#include "common.hpp" #include "ggml.h" #include "element_wise.hpp" static void acc_f32(const float * x, const float * y, float * dst, const int ne, const int ne10, const int ne11, const int ne12, const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= ne) { return; } int src1_idx = i - offset; int oz = src1_idx / nb2; int oy = (src1_idx - (oz * nb2)) / nb1; int ox = src1_idx % nb1; if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) { dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11]; } else { dst[i] = x[i]; } } template static void sgn(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) { dst[i] = x[i] > static_cast(0.f) ? static_cast(1.f) : ((x[i] < static_cast(0.f) ? static_cast(-1.f) : static_cast(0.f))); } } template static void abs_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) { dst[i] = sycl::fabs(x[i]); } } template static void elu_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) { dst[i] = (x[i] > static_cast(0.f)) ? x[i] : sycl::expm1(x[i]); } } template static void gelu(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const T GELU_COEF_A = static_cast(0.044715f); const T SQRT_2_OVER_PI = static_cast(0.79788456080286535587989211986876f); const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } float xi = x[i]; dst[i] = static_cast(0.5f) * xi * (static_cast(1.0f) + sycl::tanh(SQRT_2_OVER_PI * xi * (static_cast(1.0f) + GELU_COEF_A * xi * xi))); } template static void silu(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] / (static_cast(1.0f) + sycl::native::exp(-x[i])); } template static void gelu_quick(const T *x, T *dst, int k, const sycl::nd_item<3> &item_ct1) { const float GELU_QUICK_COEF = -1.702f; const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] * (static_cast(1.0f) / (static_cast(1.0f) + sycl::native::exp(GELU_QUICK_COEF * x[i]))); } template static void gelu_erf(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const T SQRT_2_INV = static_cast(0.70710678118654752440084436210484f); for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) { auto x_i = x[i]; dst[i] = static_cast(0.5f) * x_i * (static_cast(1.0f) + sycl::erf(x_i * SQRT_2_INV)); } } template static void tanh(const T *x, T *dst, int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::tanh((x[i])); } template static void relu(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::fmax((x[i]), static_cast(0)); } