(candidates->data[idx]);
    }

    // Replace the data in candidates with the new_candidates data
    std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
    candidates->size = new_candidates.size();
    candidates->sorted = false;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
    const int64_t t_start_sample_us = ggml_time_us();

    // no need to do anything if there is only one (or zero) candidates
    if(candidates_p->size <= 1) {
        return;
    }

    // Calculate maximum possible entropy
    float max_entropy = -logf(1.0f / candidates_p->size);

    llama_sample_softmax(nullptr, candidates_p);

    // Calculate entropy of the softmax probabilities
    float entropy = 0.0f;
    for (size_t i = 0; i < candidates_p->size; ++i) {
        float prob = candidates_p->data[i].p;
        if (prob > 0.0f) { // Ensure no log(0)
            entropy -= prob * logf(prob);
        }
    }

    // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
    float normalized_entropy = entropy / max_entropy;

    // Map the normalized entropy to the desired temperature range using the power function
    float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);

#ifdef DEBUG
    LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
    LLAMA_LOG_INFO("Entropy: %f\n", entropy);
    LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
    LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
    LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
    LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif

    // Apply the dynamically calculated temperature scaling
    for (size_t i = 0; i < candidates_p->size; ++i) {
        candidates_p->data[i].logit /= dyn_temp;
    }

    // Re-compute softmax probabilities after scaling logits with dynamic temperature
    double max_l_double = candidates_p->data[0].logit;
    double cum_sum_double = 0.0;
    for (size_t i = 0; i < candidates_p->size; ++i) {
        double p = exp(candidates_p->data[i].logit - max_l_double);
        candidates_p->data[i].p = p; // Store the scaled probability
        cum_sum_double += p;
    }
    for (size_t i = 0; i < candidates_p->size; ++i) {
        candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
    }

#ifdef DEBUG
    // Print the updated top 25 probabilities after temperature scaling
    LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
    for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
        LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
    }
#endif

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
    const int64_t t_start_sample_us = ggml_time_us();

    for (size_t i = 0; i < candidates_p->size; ++i) {
        candidates_p->data[i].logit /= temp;
    }

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_repetition_penalties(
            struct llama_context * ctx,
          llama_token_data_array * candidates,
               const llama_token * last_tokens,
                          size_t   penalty_last_n,
                           float   penalty_repeat,
                           float   penalty_freq,
                           float   penalty_present) {
    if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
        return;
    }

    const int64_t t_start_sample_us = ggml_time_us();

    // Create a frequency map to count occurrences of each token in last_tokens
    std::unordered_map token_count;
    for (size_t i = 0; i < penalty_last_n; ++i) {
        token_count[last_tokens[i]]++;
    }

    // Apply frequency and presence penalties to the candidates
    for (size_t i = 0; i < candidates->size; ++i) {
        const auto token_iter = token_count.find(candidates->data[i].id);
        if (token_iter == token_count.end()) {
            continue;
        }

        const int count = token_iter->second;

        // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
        // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
        if (candidates->data[i].logit <= 0) {
            candidates->data[i].logit *= penalty_repeat;
        } else {
            candidates->data[i].logit /= penalty_repeat;
        }

        candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
    }

    candidates->sorted = false;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
}

void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
    GGML_ASSERT(ctx);
    int64_t t_start_sample_us = ggml_time_us();

    bool allow_eog = false;
    for (const auto & stack : grammar->stacks) {
        if (stack.empty()) {
            allow_eog = true;
            break;
        }
    }

    std::vector, llama_partial_utf8>> candidates_decoded;
    candidates_decoded.reserve(candidates->size);

    std::vector candidates_grammar;
    candidates_grammar.reserve(candidates->size);

    for (size_t i = 0; i < candidates->size; ++i) {
        const llama_token id      = candidates->data[i].id;
        const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);

        if (llama_token_is_eog(&ctx->model, id)) {
            if (!allow_eog) {
                candidates->data[i].logit = -INFINITY;
            }
        } else if (piece.empty() || piece[0] == 0) {
            candidates->data[i].logit = -INFINITY;
        } else {
            candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
            candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
        }
    }

    const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
    for (const auto & reject : rejects) {
        candidates->data[reject.index].logit = -INFINITY;
    }

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}

static void llama_log_softmax(float * array, size_t size) {
    float max_l = *std::max_element(array, array + size);
    float sum = 0.f;
    for (size_t i = 0; i < size; ++i) {
        float p = expf(array[i] - max_l);
        sum += p;
        array[i] = p;
    }

    for (size_t i = 0; i < size; ++i) {
        array[i] = logf(array[i] / sum);
    }
}

void llama_sample_apply_guidance(
          struct llama_context * ctx,
                         float * logits,
                         float * logits_guidance,
                         float   scale) {
    GGML_ASSERT(ctx);

    const auto t_start_sample_us = ggml_time_us();
    const auto n_vocab = llama_n_vocab(llama_get_model(ctx));

    llama_log_softmax(logits, n_vocab);
    llama_log_softmax(logits_guidance, n_vocab);

    for (int i = 0; i < n_vocab; ++i) {
              auto & l = logits[i];
        const auto & g = logits_guidance[i];

        l = scale * (l - g) + g;
    }

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}

llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
    GGML_ASSERT(ctx);

    auto N = float(llama_n_vocab(llama_get_model(ctx)));
    int64_t t_start_sample_us;
    t_start_sample_us = ggml_time_us();

    llama_sample_softmax(nullptr, candidates);

    // Estimate s_hat using the most probable m tokens
    float s_hat = 0.0;
    float sum_ti_bi = 0.0;
    float sum_ti_sq = 0.0;
    for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
        float t_i = logf(float(i + 2) / float(i + 1));
        float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
        sum_ti_bi += t_i * b_i;
        sum_ti_sq += t_i * t_i;
    }
    s_hat = sum_ti_bi / sum_ti_sq;

    // Compute k from the estimated s_hat and target surprise value
    float epsilon_hat = s_hat - 1;
    float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);

    // Sample the next word X using top-k sampling
    llama_sample_top_k(nullptr, candidates, int(k), 1);
    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    llama_token X = llama_sample_token(ctx, candidates);
    t_start_sample_us = ggml_time_us();

    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;

    // Update mu using the learning rate and error
    *mu = *mu - eta * e;

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    return X;
}

llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
    int64_t t_start_sample_us;
    t_start_sample_us = ggml_time_us();

    llama_sample_softmax(ctx, candidates);

    // Truncate the words with surprise values greater than mu
    candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return -log2f(candidate.p) > *mu;
    }));

    if (candidates->size == 0) {
        candidates->size = 1;
    }

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }

    // Normalize the probabilities of the remaining words
    llama_sample_softmax(ctx, candidates);

    // Sample the next word X from the remaining words
    llama_token X = llama_sample_token(ctx, candidates);
    t_start_sample_us = ggml_time_us();

    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;

    // Update mu using the learning rate and error
    *mu = *mu - eta * e;

    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    }
    return X;
}

llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
    const int64_t t_start_sample_us = ggml_time_us();

    // Find max element
    auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
        return a.logit < b.logit;
    });

    llama_token result = max_iter->id;
    if (ctx) {
        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
        ctx->n_sample++;
    }
    return result;
}

llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
    GGML_ASSERT(ctx);

    const int64_t t_start_sample_us = ggml_time_us();
    llama_sample_softmax(nullptr, candidates);

    std::vector probs;
    probs.reserve(candidates->size);
    for (size_t i = 0; i < candidates->size; ++i) {
        probs.push_back(candidates->data[i].p);
    }

    std::discrete_distribution<> dist(probs.begin(), probs.end());
    int idx = dist(rng);

    llama_token result = candidates->data[idx].id;

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
    ctx->n_sample++;
    return result;
}

llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
    return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
}

void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
    const int64_t t_start_sample_us = ggml_time_us();

    if (llama_token_is_eog(&ctx->model, token)) {
        for (const auto & stack : grammar->stacks) {
            if (stack.empty()) {
                return;
            }
        }
        GGML_ASSERT(false);
    }

    const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);

    // Note terminating 0 in decoded string
    const auto   decoded     = decode_utf8(piece, grammar->partial_utf8);
    const auto & code_points = decoded.first;
    std::vector> tmp_new_stacks;
    for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
        llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
        grammar->stacks = tmp_new_stacks;
    }
    grammar->partial_utf8 = decoded.second;
    GGML_ASSERT(!grammar->stacks.empty());

    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}

//
// quantization
//

struct quantize_state_internal {
    const llama_model                 & model;
    const llama_model_quantize_params * params;

    int n_attention_wv    = 0;
    int n_ffn_down        = 0;
    int n_ffn_gate        = 0;
    int n_ffn_up          = 0;
    int i_attention_wv    = 0;
    int i_ffn_down        = 0;
    int i_ffn_gate        = 0;
    int i_ffn_up          = 0;

    int n_k_quantized     = 0;
    int n_fallback        = 0;

    bool has_imatrix      = false;

    // used to figure out if a model shares tok_embd with the output weight
    bool has_output       = false;

    quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
        : model(model)
        , params(params)
        {}
};

static void llama_tensor_dequantize_internal(
    struct ggml_tensor * tensor, std::vector> & output, std::vector & workers,
    const size_t nelements, const int nthread
) {
    if (output.size() < nelements) {
        output.resize(nelements);
    }
    float * f32_output = (float *) output.data();

    ggml_type_traits_t qtype;
    if (ggml_is_quantized(tensor->type)) {
        qtype = ggml_internal_get_type_traits(tensor->type);
        if (qtype.to_float == NULL) {
            throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
        }
    } else if (tensor->type != GGML_TYPE_F16 &&
               tensor->type != GGML_TYPE_BF16) {
        throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
    }

    if (nthread < 2) {
        if (tensor->type == GGML_TYPE_F16) {
            ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
        } else if (tensor->type == GGML_TYPE_BF16) {
            ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
        } else if (ggml_is_quantized(tensor->type)) {
            qtype.to_float(tensor->data, f32_output, nelements);
        } else {
            GGML_ASSERT(false); // unreachable
        }
        return;
    }

    size_t block_size;
    if (tensor->type == GGML_TYPE_F16 ||
        tensor->type == GGML_TYPE_BF16) {
        block_size = 1;
    } else {
        block_size = (size_t)ggml_blck_size(tensor->type);
    }

    size_t block_size_bytes = ggml_type_size(tensor->type);

    GGML_ASSERT(nelements % block_size == 0);
    size_t nblocks = nelements / block_size;
    size_t blocks_per_thread = nblocks / nthread;
    size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count

    size_t in_buff_offs = 0;
    size_t out_buff_offs = 0;

    for (int tnum = 0; tnum < nthread; tnum++) {
        size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
        size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
        size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread

        auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
            if (typ == GGML_TYPE_F16) {
                ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
            } else if (typ == GGML_TYPE_BF16) {
                ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
            } else {
                qtype.to_float(inbuf, outbuf, nels);
            }
        };
        workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
        in_buff_offs += thr_block_bytes;
        out_buff_offs += thr_elems;
    }
    for (auto & w : workers) { w.join(); }
    workers.clear();
}

static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
    const std::string name = ggml_get_name(tensor);

    // TODO: avoid hardcoded tensor names - use the TN_* constants
    const llm_arch arch = qs.model.arch;
    const auto       tn = LLM_TN(arch);

    auto use_more_bits = [](int i_layer, int num_layers) -> bool {
        return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
    };
    const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
    auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
        if (n_expert > 1) {
            // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
            // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
            // for getting the current layer as I initially thought, and we need to resort to parsing the
            // tensor name.
            if (sscanf(name, "blk.%d.", &i_layer) != 1) {
                throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
            }
            if (i_layer < 0 || i_layer >= n_layer) {
                throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
            }
        }
        return std::make_pair(i_layer, n_layer);
    };

    // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
    // with the quantization of the output tensor
    if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
        if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
            new_type = qs.params->output_tensor_type;
        } else {
            int nx = tensor->ne[0];
            if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
                new_type = GGML_TYPE_Q8_0;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S  || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M   ||
                     ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
                new_type = GGML_TYPE_Q5_K;
            }
            else if (new_type != GGML_TYPE_Q8_0) {
                new_type = GGML_TYPE_Q6_K;
            }
        }
    } else if (name == "token_embd.weight") {
        if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
            new_type = qs.params->token_embedding_type;
        } else {
            if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
                ftype == LLAMA_FTYPE_MOSTLY_IQ1_S   || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
                new_type = GGML_TYPE_Q2_K;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
                new_type = GGML_TYPE_IQ3_S;
            }
            else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
                new_type = GGML_TYPE_IQ3_S;
            }
        }
    } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
               ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M    || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
        if (name.find("attn_v.weight") != std::string::npos) {
            if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
            else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
            ++qs.i_attention_wv;
        }
        else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (name.find("ffn_down") != std::string::npos) {
            if (qs.i_ffn_down < qs.n_ffn_down/8) {
                new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
            }
            ++qs.i_ffn_down;
        }
        else if (name.find("attn_output.weight") != std::string::npos) {
            if (qs.model.hparams.n_expert == 8) {
                new_type = GGML_TYPE_Q5_K;
            } else {
                if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
            }
        }
    } else if (name.find("attn_v.weight") != std::string::npos) {
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
            new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
        else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
                use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
        if (qs.model.type == MODEL_70B) {
            // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
            // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
            // nearly negligible increase in model size by quantizing this tensor with more bits:
            if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
        }
        if (qs.model.hparams.n_expert == 8) {
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
            // TODO: explore better strategies
            new_type = GGML_TYPE_Q8_0;
        }
        ++qs.i_attention_wv;
    } else if (name.find("attn_k.weight") != std::string::npos) {
        if (qs.model.hparams.n_expert == 8) {
            // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
            // TODO: explore better strategies
            new_type = GGML_TYPE_Q8_0;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = GGML_TYPE_IQ2_S;
        }
    } else if (name.find("attn_q.weight") != std::string::npos) {
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
            new_type = GGML_TYPE_IQ2_S;
        }
    } else if (name.find("ffn_down") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
            if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
            new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
            new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
                     : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
                     : GGML_TYPE_Q3_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
                    (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
            new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
            if (arch == LLM_ARCH_FALCON) {
                new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
                           use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
            } else {
                if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
            }
        }
        else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
            new_type = GGML_TYPE_Q5_K;
        }
        else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
                && qs.has_imatrix && i_layer < n_layer/8) {
            // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
            // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
            // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
            new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
        }
        ++qs.i_ffn_down;
    } else if (name.find("attn_output.weight") != std::string::npos) {
        if (arch != LLM_ARCH_FALCON) {
            if (qs.model.hparams.n_expert == 8) {
                if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
                    ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL  ||
                    ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S  ||
                    ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
                    new_type = GGML_TYPE_Q5_K;
                }
            } else {
                if      (ftype == LLAMA_FTYPE_MOSTLY_Q2_K   ) new_type = GGML_TYPE_Q3_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
                else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M  ) new_type = GGML_TYPE_Q4_K;
            }
        } else {
            if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
        }
    }
    else if (name.find("attn_qkv.weight") != std::string::npos) {
        if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
            new_type = GGML_TYPE_Q4_K;
        }
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
        else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
    }
    else if (name.find("ffn_gate") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        ++qs.i_ffn_gate;
    }
    else if (name.find("ffn_up") != std::string::npos) {
        auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
        int i_layer = info.first, n_layer = info.second;
        if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
            new_type = GGML_TYPE_IQ3_XXS;
        }
        ++qs.i_ffn_up;
    }

    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
    //}
    // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
    //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
    //}
    // This can be used to reduce the size of the Q5_K_S model.
    // The associated PPL increase is fully in line with the size reduction
    //else {
    //    if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
    //}
    bool convert_incompatible_tensor = false;
    if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
        new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
        new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
        new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
        new_type == GGML_TYPE_IQ1_M) {
        int nx = tensor->ne[0];
        int ny = tensor->ne[1];
        if (nx % QK_K != 0) {
            LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
            convert_incompatible_tensor = true;
        } else {
            ++qs.n_k_quantized;
        }
    }
    if (convert_incompatible_tensor) {
        switch (new_type) {
            case GGML_TYPE_IQ2_XXS:
            case GGML_TYPE_IQ2_XS:
            case GGML_TYPE_IQ2_S:
            case GGML_TYPE_IQ3_XXS:
            case GGML_TYPE_IQ3_S:
            case GGML_TYPE_IQ1_S:
            case GGML_TYPE_IQ1_M:
            case GGML_TYPE_Q2_K:
            case GGML_TYPE_Q3_K:
            case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
            case GGML_TYPE_Q4_K:   new_type = GGML_TYPE_Q5_0;   break;
            case GGML_TYPE_Q5_K:   new_type = GGML_TYPE_Q5_1;   break;
            case GGML_TYPE_Q6_K:   new_type = GGML_TYPE_Q8_0;   break;
            default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
        }
        LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
        ++qs.n_fallback;
    }

    return new_type;
}

static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) {
    if (nthread < 2) {
        // single-thread
        size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
        if (!ggml_validate_row_data(new_type, new_data, new_size)) {
            throw std::runtime_error("quantized data validation failed");
        }
        return new_size;
    }

    std::mutex mutex;
    int64_t counter = 0;
    size_t new_size = 0;
    bool valid = true;
    auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
            nrows, n_per_row, imatrix]() {
        const int64_t nrows_per_chunk = chunk_size / n_per_row;
        size_t local_size = 0;
        while (true) {
            std::unique_lock lock(mutex);
            int64_t first_row = counter; counter += nrows_per_chunk;
            if (first_row >= nrows) {
                if (local_size > 0) {
                    new_size += local_size;
                }
                break;
            }
            lock.unlock();
            const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
            size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
            local_size += this_size;

            // validate the quantized data
            const size_t row_size  = ggml_row_size(new_type, n_per_row);
            void * this_data = (char *) new_data + first_row * row_size;
            if (!ggml_validate_row_data(new_type, this_data, this_size)) {
                std::unique_lock lock(mutex);
                valid = false;
                break;
            }
        }
    };
    for (int it = 0; it < nthread - 1; ++it) {
        workers.emplace_back(compute);
    }
    compute();
    for (auto & w : workers) { w.join(); }
    workers.clear();
    if (!valid) {
        throw std::runtime_error("quantized data validation failed");
    }
    return new_size;
}

static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
    ggml_type default_type;
    llama_ftype ftype = params->ftype;

    switch (params->ftype) {
        case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
        case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
        case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
        case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
        case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
        case LLAMA_FTYPE_MOSTLY_F16:  default_type = GGML_TYPE_F16;  break;
        case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
        case LLAMA_FTYPE_ALL_F32:     default_type = GGML_TYPE_F32;  break;

        // K-quants
        case LLAMA_FTYPE_MOSTLY_Q2_K_S:
        case LLAMA_FTYPE_MOSTLY_Q2_K:    default_type = GGML_TYPE_Q2_K;    break;
        case LLAMA_FTYPE_MOSTLY_IQ3_XS:  default_type = GGML_TYPE_IQ3_S;   break;
        case LLAMA_FTYPE_MOSTLY_Q3_K_S:
        case LLAMA_FTYPE_MOSTLY_Q3_K_M:
        case LLAMA_FTYPE_MOSTLY_Q3_K_L:  default_type = GGML_TYPE_Q3_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q4_K_S:
        case LLAMA_FTYPE_MOSTLY_Q4_K_M:  default_type = GGML_TYPE_Q4_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q5_K_S:
        case LLAMA_FTYPE_MOSTLY_Q5_K_M:  default_type = GGML_TYPE_Q5_K;    break;
        case LLAMA_FTYPE_MOSTLY_Q6_K:    default_type = GGML_TYPE_Q6_K;    break;
        case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
        case LLAMA_FTYPE_MOSTLY_IQ2_XS:  default_type = GGML_TYPE_IQ2_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ2_S:   default_type = GGML_TYPE_IQ2_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ2_M:   default_type = GGML_TYPE_IQ2_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
        case LLAMA_FTYPE_MOSTLY_IQ1_S:   default_type = GGML_TYPE_IQ1_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ1_M:   default_type = GGML_TYPE_IQ1_M;   break;
        case LLAMA_FTYPE_MOSTLY_IQ4_NL:  default_type = GGML_TYPE_IQ4_NL;  break;
        case LLAMA_FTYPE_MOSTLY_IQ4_XS:  default_type = GGML_TYPE_IQ4_XS;  break;
        case LLAMA_FTYPE_MOSTLY_IQ3_S:   default_type = GGML_TYPE_IQ3_S;   break;
        case LLAMA_FTYPE_MOSTLY_IQ3_M:   default_type = GGML_TYPE_IQ3_S;   break;

        default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
    }

    int nthread = params->nthread;

    if (nthread <= 0) {
        nthread = std::thread::hardware_concurrency();
    }

    // mmap consistently increases speed Linux, and also increases speed on Windows with
    // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
    constexpr bool use_mmap = true;
#else
    constexpr bool use_mmap = false;
#endif

    llama_model_kv_override * kv_overrides = nullptr;
    if (params->kv_overrides) {
        auto v = (std::vector*)params->kv_overrides;
        kv_overrides = v->data();
    }
    llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
    ml.init_mappings(false); // no prefetching

    llama_model model;
    llm_load_arch(ml, model);
    llm_load_hparams(ml, model);

    struct quantize_state_internal qs(model, params);

    if (params->only_copy) {
        ftype = model.ftype;
    }
    const std::unordered_map> * imatrix_data = nullptr;
    if (params->imatrix) {
        imatrix_data = static_cast>*>(params->imatrix);
        if (imatrix_data) {
            LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
            qs.has_imatrix = true;
            // check imatrix for nans or infs
            for (const auto & kv : *imatrix_data) {
                for (float f : kv.second) {
                    if (!std::isfinite(f)) {
                        throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
                    }
                }
            }
        }
    }

    const size_t align = GGUF_DEFAULT_ALIGNMENT;
    struct gguf_context * ctx_out = gguf_init_empty();

    // copy the KV pairs from the input file
    gguf_set_kv     (ctx_out, ml.meta);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
    gguf_set_val_u32(ctx_out, "general.file_type", ftype);
    // Remove split metadata
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
    gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());

    if (params->kv_overrides) {
        const std::vector & overrides = *(const std::vector *)params->kv_overrides;
        for (auto & o : overrides) {
            if (o.key[0] == 0) break;
            if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
                gguf_set_val_f32(ctx_out, o.key, o.val_f64);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
                gguf_set_val_i32(ctx_out, o.key, o.val_i64);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
                gguf_set_val_bool(ctx_out, o.key, o.val_bool);
            } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
                gguf_set_val_str(ctx_out, o.key, o.val_str);
            } else {
                LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
            }
        }
    }

    for (int i = 0; i < ml.n_tensors; ++i) {
        const struct ggml_tensor * meta = ml.get_tensor_meta(i);

        const std::string name = ggml_get_name(meta);

        // TODO: avoid hardcoded tensor names - use the TN_* constants
        if (name.find("attn_v.weight")   != std::string::npos ||
            name.find("attn_qkv.weight") != std::string::npos) {
            ++qs.n_attention_wv;
        } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
            qs.has_output = true;
        }
    }

    qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;

    // sanity checks
    //
    //  - qs.n_attention_wv == 0                     for Mamba       models
    //  - qs.n_attention_wv == model.hparams.n_layer for Transformer models
    //
    GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");

    size_t total_size_org = 0;
    size_t total_size_new = 0;

    std::vector workers;
    workers.reserve(nthread);

    int idx = 0;

    std::vector> read_data;
    std::vector> work;
    std::vector> f32_conv_buf;

    uint16_t n_split = 1;
    // Assume split index is continuous
    if (params->keep_split) {
        for (int i = 0; i < ml.n_tensors; ++i) {
            n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
        }
    }
    std::vector ctx_outs(n_split, NULL);
    ctx_outs[0] = ctx_out;

    // populate the original tensors so we get an initial meta data
    for (int i = 0; i < ml.n_tensors; ++i) {
        auto weight = ml.get_weight(i);
        uint16_t i_split = params->keep_split ? weight->idx : 0;
        struct ggml_tensor * tensor = weight->tensor;
        if (ctx_outs[i_split] == NULL) {
            ctx_outs[i_split] = gguf_init_empty();
        }
        gguf_add_tensor(ctx_outs[i_split], tensor);
    }

    // Set split info if needed
    if (n_split > 1) {
        for (size_t i = 0; i < ctx_outs.size(); ++i) {
            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
            gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
            gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
        }
    }

    int cur_split = -1;
    std::ofstream fout;
    auto close_ofstream = [&]() {
        // Write metadata and close file handler
        if (fout.is_open()) {
            fout.seekp(0);
            std::vector data(gguf_get_meta_size(ctx_outs[cur_split]));
            gguf_get_meta_data(ctx_outs[cur_split], data.data());
            fout.write((const char *) data.data(), data.size());
            fout.close();
        }
    };
    auto new_ofstream = [&](int index) {
        cur_split = index;
        GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
        std::string fname = fname_out;
        if (params->keep_split) {
            char split_path[PATH_MAX] = {0};
            llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
            fname = std::string(split_path);
        }

        fout = std::ofstream(fname, std::ios::binary);
        fout.exceptions(std::ofstream::failbit); // fail fast on write errors
        const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
        // placeholder for the meta data
        ::zeros(fout, meta_size);
    };

    const auto tn = LLM_TN(model.arch);
    new_ofstream(0);
    for (int i = 0; i < ml.n_tensors; ++i) {
        auto weight = ml.get_weight(i);
        struct ggml_tensor * tensor = weight->tensor;
        if (weight->idx != cur_split && params->keep_split) {
            close_ofstream();
            new_ofstream(weight->idx);
        }

        const std::string name = ggml_get_name(tensor);

        if (!ml.use_mmap) {
            if (read_data.size() < ggml_nbytes(tensor)) {
                read_data.resize(ggml_nbytes(tensor));
            }
            tensor->data = read_data.data();
        }
        ml.load_data_for(tensor);

        LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
               ++idx, ml.n_tensors,
               ggml_get_name(tensor),
               llama_format_tensor_shape(tensor).c_str(),
               ggml_type_name(tensor->type));

        // This used to be a regex, but  has an extreme cost to compile times.
        bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?

        // quantize only 2D and 3D tensors (experts)
        quantize &= (ggml_n_dims(tensor) >= 2);

        // do not quantize norm tensors
        quantize &= name.find("_norm.weight") == std::string::npos;

        quantize &= params->quantize_output_tensor || name != "output.weight";
        quantize &= !params->only_copy;

        // do not quantize expert gating tensors
        // NOTE: can't use LLM_TN here because the layer number is not known
        quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;

        // do not quantize positional embeddings and token types (BERT)
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD,    "weight");
        quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");

        // do not quantize Mamba's small yet 2D weights
        // NOTE: can't use LLM_TN here because the layer number is not known
        quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
        quantize &= name.find("ssm_x.weight")      == std::string::npos;
        quantize &= name.find("ssm_dt.weight")     == std::string::npos;

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        if (quantize) {
            new_type = default_type;

            // get more optimal quantization type based on the tensor shape, layer, etc.
            if (!params->pure && ggml_is_quantized(default_type)) {
                new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
            }
            if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
                new_type = params->token_embedding_type;
            }
            if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
                new_type = params->output_tensor_type;
            }

            // If we've decided to quantize to the same type the tensor is already
            // in then there's nothing to do.
            quantize = tensor->type != new_type;
        }

        if (!quantize) {
            new_type = tensor->type;
            new_data = tensor->data;
            new_size = ggml_nbytes(tensor);
            LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
        } else {
            const int64_t nelements = ggml_nelements(tensor);

            const float * imatrix = nullptr;
            if (imatrix_data) {
                auto it = imatrix_data->find(tensor->name);
                if (it == imatrix_data->end()) {
                    LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
                } else {
                    if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
                        imatrix = it->second.data();
                    } else {
                        LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
                                int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);

                        // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
                        // this is a significant error and it may be good idea to abort the process if this happens,
                        // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
                        // tok_embd should be ignored in this case, since it always causes this warning
                        if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
                            throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
                                    int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
                        }
                    }
                }
            }
            if ((new_type == GGML_TYPE_IQ2_XXS ||
                 new_type == GGML_TYPE_IQ2_XS  ||
                 new_type == GGML_TYPE_IQ2_S   ||
                 new_type == GGML_TYPE_IQ1_S   ||
                (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight"))  ||
                (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
                LLAMA_LOG_ERROR("\n\n============================================================\n");
                LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
                LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
                LLAMA_LOG_ERROR("============================================================\n\n");
                throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
            }

            float * f32_data;

            if (tensor->type == GGML_TYPE_F32) {
                f32_data = (float *) tensor->data;
            } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
                throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
            } else {
                llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
                f32_data = (float *) f32_conv_buf.data();
            }

            LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
            fflush(stdout);

            if (work.size() < (size_t)nelements * 4) {
                work.resize(nelements * 4); // upper bound on size
            }
            new_data = work.data();

            const int64_t n_per_row = tensor->ne[0];
            const int64_t nrows = tensor->ne[1];

            static const int64_t min_chunk_size = 32 * 512;
            const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);

            const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
            const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
            const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;

            // quantize each expert separately since they have different importance matrices
            new_size = 0;
            for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
                const float * f32_data_03 = f32_data + i03 * nelements_matrix;
                void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
                const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;

                new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
            }
            LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
        }
        total_size_org += ggml_nbytes(tensor);
        total_size_new += new_size;

        // update the gguf meta data as we go
        gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
        gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);

        // write tensor data + padding
        fout.write((const char *) new_data, new_size);
        zeros(fout, GGML_PAD(new_size, align) - new_size);
    }
    close_ofstream();
    for (auto & c:ctx_outs) {
        gguf_free(c);
    }

    LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
    LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);

    if (qs.n_fallback > 0) {
        LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
                __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
    }
}

static int llama_apply_lora_from_file_internal(
    const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
) {
    LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);

    const int64_t t_start_lora_us = ggml_time_us();

    llama_file fin(path_lora, "rb");

    // verify magic and version
    {
        uint32_t magic = fin.read_u32();
        if (magic != LLAMA_FILE_MAGIC_GGLA) {
            LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
            return 1;
        }

        uint32_t format_version = fin.read_u32();
        if (format_version != 1) {
            LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
            return 1;
        }
    }

    int32_t lora_r = fin.read_u32();
    int32_t lora_alpha = fin.read_u32();
    float scaling = scale * (float)lora_alpha / (float)lora_r;

    LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);

    // load base model
    std::unique_ptr ml;
    if (path_base_model) {
        LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
        ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
        ml->init_mappings(/*prefetch*/ false); // no prefetching
    }

    struct tensor_meta {
        std::string name;
        ggml_type type;
        int32_t ne[2];
        size_t offset;
    };
    std::map tensor_meta_map;

    // load all tensor meta
    while (true) {
        if (fin.tell() == fin.size) {
            // eof
            break;
        }

        int32_t n_dims;
        int32_t name_len;
        int32_t ftype;

        fin.read_raw(&n_dims, sizeof(n_dims));
        fin.read_raw(&name_len, sizeof(name_len));
        fin.read_raw(&ftype, sizeof(ftype));

        if (n_dims != 1 && n_dims != 2) {
            LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
            return 1;
        }

        int32_t ne[2] = { 1, 1 };
        for (int i = 0; i < n_dims; ++i) {
            fin.read_raw(&ne[i], sizeof(ne[i]));
        }

        std::string name;
        {
            GGML_ASSERT(name_len < GGML_MAX_NAME);
            char buf[GGML_MAX_NAME];
            fin.read_raw(buf, name_len);
            name = std::string(buf, name_len);
        }

        // check for lora suffix
        std::string lora_suffix;
        if (name.length() > 6) {
            lora_suffix = name.substr(name.length() - 6);
        }
        if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
            LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
            return 1;
        }

        // tensor type
        ggml_type wtype;
        switch (ftype) {
            case 0: wtype = GGML_TYPE_F32;  break;
            case 1: wtype = GGML_TYPE_F16;  break;
            default:
                    {
                        LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
                                __func__, ftype);
                        return 1;
                    }
        }

        // data offset
        size_t offset = fin.tell();
        offset = (offset + 31) & -32;

        // skip tensor data
        fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);

        tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
    }

    bool warned = false;
    int n_tensors = 0;

    // apply
    ggml_backend_t backend_cpu = ggml_backend_cpu_init();
    if (backend_cpu == nullptr) {
        LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
        return 1;
    }
    ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);

    std::vector> read_buf;
    for (const auto & it : model.tensors_by_name) {
        const std::string & base_name = it.first;
        ggml_tensor * model_t = it.second;

        if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
            tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
            continue;
        }

        tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
        tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");

        ggml_init_params lora_init_params = {
            /* .mem_size   */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
            /* .mem_buffer */ nullptr,
            /* .no_alloc   */ true,
        };
        ggml_context * lora_ctx = ggml_init(lora_init_params);
        if (lora_ctx == nullptr) {
            LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
            ggml_backend_free(backend_cpu);
            return 1;
        }

        // create tensors
        ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
        ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
        ggml_set_name(loraA, metaA.name.c_str());
        ggml_set_name(loraB, metaB.name.c_str());

        ggml_tensor * base_t;
        if (ml) {
            if (!ml->get_tensor_meta(base_name.c_str())) {
                LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
                return 1;
            }
            base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
        } else {
            base_t = ggml_dup_tensor(lora_ctx, model_t);
        }
        ggml_set_name(base_t, base_name.c_str());

        // allocate in backend buffer
        ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
        if (lora_buf == nullptr) {
            LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
            return 1;
        }

        // load tensor data
        auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
            read_buf.resize(ggml_nbytes(tensor));
            fin.seek(tensor_meta.offset, SEEK_SET);
            fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
            ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
        };
        load_tensor(metaA, loraA);
        load_tensor(metaB, loraB);

        // load base model tensor data
        if (ml) {
            ml->load_data_for(base_t);
        } else {
            ggml_backend_tensor_copy(model_t, base_t);
        }

        if (ggml_is_quantized(base_t->type) && !warned) {
            LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
                            "use a f16 or f32 base model with --lora-base\n", __func__);
            warned = true;
        }

        if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
            LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
                            " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
            ggml_free(lora_ctx);
            ggml_backend_buffer_free(lora_buf);
            ggml_backend_free(backend_cpu);
            return 1;
        }

        auto build_lora_graph = [&]() {
            // w = w + BA*s
            ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
            ggml_set_name(BA, "BA");

            if (scaling != 1.0f) {
                BA = ggml_scale(lora_ctx, BA, scaling);
                ggml_set_name(BA, "BA_scaled");
            }

            ggml_tensor * r;
            r = ggml_add_inplace(lora_ctx, base_t, BA);
            ggml_set_name(r, "r_add");

            if (base_t->type != model_t->type) {
                // convert the result to the model type
                r = ggml_cast(lora_ctx, r, model_t->type);
                ggml_set_name(r, "r_cast");
            }

            return r;
        };

        ggml_cgraph * gf = ggml_new_graph(lora_ctx);
        ggml_tensor * r = build_lora_graph();
        ggml_build_forward_expand(gf, r);

        ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
        if (graph_buf == nullptr) {
            LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
            ggml_free(lora_ctx);
            ggml_backend_buffer_free(lora_buf);
            ggml_backend_free(backend_cpu);
            return 1;
        }

        ggml_backend_graph_compute(backend_cpu, gf);

        ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));

#if 0
        // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
        //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);

        // sched compute
        ggml_build_forward_expand(gf, build_graph());
        ggml_backend_sched_init_measure(sched, gf);

        // create the graph again, since the previous one was destroyed by the measure
        ggml_graph_clear(gf);
        ggml_build_forward_expand(gf, build_graph());
        ggml_backend_sched_graph_compute(sched, gf);
        ggml_backend_sched_free(sched);
#endif

        ggml_backend_buffer_free(lora_buf);
        ggml_backend_buffer_free(graph_buf);
        ggml_free(lora_ctx);

        n_tensors++;
        if (n_tensors % 4 == 0) {
            LLAMA_LOG_INFO(".");
        }
    }

    ggml_backend_free(backend_cpu);

    const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
    LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);

    return 0;
}

//
// interface implementation
//
struct llama_model_params llama_model_default_params() {
    struct llama_model_params result = {
        /*.n_gpu_layers                =*/ 0,
        /*.split_mode                  =*/ LLAMA_SPLIT_MODE_LAYER,
        /*.main_gpu                    =*/ 0,
        /*.tensor_split                =*/ nullptr,
        /*.rpc_servers                 =*/ nullptr,
        /*.progress_callback           =*/ nullptr,
        /*.progress_callback_user_data =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
        /*.vocab_only                  =*/ false,
        /*.use_mmap                    =*/ true,
        /*.use_mlock                   =*/ false,
        /*.check_tensors               =*/ false,
    };

#ifdef GGML_USE_METAL
    // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
    result.n_gpu_layers = 999;
#endif

    return result;
}

struct llama_context_params llama_context_default_params() {
    struct llama_context_params result = {
        /*.seed                        =*/ LLAMA_DEFAULT_SEED,
        /*.n_ctx                       =*/ 512,
        /*.n_batch                     =*/ 2048,
        /*.n_ubatch                    =*/ 512,
        /*.n_seq_max                   =*/ 1,
        /*.n_threads                   =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
        /*.n_threads_batch             =*/ GGML_DEFAULT_N_THREADS,
        /*.rope_scaling_type           =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
        /*.pooling_type                =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
        /*.rope_freq_base              =*/ 0.0f,
        /*.rope_freq_scale             =*/ 0.0f,
        /*.yarn_ext_factor             =*/ -1.0f,
        /*.yarn_attn_factor            =*/ 1.0f,
        /*.yarn_beta_fast              =*/ 32.0f,
        /*.yarn_beta_slow              =*/ 1.0f,
        /*.yarn_orig_ctx               =*/ 0,
        /*.defrag_thold                =*/ -1.0f,
        /*.cb_eval                     =*/ nullptr,
        /*.cb_eval_user_data           =*/ nullptr,
        /*.type_k                      =*/ GGML_TYPE_F16,
        /*.type_v                      =*/ GGML_TYPE_F16,
        /*.logits_all                  =*/ false,
        /*.embeddings                  =*/ false,
        /*.offload_kqv                 =*/ true,
        /*.flash_attn                  =*/ false,
        /*.abort_callback              =*/ nullptr,
        /*.abort_callback_data         =*/ nullptr,
    };

    return result;
}

struct llama_model_quantize_params llama_model_quantize_default_params() {
    struct llama_model_quantize_params result = {
        /*.nthread                     =*/ 0,
        /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
        /*.output_tensor_type          =*/ GGML_TYPE_COUNT,
        /*.token_embedding_type        =*/ GGML_TYPE_COUNT,
        /*.allow_requantize            =*/ false,
        /*.quantize_output_tensor      =*/ true,
        /*.only_copy                   =*/ false,
        /*.pure                        =*/ false,
        /*.keep_split                  =*/ false,
        /*.imatrix                     =*/ nullptr,
        /*.kv_overrides                =*/ nullptr,
    };

    return result;
}

size_t llama_max_devices(void) {
#if defined(GGML_USE_RPC)
    return GGML_RPC_MAX_SERVERS;
#elif defined(GGML_USE_METAL)
    return 1;
#elif defined(GGML_USE_CUDA)
    return GGML_CUDA_MAX_DEVICES;
#elif defined(GGML_USE_SYCL)
    return GGML_SYCL_MAX_DEVICES;
#elif defined(GGML_USE_VULKAN)
    return GGML_VK_MAX_DEVICES;
#else
    return 1;
#endif
}

bool llama_supports_mmap(void) {
    return llama_mmap::SUPPORTED;
}

bool llama_supports_mlock(void) {
    return llama_mlock::SUPPORTED;
}

bool llama_supports_gpu_offload(void) {
#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL)   || defined(GGML_USE_VULKAN) || \
    defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
    // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
    return true;
#else
    return false;
#endif
}

void llama_backend_init(void) {
    ggml_time_init();

    // needed to initialize f16 tables
    {
        struct ggml_init_params params = { 0, NULL, false };
        struct ggml_context * ctx = ggml_init(params);
        ggml_free(ctx);
    }
}

void llama_numa_init(enum ggml_numa_strategy numa) {
    if (numa != GGML_NUMA_STRATEGY_DISABLED) {
        ggml_numa_init(numa);
    }
}

void llama_backend_free(void) {
    ggml_quantize_free();
}

int64_t llama_time_us(void) {
    return ggml_time_us();
}

struct llama_model * llama_load_model_from_file(
        const char * path_model,
        struct llama_model_params   params) {
    ggml_time_init();

    llama_model * model = new llama_model;

    unsigned cur_percentage = 0;
    if (params.progress_callback == NULL) {
        params.progress_callback_user_data = &cur_percentage;
        params.progress_callback = [](float progress, void * ctx) {
            unsigned * cur_percentage_p = (unsigned *) ctx;
            unsigned percentage = (unsigned) (100 * progress);
            while (percentage > *cur_percentage_p) {
                *cur_percentage_p = percentage;
                LLAMA_LOG_INFO(".");
                if (percentage >= 100) {
                    LLAMA_LOG_INFO("\n");
                }
            }
            return true;
        };
    }
    if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
        // split the servers set them into model->rpc_servers
        std::string servers(params.rpc_servers);
        size_t pos = 0;
        while ((pos = servers.find(",")) != std::string::npos) {
            std::string server = servers.substr(0, pos);
            model->rpc_servers.push_back(server);
            servers.erase(0, pos + 1);
        }
        model->rpc_servers.push_back(servers);
    }
    int status = llama_model_load(path_model, *model, params);
    GGML_ASSERT(status <= 0);
    if (status < 0) {
        if (status == -1) {
            LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
        } else if (status == -2) {
            LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
        }
        delete model;
        return nullptr;
    }

    return model;
}

void llama_free_model(struct llama_model * model) {
    delete model;
}

struct llama_context * llama_new_context_with_model(
                 struct llama_model * model,
        struct llama_context_params   params) {

    if (!model) {
        LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
        return nullptr;
    }

    if (params.n_batch == 0 && params.n_ubatch == 0) {
        LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
        LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
        return nullptr;
    }

    if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
        LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
        params.flash_attn = false;
    }

    if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
        LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
        return nullptr;
    }

    llama_context * ctx = new llama_context(*model);

    const auto & hparams = model->hparams;
    auto       & cparams = ctx->cparams;

    cparams.n_seq_max        = std::max(1u, params.n_seq_max);
    cparams.n_threads        = params.n_threads;
    cparams.n_threads_batch  = params.n_threads_batch;
    cparams.yarn_ext_factor  = params.yarn_ext_factor;
    cparams.yarn_attn_factor = params.yarn_attn_factor;
    cparams.yarn_beta_fast   = params.yarn_beta_fast;
    cparams.yarn_beta_slow   = params.yarn_beta_slow;
    cparams.defrag_thold     = params.defrag_thold;
    cparams.embeddings       = params.embeddings;
    cparams.offload_kqv      = params.offload_kqv;
    cparams.flash_attn       = params.flash_attn;
    cparams.pooling_type     = params.pooling_type;

    cparams.n_ctx            = params.n_ctx           == 0    ? hparams.n_ctx_train           : params.n_ctx;
    cparams.rope_freq_base   = params.rope_freq_base  == 0.0f ? hparams.rope_freq_base_train  : params.rope_freq_base;
    cparams.rope_freq_scale  = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;

    // this is necessary due to kv_self.n being padded later during inference
    cparams.n_ctx            = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));

    // with causal attention, the batch size is limited by the context size
    cparams.n_batch          = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;

    // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
    // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
    // ref: https://github.com/ggerganov/llama.cpp/pull/5021
    if (cparams.n_batch < GGML_KQ_MASK_PAD) {
        LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
        cparams.n_batch = GGML_KQ_MASK_PAD;
    }

    cparams.n_ubatch         = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);

    cparams.n_ctx_orig_yarn  = params.yarn_orig_ctx    != 0 ? params.yarn_orig_ctx    :
                               hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
                                                              hparams.n_ctx_train;

    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;

    auto rope_scaling_type = params.rope_scaling_type;
    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
        rope_scaling_type = hparams.rope_scaling_type_train;
    }

    if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
        cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
    }

    if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
        cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
    }

    cparams.yarn_attn_factor *= hparams.rope_attn_factor;
    cparams.causal_attn = hparams.causal_attn;

    if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
        if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
            cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
        } else {
            cparams.pooling_type = hparams.pooling_type;
        }
    }

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    LLAMA_LOG_INFO("%s: n_ctx      = %u\n",     __func__, cparams.n_ctx);
    LLAMA_LOG_INFO("%s: n_batch    = %u\n",     __func__, cparams.n_batch);
    LLAMA_LOG_INFO("%s: n_ubatch   = %u\n",     __func__, cparams.n_ubatch);
    LLAMA_LOG_INFO("%s: flash_attn = %d\n",     __func__, cparams.flash_attn);
    LLAMA_LOG_INFO("%s: freq_base  = %.1f\n",   __func__, cparams.rope_freq_base);
    LLAMA_LOG_INFO("%s: freq_scale = %g\n",     __func__, cparams.rope_freq_scale);

    ctx->abort_callback      = params.abort_callback;
    ctx->abort_callback_data = params.abort_callback_data;

    ctx->rng                 = std::mt19937(params.seed);
    ctx->logits_all          = params.logits_all;

    uint32_t kv_size = cparams.n_ctx;
    ggml_type type_k = params.type_k;
    ggml_type type_v = params.type_v;

    // Mamba only needs a constant number of KV cache cells per sequence
    if (model->arch == LLM_ARCH_MAMBA) {
        // Mamba needs at least as many KV cells as there are sequences kept at any time
        kv_size = std::max((uint32_t) 1, params.n_seq_max);
        // it's probably best to keep as much precision as possible for the states
        type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
        type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
    }

    GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
    GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);

    if (!hparams.vocab_only) {
        // initialize backends
#if defined(GGML_USE_METAL)
        if (model->n_gpu_layers > 0) {
            ctx->backend_metal = ggml_backend_metal_init();
            if (ctx->backend_metal == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(ctx->backend_metal);
        }
#elif defined(GGML_USE_CUDA)
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
            ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
            for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
                ggml_backend_t backend = ggml_backend_cuda_init(device);
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_VULKAN)
        if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
            llama_free(ctx);
            return nullptr;
        }
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
            ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
                ggml_backend_t backend = ggml_backend_vk_init(device);
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_SYCL)
        // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
        if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
            ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        } else {
            // LLAMA_SPLIT_LAYER requires a backend for each GPU
            for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
                ggml_backend_t backend = ggml_backend_sycl_init(i);
                if (backend == nullptr) {
                    int id_list[GGML_SYCL_MAX_DEVICES];
                    ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
                    LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#elif defined(GGML_USE_KOMPUTE)
        if (model->n_gpu_layers > 0) {
            auto * backend = ggml_backend_kompute_init(model->main_gpu);
            if (backend == nullptr) {
                LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
                llama_free(ctx);
                return nullptr;
            }
            ctx->backends.push_back(backend);
        }
#endif

#ifdef GGML_USE_BLAS
        ctx->backend_blas = ggml_backend_blas_init();
        if (ctx->backend_blas == nullptr) {
            LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
        } else {
            ctx->backends.push_back(ctx->backend_blas);
        }
#endif

#if defined(GGML_USE_RPC)
        if (model->n_gpu_layers > 0) {
            for (const auto & endpoint : model->rpc_servers) {
                ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
                if (backend == nullptr) {
                    LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
                    llama_free(ctx);
                    return nullptr;
                }
                ctx->backends.push_back(backend);
            }
        }
#endif
        ctx->backend_cpu = ggml_backend_cpu_init();
        if (ctx->backend_cpu == nullptr) {
            LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
            llama_free(ctx);
            return nullptr;
        }
        ctx->backends.push_back(ctx->backend_cpu);

        if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
            LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
            llama_free(ctx);
            return nullptr;
        }

        {
            size_t memory_size_k = 0;
            size_t memory_size_v = 0;

            for (auto & k : ctx->kv_self.k_l) {
                memory_size_k += ggml_nbytes(k);
            }

            for (auto & v : ctx->kv_self.v_l) {
                memory_size_v += ggml_nbytes(v);
            }

            LLAMA_LOG_INFO("%s: KV self size  = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
        }

        // graph outputs buffer
        {
            // resized during inference when a batch uses more outputs
            if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
                LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
                llama_free(ctx);
                return nullptr;
            }

            LLAMA_LOG_INFO("%s: %10s  output buffer size = %8.2f MiB\n", __func__,
                    ggml_backend_buffer_name(ctx->buf_output),
                    ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
        }

        // scheduler and compute buffers
        {
            // buffer types used for the compute buffer of each backend
            std::vector backend_buft;
            for (auto * backend : ctx->backends) {
                if (ggml_backend_is_cpu(backend)) {
                    // use host buffers for the CPU backend compute buffer
                    backend_buft.push_back(llama_default_buffer_type_cpu(true));
                } else {
                    backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
                }
            }

            // buffer used to store the computation graph and the tensor meta data
            ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));

            // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
            bool pipeline_parallel =
                llama_get_device_count(*model) > 1 &&
                model->n_gpu_layers > (int)model->hparams.n_layer &&
                model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
                params.offload_kqv;
#ifndef GGML_USE_CUDA
            // pipeline parallelism requires support for async compute and events
            // currently this is only implemented in the CUDA backend
            pipeline_parallel = false;
#endif
            ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);

            if (pipeline_parallel) {
                LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
            }

            // build worst-case graph
            int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
            int n_past = cparams.n_ctx - n_tokens;
            llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
            ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);

            // initialize scheduler with the worst-case graph
            if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
                LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
                llama_free(ctx);
                return nullptr;
            }

            for (size_t i = 0; i < ctx->backends.size(); i++) {
                ggml_backend_t backend = ctx->backends[i];
                ggml_backend_buffer_type_t buft = backend_buft[i];
                size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
                if (size > 1) {
                    LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                            ggml_backend_buft_name(buft),
                            size / 1024.0 / 1024.0);
                }
            }

            // note: the number of splits during measure is higher than during inference due to the kv shift
            int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
            LLAMA_LOG_INFO("%s: graph nodes  = %d\n", __func__, gf->n_nodes);
            LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
        }
    }

    return ctx;
}

void llama_free(struct llama_context * ctx) {
    delete ctx;
}

const llama_model * llama_get_model(const struct llama_context * ctx) {
    return &ctx->model;
}

uint32_t llama_n_ctx(const struct llama_context * ctx) {
    return ctx->cparams.n_ctx;
}

uint32_t llama_n_batch(const struct llama_context * ctx) {
    return ctx->cparams.n_batch;
}

uint32_t llama_n_ubatch(const struct llama_context * ctx) {
    return ctx->cparams.n_ubatch;
}

uint32_t llama_n_seq_max(const struct llama_context * ctx) {
    return ctx->kv_self.size;
}

enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
    return model->vocab.type;
}

enum llama_rope_type llama_rope_type(const struct llama_model * model) {
    switch (model->arch) {
        // these models do not use RoPE
        case LLM_ARCH_GPT2:
        case LLM_ARCH_GPTJ:
        case LLM_ARCH_MPT:
        case LLM_ARCH_REFACT:
        case LLM_ARCH_BLOOM:
        case LLM_ARCH_MAMBA:
        case LLM_ARCH_JINA_BERT_V2:
            return LLAMA_ROPE_TYPE_NONE;

        // use what we call a normal RoPE, operating on pairs of consecutive head values
        case LLM_ARCH_LLAMA:
        case LLM_ARCH_BAICHUAN:
        case LLM_ARCH_STARCODER:
        case LLM_ARCH_PLAMO:
        case LLM_ARCH_CODESHELL:
        case LLM_ARCH_ORION:
        case LLM_ARCH_INTERNLM2:
        case LLM_ARCH_MINICPM:
        case LLM_ARCH_XVERSE:
        case LLM_ARCH_COMMAND_R:
        case LLM_ARCH_OLMO:
        case LLM_ARCH_ARCTIC:
        case LLM_ARCH_DEEPSEEK2:
            return LLAMA_ROPE_TYPE_NORM;

        // the pairs of head values are offset by n_rot/2
        case LLM_ARCH_FALCON:
        case LLM_ARCH_GROK:
        case LLM_ARCH_DBRX:
        case LLM_ARCH_BERT:
        case LLM_ARCH_NOMIC_BERT:
        case LLM_ARCH_STABLELM:
        case LLM_ARCH_QWEN:
        case LLM_ARCH_QWEN2:
        case LLM_ARCH_QWEN2MOE:
        case LLM_ARCH_PHI2:
        case LLM_ARCH_PHI3:
        case LLM_ARCH_GEMMA:
        case LLM_ARCH_STARCODER2:
        case LLM_ARCH_GPTNEOX:
            return LLAMA_ROPE_TYPE_NEOX;

        // all model arches should be listed explicitly here
        case LLM_ARCH_UNKNOWN:
            GGML_ASSERT(false && "unknown architecture");
            break;
    }

    return LLAMA_ROPE_TYPE_NONE;
}

enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
    return ctx->cparams.pooling_type;
}

int32_t llama_n_vocab(const struct llama_model * model) {
    return model->hparams.n_vocab;
}

int32_t llama_n_ctx_train(const struct llama_model * model) {
    return model->hparams.n_ctx_train;
}

int32_t llama_n_embd(const struct llama_model * model) {
    return model->hparams.n_embd;
}

int32_t llama_n_layer(const struct llama_model * model) {
    return model->hparams.n_layer;
}

float llama_rope_freq_scale_train(const struct llama_model * model) {
    return model->hparams.rope_freq_scale_train;
}

int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
    const auto & it = model->gguf_kv.find(key);
    if (it == model->gguf_kv.end()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_meta_count(const struct llama_model * model) {
    return (int)model->gguf_kv.size();
}

int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->first.c_str());
}

int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
    if (i < 0 || i >= (int)model->gguf_kv.size()) {
        if (buf_size > 0) {
            buf[0] = '\0';
        }
        return -1;
    }
    auto it = model->gguf_kv.begin();
    std::advance(it, i);
    return snprintf(buf, buf_size, "%s", it->second.c_str());
}

int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
    return snprintf(buf, buf_size, "%s %s %s",
            llama_model_arch_name(model->arch),
            llama_model_type_name(model->type),
            llama_model_ftype_name(model->ftype).c_str());
}

uint64_t llama_model_size(const struct llama_model * model) {
    uint64_t size = 0;
    for (const auto & it : model->tensors_by_name) {
        size += ggml_nbytes(it.second);
    }
    return size;
}

uint64_t llama_model_n_params(const struct llama_model * model) {
    uint64_t nparams = 0;
    for (const auto & it : model->tensors_by_name) {
        nparams += ggml_nelements(it.second);
    }
    return nparams;
}

struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
    auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
            [name](const std::pair & it) {
                return it.first == name;
            });
    if (it == model->tensors_by_name.end()) {
        return nullptr;
    }
    return it->second;
}

uint32_t llama_model_quantize(
        const char * fname_inp,
        const char * fname_out,
        const llama_model_quantize_params * params) {
    try {
        llama_model_quantize_internal(fname_inp, fname_out, params);
        return 0;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
        return 1;
    }
}

int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
    try {
        return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
        return 1;
    }
}

static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
    GGML_ASSERT(cvec.tensors.empty());
    GGML_ASSERT(cvec.ctxs.empty());
    GGML_ASSERT(cvec.bufs.empty());

    // count layer buffer types
    std::map buft_layer_count;
    for (int64_t i = 0; i < model.hparams.n_layer; i++) {
        buft_layer_count[model.buft_layer[i].buft]++;
    }

    // allocate contexts
    std::map ctx_map;
    for (auto & it : buft_layer_count) {
        int n_layers = it.second;
        struct ggml_init_params params = {
            /*.mem_size   =*/ n_layers * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ggml_context * ctx = ggml_init(params);
        if (!ctx) {
            LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
            return 1;
        }
        ctx_map[it.first] = ctx;
    }

    // make tensors
    cvec.tensors.reserve(model.hparams.n_layer);
    cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
    for (size_t il = 1; il < model.hparams.n_layer; il++) {
        struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
        ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
        cvec.tensors.push_back(tensor);
    }

    // allocate tensors / buffers and zero
    cvec.ctxs.reserve(ctx_map.size());
    cvec.bufs.reserve(ctx_map.size());
    for (auto it : ctx_map) {
        ggml_backend_buffer_type_t buft = it.first;
        ggml_context * ctx = it.second;
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
        if (!buf) {
            LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
            return false;
        }
        ggml_backend_buffer_clear(buf, 0);
        cvec.ctxs.push_back(ctx);
        cvec.bufs.push_back(buf);
    }

    return true;
}

int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
    const llama_model & model = lctx->model;
    llama_control_vector & cvec = lctx->cvec;

    if (data == nullptr) {
        // disable the current control vector (but leave allocated for later)
        cvec.layer_start = -1;
        cvec.layer_end   = -1;
        return 0;
    }

    if (n_embd != (int) model.hparams.n_embd) {
        LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
        return 1;
    }

    if (cvec.tensors.empty()) {
        if (!llama_control_vector_init(cvec, model)) {
            return 1;
        }
    }

    cvec.layer_start = il_start;
    cvec.layer_end   = il_end;

    for (size_t il = 1; il < model.hparams.n_layer; il++) {
        assert(cvec.tensors[il] != nullptr);

        const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
        if (off + n_embd <= len) {
            ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
        }
    }

    return 0;
}

struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
    struct llama_kv_cache_view result = {
        /*.n_cells            = */ 0,
        /*.n_seq_max          = */ n_seq_max,
        /*.token_count        = */ 0,
        /*.used_cells         = */ llama_get_kv_cache_used_cells(ctx),
        /*.max_contiguous     = */ 0,
        /*.max_contiguous_idx = */ -1,
        /*.cells              = */ nullptr,
        /*.cells_sequences    = */ nullptr,
    };
    return result;
}

void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
    if (view->cells != nullptr) {
        free(view->cells);
        view->cells = nullptr;
    }
    if (view->cells_sequences != nullptr) {
        free(view->cells_sequences);
        view->cells_sequences = nullptr;
    }
}

void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
    if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
        view->n_cells = int32_t(ctx->kv_self.size);
        void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
        view->cells = (struct llama_kv_cache_view_cell *)p;
        p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
        view->cells_sequences = (llama_seq_id *)p;
    }

    const std::vector & kv_cells = ctx->kv_self.cells;
    llama_kv_cache_view_cell * c_curr = view->cells;
    llama_seq_id * cs_curr = view->cells_sequences;
    int32_t used_cells = 0;
    int32_t token_count = 0;
    int32_t curr_contig_idx = -1;
    uint32_t max_contig = 0;
    int32_t max_contig_idx = -1;

    for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
        const size_t curr_size = kv_cells[i].seq_id.size();
        token_count += curr_size;
        c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;

        if (curr_size > 0) {
            if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
                max_contig = i - curr_contig_idx;
                max_contig_idx = curr_contig_idx;
            }
            curr_contig_idx = -1;
        } else if (curr_contig_idx < 0) {
            curr_contig_idx = i;
        }

        int seq_idx = 0;
        for (const llama_seq_id it : kv_cells[i].seq_id) {
            if (seq_idx >= view->n_seq_max) {
                break;
            }
            cs_curr[seq_idx] = it;
            seq_idx++;
        }
        if (seq_idx != 0) {
            used_cells++;
        }
        for (; seq_idx < view->n_seq_max; seq_idx++) {
            cs_curr[seq_idx] = -1;
        }
    }
    if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
        max_contig_idx = curr_contig_idx;
        max_contig = kv_cells.size() - curr_contig_idx;
    }
    view->max_contiguous = max_contig;
    view->max_contiguous_idx = max_contig_idx;
    view->token_count = token_count;
    view->used_cells = used_cells;
    if (uint32_t(used_cells) != ctx->kv_self.used) {
        LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
            __func__, ctx->kv_self.used, used_cells);
    }
}

int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
    int result = 0;

    for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
        result += ctx->kv_self.cells[i].seq_id.size();
    }

    return result;
}

int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
    return ctx->kv_self.used;
}

void llama_kv_cache_clear(struct llama_context * ctx) {
    llama_kv_cache_clear(ctx->kv_self);
}

bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
}

void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
    if (seq_id_src == seq_id_dst) {
        return;
    }
    llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
}

void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
    llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
}

void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
    if (delta == 0) {
        return;
    }

    llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
}

void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
    if (d == 1) {
        return;
    }

    llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
}

llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
    return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
}

void llama_kv_cache_defrag(struct llama_context * ctx) {
    llama_kv_cache_defrag(ctx->kv_self);
}

void llama_kv_cache_update(struct llama_context * ctx) {
    llama_kv_cache_update_internal(*ctx);
}

// deprecated
size_t llama_get_state_size(const struct llama_context * ctx) {
    return llama_state_get_size(ctx);
}

// deprecated
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
    return llama_state_get_data(ctx, dst);
}

// deprecated
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
    return llama_state_set_data(ctx, src);
}

// deprecated
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}

// deprecated
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}

// Returns the *maximum* size of the state
size_t llama_state_get_size(const struct llama_context * ctx) {
    const auto & cparams = ctx->cparams;
    const auto & hparams = ctx->model.hparams;

    // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
    // for reference, std::mt19937(1337) serializes to 6701 bytes.
    const size_t s_rng_size        = sizeof(size_t);
    const size_t s_rng             = LLAMA_MAX_RNG_STATE;
    const size_t s_n_outputs       = sizeof(size_t);
    // assume worst case for outputs although only currently set ones are serialized
    const size_t s_output_pos      = ctx->cparams.n_batch * sizeof(int32_t);
    const size_t s_logits_size     = sizeof(size_t);
    const size_t s_logits          = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
    const size_t s_embedding_size  = sizeof(size_t);
    const size_t s_embedding       = ctx->embd_size   ? cparams.n_batch * hparams.n_embd  * sizeof(float) : 0;
    const size_t s_kv_buf_size     = sizeof(size_t);
    const size_t s_kv_head         = sizeof(uint32_t);
    const size_t s_kv_size         = sizeof(uint32_t);
    const size_t s_kv_used         = sizeof(uint32_t);
    const size_t s_v_trans         = sizeof(uint32_t);
    const size_t s_kv              = ctx->kv_self.total_size();
    const size_t s_kv_cell         = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
    const size_t s_kv_cells        = ctx->kv_self.size * s_kv_cell;

    const size_t s_total = (
        + s_rng_size
        + s_rng
        + s_n_outputs
        + s_output_pos
        + s_logits_size
        + s_logits
        + s_embedding_size
        + s_embedding
        + s_kv_buf_size
        + s_kv_head
        + s_kv_size
        + s_kv_used
        + s_v_trans
        + s_kv
        + s_kv_cells
    );

    // on session change it is very likely that the state size has changed - so we need to update this function
    static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");

    return s_total;
}

// llama_context_data
struct llama_data_context {
    virtual void write(const void * src, size_t size) = 0;
    virtual size_t get_size_written() = 0;
    virtual ~llama_data_context() = default;
};

struct llama_data_buffer_context : llama_data_context {
    uint8_t * ptr;
    size_t size_written = 0;

    llama_data_buffer_context(uint8_t * p) : ptr(p) {}

    void write(const void * src, size_t size) override {
        memcpy(ptr, src, size);
        ptr += size;
        size_written += size;
    }

    size_t get_size_written() override {
        return size_written;
    }
};

struct llama_data_file_context : llama_data_context {
    llama_file * file;
    size_t size_written = 0;

    llama_data_file_context(llama_file * f) : file(f) {}

    void write(const void * src, size_t size) override {
        file->write_raw(src, size);
        size_written += size;
    }

    size_t get_size_written() override {
        return size_written;
    }
};

/** copy state data into either a buffer or file depending on the passed in context
 *
 * file context:
 * llama_file file("/path", "wb");
 * llama_data_file_context data_ctx(&file);
 * llama_state_get_data(ctx, &data_ctx);
 *
 * buffer context:
 * std::vector buf(max_size, 0);
 * llama_data_buffer_context data_ctx(&buf.data());
 * llama_state_get_data(ctx, &data_ctx);
 *
*/
static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
    llama_synchronize(ctx);

    // copy rng
    {
        std::ostringstream rng_ss;
        rng_ss << ctx->rng;

        const std::string & rng_str  = rng_ss.str();
        const size_t        rng_size = rng_str.size();

        GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);

        data_ctx->write(&rng_size,      sizeof(rng_size));
        data_ctx->write(rng_str.data(), rng_size);
    }

    // copy outputs
    {
        // Can't use ctx->n_outputs because it's not for the
        // entire last batch when n_ubatch is smaller than n_batch
        size_t n_outputs = 0;

        // copy output ids
        {
            std::vector output_pos;

            const size_t    n_batch = ctx->cparams.n_batch;
            const auto & output_ids = ctx->output_ids;

            output_pos.resize(ctx->output_size);

            // build a more compact representation of the output ids
            for (size_t i = 0; i < n_batch; ++i) {
                // map an output id to a position in the batch
                int32_t pos = output_ids[i];
                if (pos >= 0) {
                    if ((size_t) pos >= n_outputs) {
                        n_outputs = pos + 1;
                    }
                    GGML_ASSERT((size_t) pos < ctx->output_size);
                    output_pos[pos] = i;
                }
            }

            data_ctx->write(&n_outputs, sizeof(n_outputs));

            if (n_outputs) {
                data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
            }
        }

        // copy logits
        {
            const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);

            data_ctx->write(&logits_size, sizeof(logits_size));

            if (logits_size) {
                data_ctx->write(ctx->logits, logits_size * sizeof(float));
            }
        }

        // copy embeddings
        {
            const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);

            data_ctx->write(&embeddings_size, sizeof(embeddings_size));

            if (embeddings_size) {
                data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
            }
        }
    }

    // copy kv cache
    {
        const auto & kv_self = ctx->kv_self;
        const auto & hparams = ctx->model.hparams;

        const uint32_t n_layer      = hparams.n_layer;
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
        const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();

        // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
        const uint32_t kv_head     = llama_kv_cache_cell_max(kv_self);
        const uint32_t kv_size     = kv_self.size;
        const size_t   kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
        const uint32_t kv_used     = kv_self.used;
        const uint32_t v_trans     = kv_self.v_trans ? 1 : 0;

        data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
        data_ctx->write(&kv_head,     sizeof(kv_head));
        data_ctx->write(&kv_size,     sizeof(kv_size));
        data_ctx->write(&kv_used,     sizeof(kv_used));
        data_ctx->write(&v_trans,     sizeof(v_trans));

        if (kv_buf_size) {
            const size_t pre_kv_buf_size = data_ctx->get_size_written();

            std::vector tmp_buf;
            for (int il = 0; il < (int) n_layer; ++il) {
                const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);

                tmp_buf.resize(k_size);
                ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
                data_ctx->write(tmp_buf.data(), tmp_buf.size());

                if (kv_self.recurrent || !kv_self.v_trans) {
                    // v is contiguous for recurrent models
                    // TODO: use other tensors for state models than k and v
                    const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);

                    tmp_buf.resize(v_size);
                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
                    data_ctx->write(tmp_buf.data(), tmp_buf.size());
                    continue;
                }

                // v is not contiguous, copy row by row
                const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);

                tmp_buf.resize(v_row_size);
                for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
                    data_ctx->write(tmp_buf.data(), tmp_buf.size());
                }
            }
            GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
        }

        for (uint32_t i = 0; i < kv_head; ++i) {
            const auto & cell = kv_self.cells[i];

            const llama_pos pos         = cell.pos;
            const size_t    seq_id_size = cell.seq_id.size();

            data_ctx->write(&pos,         sizeof(pos));
            data_ctx->write(&seq_id_size, sizeof(seq_id_size));

            for (auto seq_id : cell.seq_id) {
                data_ctx->write(&seq_id, sizeof(seq_id));
            }
        }
    }
}

size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
    llama_data_buffer_context data_ctx(dst);
    llama_state_get_data_internal(ctx, &data_ctx);

    return data_ctx.get_size_written();
}

// Sets the state reading from the specified source address
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
    llama_synchronize(ctx);

    const uint8_t * inp = src;

    // set rng
    {
        size_t rng_size;
        memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);

        GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);

        std::string rng_str((const char *)inp, rng_size); inp += rng_size;

        std::istringstream rng_ss(rng_str);
        rng_ss >> ctx->rng;

        GGML_ASSERT(!rng_ss.fail());
    }

    // set output ids
    {
        size_t n_outputs;
        std::vector output_pos;

        memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);

        GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));

        if (n_outputs) {
            output_pos.resize(n_outputs);
            memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
            inp += n_outputs * sizeof(int32_t);

            for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
                int32_t id = output_pos[i];
                GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
                ctx->output_ids[id] = i;
            }

            ctx->n_outputs = n_outputs;
        }
    }

    // set logits
    {
        size_t logits_size;

        memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);

        GGML_ASSERT(ctx->logits_size >= logits_size);

        if (logits_size) {
            memcpy(ctx->logits, inp, logits_size * sizeof(float));
            inp += logits_size * sizeof(float);
        }
    }

    // set embeddings
    {
        size_t embeddings_size;

        memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);

        GGML_ASSERT(ctx->embd_size >= embeddings_size);

        if (embeddings_size) {
            memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
            inp += embeddings_size * sizeof(float);
        }
    }

    // set kv cache
    {
        const auto & kv_self = ctx->kv_self;
        const auto & hparams = ctx->model.hparams;

        const uint32_t n_layer      = hparams.n_layer;
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
        const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();

        size_t   kv_buf_size;
        uint32_t kv_head;
        uint32_t kv_size;
        uint32_t kv_used;
        uint32_t v_trans;

        memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
        memcpy(&kv_head,     inp, sizeof(kv_head));     inp += sizeof(kv_head);
        memcpy(&kv_size,     inp, sizeof(kv_size));     inp += sizeof(kv_size);
        memcpy(&kv_used,     inp, sizeof(kv_used));     inp += sizeof(kv_used);
        memcpy(&v_trans,     inp, sizeof(v_trans));     inp += sizeof(v_trans);

        GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition

        if (kv_self.size != kv_size) {
            // the KV cache needs to be big enough to load all the KV cells from the saved state
            GGML_ASSERT(kv_self.size >= kv_head);

            LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
                __func__, kv_head, kv_size, kv_self.size);
        }

        llama_kv_cache_clear(ctx);

        if (kv_buf_size) {
            const size_t pre_kv_buf_size = inp - src;

            GGML_ASSERT(kv_self.total_size() >= kv_buf_size);

            for (int il = 0; il < (int) n_layer; ++il) {
                const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);

                ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
                inp += k_size;

                if (kv_self.recurrent || !kv_self.v_trans) {
                    // v is contiguous for recurrent models
                    // TODO: use other tensors for state models than k and v
                    const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);

                    ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
                    inp += v_size;
                    continue;
                }

                // v is not contiguous, copy row by row
                const size_t v_row_size   = ggml_row_size(kv_self.v_l[il]->type, kv_head);
                const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);

                for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
                    ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
                    inp += v_row_size;
                }
            }
            GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
        }

        ctx->kv_self.head = kv_head;
        ctx->kv_self.used = kv_used;

        for (uint32_t i = 0; i < kv_head; ++i) {
            llama_pos pos;
            size_t    seq_id_size;

            memcpy(&pos,         inp, sizeof(pos));         inp += sizeof(pos);
            memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);

            ctx->kv_self.cells[i].pos = pos;

            llama_seq_id seq_id;

            for (size_t j = 0; j < seq_id_size; ++j) {
                memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
                ctx->kv_self.cells[i].seq_id.insert(seq_id);
            }
        }
    }

    const size_t nread    = inp - src;
    const size_t max_size = llama_state_get_size(ctx);

    GGML_ASSERT(nread <= max_size);

    return nread;
}

static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(path_session, "rb");

    // sanity checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
            LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
            return false;
        }

        llama_hparams session_hparams;
        file.read_raw(&session_hparams, sizeof(llama_hparams));

        if (session_hparams != ctx->model.hparams) {
            LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
            return false;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return false;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t n_state_size_cur = file.size - file.tell();
        const size_t n_state_size_max = llama_state_get_size(ctx);

        if (n_state_size_cur > n_state_size_max) {
            LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
            return false;
        }

        std::vector state_data(n_state_size_max);
        file.read_raw(state_data.data(), n_state_size_cur);

        llama_state_set_data(ctx, state_data.data());
    }

    return true;
}

bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    try {
        return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
        return false;
    }
}

static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    llama_file file(path_session, "wb");

    file.write_u32(LLAMA_SESSION_MAGIC);
    file.write_u32(LLAMA_SESSION_VERSION);

    file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));

    // save the prompt
    file.write_u32((uint32_t) n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_data_file_context data_ctx(&file);
    llama_state_get_data_internal(ctx, &data_ctx);

    return true;
}

bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
    try {
        return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
        return false;
    }
}

size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
    // save the size of size_t as a uint32_t for safety check
    const size_t size_t_size_size = sizeof(uint32_t);

    // other values
    const size_t s_cell_count_size = sizeof(uint32_t);
    const size_t s_layer_count_size = sizeof(uint32_t);
    const size_t n_embd_v_gqa_size = sizeof(uint32_t);

    size_t s_cell_count = 0;
    size_t s_cell_data_size = 0;
    const auto & kv_self = ctx->kv_self;
    const auto & hparams = ctx->model.hparams;

    const uint32_t n_layer = hparams.n_layer;
    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();

    for (uint32_t i = 0; i < kv_self.size; ++i) {
        const auto & cell = kv_self.cells[i];
        if (cell.seq_id.count(seq_id) > 0) {
            ++s_cell_count;
            s_cell_data_size += sizeof(llama_pos);
        }
    }

    for (int il = 0; il < (int)n_layer; ++il) {
        // types of keys and values
        s_cell_data_size += sizeof(int32_t) * 2;
        // k_size_row and v_size_el values of layer
        s_cell_data_size += sizeof(size_t) * 2;

        // keys
        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
        s_cell_data_size += k_size_row * s_cell_count;

        // values (transposed)
        const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
        s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
    }

    const size_t s_total = (
        size_t_size_size +
        s_cell_count_size +
        s_layer_count_size +
        n_embd_v_gqa_size +
        s_cell_data_size
        );

    return s_total;
}

static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
    llama_synchronize(ctx);

    const auto & kv_self = ctx->kv_self;
    GGML_ASSERT(!kv_self.recurrent); // not implemented

    // Save the size of size_t as a uint32_t for safety check
    const uint32_t size_t_size = sizeof(size_t);
    data_ctx.write(&size_t_size, sizeof(size_t_size));

    std::vector> cell_ranges; // ranges, from inclusive, to exclusive
    uint32_t cell_count = 0;

    // Count the number of cells with the specified seq_id
    // Find all the ranges of cells with this seq id
    {
        uint32_t cell_range_begin = kv_self.size;
        for (uint32_t i = 0; i < kv_self.size; ++i) {
            const auto & cell = kv_self.cells[i];
            if (cell.has_seq_id(seq_id)) {
                ++cell_count;
                if (cell_range_begin == kv_self.size) {
                    cell_range_begin = i;
                }
            }
            else {
                if (cell_range_begin != kv_self.size) {
                    cell_ranges.emplace_back(cell_range_begin, i);
                    cell_range_begin = kv_self.size;
                }
            }
        }
        if (cell_range_begin != kv_self.size) {
            cell_ranges.emplace_back(cell_range_begin, kv_self.size);
        }

        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
        uint32_t cell_count_check = 0;
        for (const auto & range : cell_ranges) {
            cell_count_check += range.second - range.first;
        }
        GGML_ASSERT(cell_count == cell_count_check);
    }

    // Write the cell count
    data_ctx.write(&cell_count, sizeof(cell_count));

    const auto & hparams = ctx->model.hparams;
    const uint32_t n_layer = hparams.n_layer;
    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();

    // Write the layer count
    data_ctx.write(&n_layer, sizeof(n_layer));

    // Write n_embd_v_gqa
    data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));

    // Iterate the ranges and write all the pos (this is the token position in the prompt)
    for (const auto & range : cell_ranges) {
        for (uint32_t i = range.first; i < range.second; ++i) {
            const auto & cell = kv_self.cells[i];
            data_ctx.write(&cell.pos, sizeof(cell.pos));
        }
    }

    // Iterate and write all the keys first, each row is a cell
    // Get whole range at a time
    std::vector tmp_buf;
    for (int il = 0; il < (int)n_layer; ++il) {
        // Write key type
        const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
        data_ctx.write(&k_type_i, sizeof(k_type_i));

        // Write row size of key
        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
        data_ctx.write(&k_size_row, sizeof(k_size_row));

        // Read each range of cells of k_size length each into tmp_buf and write out
        for (const auto & range : cell_ranges) {
            const size_t range_size = range.second - range.first;
            tmp_buf.resize(range_size * k_size_row);
            ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
            data_ctx.write(tmp_buf.data(), tmp_buf.size());
        }
    }

    // TODO: simplify, reduce copy-paste
    if (!kv_self.v_trans) {
        for (int il = 0; il < (int)n_layer; ++il) {
            // Write value type
            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
            data_ctx.write(&v_type_i, sizeof(v_type_i));

            // Write row size of value
            const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
            data_ctx.write(&v_size_row, sizeof(v_size_row));

            // Read each range of cells of v_size length each into tmp_buf and write out
            for (const auto & range : cell_ranges) {
                const size_t range_size = range.second - range.first;
                tmp_buf.resize(range_size * v_size_row);
                ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
                data_ctx.write(tmp_buf.data(), tmp_buf.size());
            }
        }
    } else {
        // For the values, they are transposed, so we also need the element size and get the element ranges from each row
        const uint32_t kv_size = kv_self.size;
        for (int il = 0; il < (int)n_layer; ++il) {
            // Write value type
            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
            data_ctx.write(&v_type_i, sizeof(v_type_i));

            // Write element size
            const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
            data_ctx.write(&v_size_el, sizeof(v_size_el));

            // For each row, we get the element values of each cell
            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                // Read each range of cells of v_size_el length each into tmp_buf and write out
                for (const auto & range : cell_ranges) {
                    const size_t range_size = range.second - range.first;
                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
                    tmp_buf.resize(range_size * v_size_el);
                    ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
                    data_ctx.write(tmp_buf.data(), tmp_buf.size());
                }
            }
        }
    }

    return data_ctx.get_size_written();
}

size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
    llama_data_buffer_context data_ctx(dst);
    return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
}

size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
    llama_synchronize(ctx);

    auto & kv_self = ctx->kv_self;
    GGML_ASSERT(!kv_self.recurrent); // not implemented

    // Wipe the slot
    llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);

    const uint8_t * inp = src;

    // Read size of size_t
    uint32_t size_t_size;
    memcpy(&size_t_size, inp, sizeof(size_t_size));
    inp += sizeof(size_t_size);
    if (size_t_size != sizeof(size_t)) {
        LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
        return 0;
    }

    // Read the cell count
    uint32_t cell_count;
    memcpy(&cell_count, inp, sizeof(cell_count));
    inp += sizeof(cell_count);

    // Read the layer count
    uint32_t n_layer_ref;
    memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
    inp += sizeof(n_layer_ref);

    // Read n_embd_v_gqa
    uint32_t n_embd_v_gqa_ref;
    memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
    inp += sizeof(n_embd_v_gqa_ref);

    // Sanity check model compatibility
    const auto & hparams = ctx->model.hparams;
    const uint32_t n_layer = hparams.n_layer;
    const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
    const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
    if (n_layer != n_layer_ref) {
        LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
        return 0;
    }
    if (n_embd_v_gqa != n_embd_v_gqa_ref) {
        LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
        return 0;
    }

    // Allocate the new cells for the slot
    if (cell_count) {
        llama_batch batch = llama_batch_init(cell_count, 0, 1);
        batch.n_tokens = cell_count;
        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            memcpy(&pos, inp, sizeof(pos));
            inp += sizeof(pos);

            batch.pos[i] = pos;
            batch.n_seq_id[i] = 1;
            batch.seq_id[i][0] = dest_seq_id;
        }
        if (!llama_kv_cache_find_slot(kv_self, batch)) {
            llama_batch_free(batch);
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
            return 0;
        }

        // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
        // Assume that this is one contiguous block of cells
        GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
        GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
        GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
        GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
        GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));

        // Cleanup
        llama_batch_free(batch);
    }

    const uint32_t kv_size = kv_self.size;
    const uint32_t kv_head = kv_self.head;

    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
    for (int il = 0; il < (int)n_layer; ++il) {
        // Read type of key
        int32_t k_type_i_ref;
        memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
        inp += sizeof(k_type_i_ref);
        const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
        if (k_type_i != k_type_i_ref) {
            llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
            return 0;
        }

        // Read row size of key
        size_t k_size_row_ref;
        memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
        inp += sizeof(k_size_row_ref);
        const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
        if (k_size_row != k_size_row_ref) {
            llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
            return 0;
        }

        if (cell_count) {
            // Read and set the keys for the whole cell range
            ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
            inp += cell_count * k_size_row;
        }
    }

    // TODO: simplify, reduce copy-paste
    if (!kv_self.v_trans) {
        for (int il = 0; il < (int)n_layer; ++il) {
            // Read type of value
            int32_t v_type_i_ref;
            memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
            inp += sizeof(v_type_i_ref);
            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
            if (v_type_i != v_type_i_ref) {
                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return 0;
            }

            // Read row size of value
            size_t v_size_row_ref;
            memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
            inp += sizeof(v_size_row_ref);
            const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
            if (v_size_row != v_size_row_ref) {
                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
                return 0;
            }

            if (cell_count) {
                // Read and set the values for the whole cell range
                ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
                inp += cell_count * v_size_row;
            }
        }
    } else {
        // For each layer, read the values for each cell (transposed)
        for (int il = 0; il < (int)n_layer; ++il) {
            // Read type of value
            int32_t v_type_i_ref;
            memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
            inp += sizeof(v_type_i_ref);
            const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
            if (v_type_i != v_type_i_ref) {
                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return 0;
            }

            // Read element size of value
            size_t v_size_el_ref;
            memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
            inp += sizeof(v_size_el_ref);
            const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
            if (v_size_el != v_size_el_ref) {
                llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
                return 0;
            }

            if (cell_count) {
                // For each row in the transposed matrix, read the values for the whole cell range
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
                    ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
                    inp += cell_count * v_size_el;
                }
            }
        }
    }

    const size_t nread = inp - src;

    return nread;
}

static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    llama_file file(filepath, "wb");

    file.write_u32(LLAMA_STATE_SEQ_MAGIC);
    file.write_u32(LLAMA_STATE_SEQ_VERSION);

    // save the prompt
    file.write_u32((uint32_t)n_token_count);
    file.write_raw(tokens, sizeof(llama_token) * n_token_count);

    // save the context state using stream saving
    llama_data_file_context data_ctx(&file);
    llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);

    const size_t res = file.tell();
    GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
    return res;
}

static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    llama_file file(filepath, "rb");

    // version checks
    {
        const uint32_t magic   = file.read_u32();
        const uint32_t version = file.read_u32();

        if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
            LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
            return 0;
        }
    }

    // load the prompt
    {
        const uint32_t n_token_count = file.read_u32();

        if (n_token_count > n_token_capacity) {
            LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
            return 0;
        }

        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
        *n_token_count_out = n_token_count;
    }

    // restore the context state
    {
        const size_t state_size = file.size - file.tell();
        std::vector state_data(state_size);
        file.read_raw(state_data.data(), state_size);
        const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
        if (!nread) {
            LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
            return 0;
        }
        GGML_ASSERT(nread <= state_size);
        GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
    }

    return file.tell();
}

size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
    try {
        return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
        return 0;
    }
}

size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
    try {
        return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
        return 0;
    }
}

void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
    ctx->cparams.n_threads       = n_threads;
    ctx->cparams.n_threads_batch = n_threads_batch;
}

uint32_t llama_n_threads(struct llama_context * ctx) {
    return ctx->cparams.n_threads;
}

uint32_t llama_n_threads_batch(struct llama_context * ctx) {
    return ctx->cparams.n_threads_batch;
}

void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
    ctx->abort_callback      = abort_callback;
    ctx->abort_callback_data = abort_callback_data;
}

void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
    ctx->cparams.causal_attn = causal_attn;
}

struct llama_batch llama_batch_get_one(
             llama_token * tokens,
                 int32_t   n_tokens,
               llama_pos   pos_0,
            llama_seq_id   seq_id) {
    return {
        /*n_tokens       =*/ n_tokens,
        /*tokens         =*/ tokens,
        /*embd           =*/ nullptr,
        /*pos            =*/ nullptr,
        /*n_seq_id       =*/ nullptr,
        /*seq_id         =*/ nullptr,
        /*logits         =*/ nullptr,
        /*all_pos_0      =*/ pos_0,
        /*all_pos_1      =*/ 1,
        /*all_seq_id     =*/ seq_id,
    };
}

struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
    llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };

    if (embd) {
        batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
    } else {
        batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
    }

    batch.pos      = (llama_pos *)     malloc(sizeof(llama_pos)      * n_tokens_alloc);
    batch.n_seq_id = (int32_t *)       malloc(sizeof(int32_t)        * n_tokens_alloc);
    batch.seq_id   = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
    for (int i = 0; i < n_tokens_alloc; ++i) {
        batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
    }
    batch.seq_id[n_tokens_alloc] = nullptr;

    batch.logits   = (int8_t *)        malloc(sizeof(int8_t)         * n_tokens_alloc);

    return batch;
}

void llama_batch_free(struct llama_batch batch) {
    if (batch.token)    free(batch.token);
    if (batch.embd)     free(batch.embd);
    if (batch.pos)      free(batch.pos);
    if (batch.n_seq_id) free(batch.n_seq_id);
    if (batch.seq_id) {
        for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
            free(batch.seq_id[i]);
        }
        free(batch.seq_id);
    }
    if (batch.logits)   free(batch.logits);
}

int32_t llama_decode(
        struct llama_context * ctx,
          struct llama_batch   batch) {
    const int ret = llama_decode_internal(*ctx, batch);
    if (ret < 0) {
        LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
    }

    return ret;
}

void llama_synchronize(struct llama_context * ctx) {
    ggml_backend_sched_synchronize(ctx->sched);

    // FIXME: if multiple single tokens are evaluated without a synchronization,
    // the stats will be added to the prompt evaluation stats
    // this should only happen when using batch size 1 to evaluate a batch

    // add the evaluation to the stats
    if (ctx->n_queued_tokens == 1) {
        ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
        ctx->n_eval++;
    } else if (ctx->n_queued_tokens > 1) {
        ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
        ctx->n_p_eval += ctx->n_queued_tokens;
    }

    // get a more accurate load time, upon first eval
    if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
        ctx->has_evaluated_once = true;
    }

    ctx->n_queued_tokens = 0;
    ctx->t_compute_start_us = 0;
}

float * llama_get_logits(struct llama_context * ctx) {
    llama_synchronize(ctx);

    return ctx->logits;
}

float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
    int32_t j = -1;
    llama_synchronize(ctx);

    try {
        if (ctx->logits == nullptr) {
            throw std::runtime_error("no logits");
        }

        if (i < 0) {
            j = ctx->n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
            }
        } else if ((size_t) i >= ctx->output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
        } else {
            j = ctx->output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= ctx->n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
        }

        return ctx->logits + j*ctx->model.hparams.n_vocab;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ASSERT(false);
#endif
        return nullptr;
    }
}

float * llama_get_embeddings(struct llama_context * ctx) {
    llama_synchronize(ctx);

    return ctx->embd;
}

float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
    int32_t j = -1;

    llama_synchronize(ctx);

    try {
        if (ctx->embd == nullptr) {
            throw std::runtime_error("no embeddings");
        }

        if (i < 0) {
            j = ctx->n_outputs + i;
            if (j < 0) {
                throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
            }
        } else if ((size_t) i >= ctx->output_ids.size()) {
            throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
        } else {
            j = ctx->output_ids[i];
        }

        if (j < 0) {
            throw std::runtime_error(format("batch.logits[%d] != true", i));
        }
        if (j >= ctx->n_outputs) {
            // This should not happen
            throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
        }

        return ctx->embd + j*ctx->model.hparams.n_embd;
    } catch (const std::exception & err) {
        LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
        GGML_ASSERT(false);
#endif
        return nullptr;
    }
}

float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
    llama_synchronize(ctx);

    auto it = ctx->embd_seq.find(seq_id);
    if (it == ctx->embd_seq.end()) {
        return nullptr;
    }

    return it->second.data();
}

const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
    GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return model->vocab.id_to_token[token].text.c_str();
}

float llama_token_get_score(const struct llama_model * model, llama_token token) {
    GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return model->vocab.id_to_token[token].score;
}

llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
    GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
    return model->vocab.id_to_token[token].attr;
}

bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
    return token != -1 && (
        token == llama_token_eos(model) ||
        token == llama_token_eot(model)
    );
}

bool llama_token_is_control(const struct llama_model * model, llama_token token) {
    return llama_is_control_token(model->vocab, token);
}

llama_token llama_token_bos(const struct llama_model * model) {
    return model->vocab.special_bos_id;
}

llama_token llama_token_eos(const struct llama_model * model) {
    return model->vocab.special_eos_id;
}

llama_token llama_token_cls(const struct llama_model * model) {
    return model->vocab.special_cls_id;
}

llama_token llama_token_sep(const struct llama_model * model) {
    return model->vocab.special_sep_id;
}

llama_token llama_token_nl(const struct llama_model * model) {
    return model->vocab.linefeed_id;
}

int32_t llama_add_bos_token(const struct llama_model * model) {
    return model->vocab.special_add_bos;
}

int32_t llama_add_eos_token(const struct llama_model * model) {
    return model->vocab.special_add_eos;
}

llama_token llama_token_prefix(const struct llama_model * model) {
    return model->vocab.special_prefix_id;
}

llama_token llama_token_middle(const struct llama_model * model) {
    return model->vocab.special_middle_id;
}

llama_token llama_token_suffix(const struct llama_model * model) {
    return model->vocab.special_suffix_id;
}

llama_token llama_token_eot(const struct llama_model * model) {
    return model->vocab.special_eot_id;
}

int32_t llama_tokenize(
    const struct llama_model * model,
                  const char * text,
                     int32_t   text_len,
                 llama_token * tokens,
                     int32_t   n_tokens_max,
                        bool   add_special,
                        bool   parse_special) {
    auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);

    if (n_tokens_max < (int) res.size()) {
        // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
        return -((int) res.size());
    }

    for (size_t i = 0; i < res.size(); i++) {
        tokens[i] = res[i];
    }

    return res.size();
}

static std::string llama_decode_text(const std::string & text) {
    std::string decoded_text;

    const auto cpts = unicode_cpts_from_utf8(text);
    for (const auto cpt : cpts) {
        const auto utf8 = unicode_cpt_to_utf8(cpt);
        try {
            decoded_text += unicode_utf8_to_byte(utf8);
        } catch (const std::out_of_range & e) {
            decoded_text += "[UNK_BYTE_0x";
            for (const auto c : utf8) {
                decoded_text += format("%02x", (uint8_t) c);
            }
            decoded_text += text + "]";
        }
    }

    return decoded_text;
}

// does not write null-terminator to buf
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
    // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
    if (!special && llama_is_control_token(model->vocab, token)) {
        return 0;
    }

    // if we have a cache - use it
    {
        const auto & cache = model->vocab.cache_token_to_piece;

        if (!cache.empty()) {
            const auto & res = cache.at(token);
            if (length < (int) res.size()) {
                return -(int) res.size();
            }
            memcpy(buf, res.c_str(), res.size());
            return res.size();
        }
    }

    if (0 <= token && token < llama_n_vocab(model)) {
        switch (llama_vocab_get_type(model->vocab)) {
            case LLAMA_VOCAB_TYPE_WPM:
            case LLAMA_VOCAB_TYPE_SPM: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (llama_is_normal_token(model->vocab, token)) {
                    std::string result = model->vocab.id_to_token[token].text;
                    llama_unescape_whitespace(result);
                    if (length < (int) result.length()) {
                        return -(int) result.length();
                    }
                    memcpy(buf, result.c_str(), result.length());
                    return result.length();
                } else if (
                        (llama_is_user_defined_token(model->vocab, token)) ||
                        (llama_is_control_token     (model->vocab, token) && special)) {
                    std::string result = model->vocab.id_to_token[token].text;
                    if (length < (int) result.length()) {
                        return -(int) result.length();
                    }
                    memcpy(buf, result.c_str(), result.length());
                    return result.length();
                } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
                    if (length < 3) {
                        return -3;
                    }
                    memcpy(buf, "\xe2\x96\x85", 3);
                    return 3;
                } else if (llama_is_byte_token(model->vocab, token)) {
                    if (length < 1) {
                        return -1;
                    }
                    buf[0] = llama_token_to_byte(model->vocab, token);
                    return 1;
                }
                break;
            }
            case LLAMA_VOCAB_TYPE_BPE: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (llama_is_normal_token(model->vocab, token)) {
                    std::string result = model->vocab.id_to_token[token].text;
                    result = llama_decode_text(result);
                    if (length < (int) result.length()) {
                        return -(int) result.length();
                    }
                    memcpy(buf, result.c_str(), result.length());
                    return result.length();
                } else if (
                        (llama_is_user_defined_token(model->vocab, token)) ||
                        (llama_is_control_token     (model->vocab, token) && special)) {
                    std::string result = model->vocab.id_to_token[token].text;
                    if (length < (int) result.length()) {
                        return -(int) result.length();
                    }
                    memcpy(buf, result.c_str(), result.length());
                    return result.length();
                }
                break;
            }
            default:
                GGML_ASSERT(false);
        }
    }
    return 0;
}

// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && isspace(str[start])) {
        start += 1;
    }
    while (end > start && isspace(str[end - 1])) {
        end -= 1;
    }
    return str.substr(start, end - start);
}

// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
static int32_t llama_chat_apply_template_internal(
    const std::string & tmpl,
    const std::vector & chat,
    std::string & dest, bool add_ass) {
    // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
    std::stringstream ss;
    if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
        // chatml template
        for (auto message : chat) {
            ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
        }
        if (add_ass) {
            ss << "<|im_start|>assistant\n";
        }
    } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
        // llama2 template and its variants
        // [variant] support system message
        bool support_system_message = tmpl.find("<>") != std::string::npos;
        // [variant] space before + after response
        bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
        // [variant] add BOS inside history
        bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
        // [variant] trim spaces from the input message
        bool strip_message = tmpl.find("content.strip()") != std::string::npos;
        // construct the prompt
        bool is_inside_turn = true; // skip BOS at the beginning
        ss << "[INST] ";
        for (auto message : chat) {
            std::string content = strip_message ? trim(message->content) : message->content;
            std::string role(message->role);
            if (!is_inside_turn) {
                is_inside_turn = true;
                ss << (add_bos_inside_history ? "[INST] " : "[INST] ");
            }
            if (role == "system") {
                if (support_system_message) {
                    ss << "<>\n" << content << "\n<>\n\n";
                } else {
                    // if the model does not support system message, we still include it in the first message, but without <>
                    ss << content << "\n";
                }
            } else if (role == "user") {
                ss << content << " [/INST]";
            } else {
                ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "";
                is_inside_turn = false;
            }
        }
        // llama2 templates seem to not care about "add_generation_prompt"
    } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
        // Phi 3
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
        }
        if (add_ass) {
            ss << "<|assistant|>\n";
        }
    } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
        // zephyr template
        for (auto message : chat) {
            ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
        }
        if (add_ass) {
            ss << "<|assistant|>\n";
        }
    } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
        // mlabonne/AlphaMonarch-7B template (the  is included inside history)
        for (auto message : chat) {
            std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message
            ss << bos << message->role << "\n" << message->content << "\n";
        }
        if (add_ass) {
            ss << "assistant\n";
        }
    } else if (tmpl == "gemma" || tmpl.find("") != std::string::npos) {
        // google/gemma-7b-it
        std::string system_prompt = "";
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
                system_prompt = trim(message->content);
                continue;
            }
            // in gemma, "assistant" is "model"
            role = role == "assistant" ? "model" : message->role;
            ss << "" << role << "\n";
            if (!system_prompt.empty() && role != "model") {
                ss << system_prompt << "\n\n";
                system_prompt = "";
            }
            ss << trim(message->content) << "\n";
        }
        if (add_ass) {
            ss << "model\n";
        }
    } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
        // OrionStarAI/Orion-14B-Chat
        std::string system_prompt = "";
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // there is no system message support, we will merge it with user prompt
                system_prompt = message->content;
                continue;
            } else if (role == "user") {
                ss << "Human: ";
                if (!system_prompt.empty()) {
                    ss << system_prompt << "\n\n";
                    system_prompt = "";
                }
                ss << message->content << "\n\nAssistant: ";
            } else {
                ss << message->content << "";
            }
        }
    } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
        // openchat/openchat-3.5-0106,
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << message->content << "<|end_of_turn|>";
            } else {
                role[0] = toupper(role[0]);
                ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
            }
        }
        if (add_ass) {
            ss << "GPT4 Correct Assistant:";
        }
    } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
        // eachadea/vicuna-13b-1.1 (and Orca variant)
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                // Orca-Vicuna variant uses a system prefix
                if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
                    ss << "SYSTEM: " << message->content << "\n";
                } else {
                    ss << message->content << "\n\n";
                }
            } else if (role == "user") {
                ss << "USER: " << message->content << "\n";
            } else if (role == "assistant") {
                ss << "ASSISTANT: " << message->content << "\n";
            }
        }
        if (add_ass) {
            ss << "ASSISTANT:";
        }
    } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
        // deepseek-ai/deepseek-coder-33b-instruct
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << message->content;
            } else if (role == "user") {
                ss << "### Instruction:\n" << message->content << "\n";
            } else if (role == "assistant") {
                ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
            }
        }
        if (add_ass) {
            ss << "### Response:\n";
        }
    } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
        // CohereForAI/c4ai-command-r-plus
        for (auto message : chat) {
            std::string role(message->role);
            if (role == "system") {
                ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            } else if (role == "user") {
                ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            } else if (role == "assistant") {
                ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
            }
        }
        if (add_ass) {
            ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
        }
    } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
        // Llama 3
        for (auto message : chat) {
            std::string role(message->role);
            ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
        }
        if (add_ass) {
            ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
        }
    } else {
        // template not supported
        return -1;
    }
    dest = ss.str();
    return dest.size();
}

LLAMA_API int32_t llama_chat_apply_template(
                const struct llama_model * model,
                              const char * tmpl,
         const struct llama_chat_message * chat,
                                  size_t   n_msg,
                                    bool   add_ass,
                                    char * buf,
                                 int32_t   length) {
    std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
    if (tmpl == nullptr) {
        GGML_ASSERT(model != nullptr);
        // load template from model
        std::vector model_template(2048, 0); // longest known template is about 1200 bytes
        std::string template_key = "tokenizer.chat_template";
        int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
        if (res < 0) {
            // worst case: there is no information about template, we will use chatml by default
            curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
        } else {
            curr_tmpl = std::string(model_template.data(), model_template.size());
        }
    }

    // format the chat to string
    std::vector chat_vec;
    chat_vec.resize(n_msg);
    for (size_t i = 0; i < n_msg; i++) {
        chat_vec[i] = &chat[i];
    }

    std::string formatted_chat;
    int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
    if (res < 0) {
        return res;
    }
    if (buf && length > 0) {
        strncpy(buf, formatted_chat.c_str(), length);
    }
    return res;
}

LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
    static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
    if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
        return strlen(split_path);
    }
    return 0;
}

int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
    std::string str_split_path(split_path);
    char postfix[32];
    snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
    std::string str_postfix(postfix);

    // check if dest ends with postfix
    int size_prefix = str_split_path.size() - str_postfix.size();
    if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
        snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
        return size_prefix;
    }

    return 0;
}

struct llama_timings llama_get_timings(struct llama_context * ctx) {
    struct llama_timings result = {
        /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
        /*.t_end_ms    =*/ 1.00 * ggml_time_ms(),
        /*.t_load_ms   =*/ 1e-3 * ctx->t_load_us,
        /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
        /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
        /*.t_eval_ms   =*/ 1e-3 * ctx->t_eval_us,

        /*.n_sample =*/ std::max(1, ctx->n_sample),
        /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
        /*.n_eval   =*/ std::max(1, ctx->n_eval),
    };

    return result;
}

void llama_print_timings(struct llama_context * ctx) {
    const llama_timings timings = llama_get_timings(ctx);

    LLAMA_LOG_INFO("\n");
    LLAMA_LOG_INFO("%s:        load time = %10.2f ms\n", __func__, timings.t_load_ms);
    LLAMA_LOG_INFO("%s:      sample time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
    LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
    LLAMA_LOG_INFO("%s:        eval time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
    LLAMA_LOG_INFO("%s:       total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
}

void llama_reset_timings(struct llama_context * ctx) {
    ctx->t_start_us = ggml_time_us();
    ctx->t_sample_us = ctx->n_sample = 0;
    ctx->t_eval_us   = ctx->n_eval   = 0;
    ctx->t_p_eval_us = ctx->n_p_eval = 0;
}

const char * llama_print_system_info(void) {
    static std::string s;

    s  = "";
    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
    s += "AVX_VNNI = "    + std::to_string(ggml_cpu_has_avx_vnni())    + " | ";
    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
    s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
    s += "SVE = "         + std::to_string(ggml_cpu_has_sve())         + " | ";
    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
    s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
    s += "SSSE3 = "       + std::to_string(ggml_cpu_has_ssse3())       + " | ";
    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
    s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
#ifdef GGML_USE_LLAMAFILE
    s += "LLAMAFILE = 1 | ";
#else
    s += "LLAMAFILE = 0 | ";
#endif

    return s.c_str();
}

void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
    fprintf(stream, "\n");
    fprintf(stream, "###########\n");
    fprintf(stream, "# Timings #\n");
    fprintf(stream, "###########\n");
    fprintf(stream, "\n");

    fprintf(stream, "mst_eval: %.2f  # ms / token during generation\n",
            1.0e-3 * ctx->t_eval_us / ctx->n_eval);
    fprintf(stream, "mst_p_eval: %.2f  # ms / token during prompt processing\n",
            1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
    fprintf(stream, "mst_sample: %.2f  # ms / token during sampling\n",
            1.0e-3 * ctx->t_sample_us / ctx->n_sample);
    fprintf(stream, "n_eval: %d  # number of tokens generated (excluding the first one)\n", ctx->n_eval);
    fprintf(stream, "n_p_eval: %d  # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
    fprintf(stream, "n_sample: %d  # number of sampled tokens\n", ctx->n_sample);
    fprintf(stream, "t_eval_us: %" PRId64 "  # total microseconds spent generating tokens\n", ctx->t_eval_us);
    fprintf(stream, "t_load_us: %" PRId64 "  # total microseconds spent loading the model\n", ctx->t_load_us);
    fprintf(stream, "t_p_eval_us: %" PRId64 "  # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
    fprintf(stream, "t_sample_us: %" PRId64 "  # total microseconds spent sampling\n", ctx->t_sample_us);
    fprintf(stream, "ts_eval: %.2f  # tokens / second during generation\n",
            1.0e6 * ctx->n_eval / ctx->t_eval_us);
    fprintf(stream, "ts_p_eval: %.2f  # tokens / second during prompt processing\n",
            1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
    fprintf(stream, "ts_sample: %.2f  # tokens / second during sampling\n",
            1.0e6 * ctx->n_sample / ctx->t_sample_us);
}

// For internal test use
const std::vector> & llama_internal_get_tensor_map(
    struct llama_context * ctx
) {
    return ctx->model.tensors_by_name;
}

void llama_log_set(ggml_log_callback log_callback, void * user_data) {
    g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
    g_state.log_callback_user_data = user_data;
#ifdef GGML_USE_METAL
    ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#elif defined(GGML_USE_CUDA)
    ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#endif
}

static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
    va_list args_copy;
    va_copy(args_copy, args);
    char buffer[128];
    int len = vsnprintf(buffer, 128, format, args);
    if (len < 128) {
        g_state.log_callback(level, buffer, g_state.log_callback_user_data);
    } else {
        char* buffer2 = new char[len+1];
        vsnprintf(buffer2, len+1, format, args_copy);
        buffer2[len] = 0;
        g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
        delete[] buffer2;
    }
    va_end(args_copy);
}

static void llama_log_internal(ggml_log_level level, const char * format, ...) {
    va_list args;
    va_start(args, format);
    llama_log_internal_v(level, format, args);
    va_end(args);
}

static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}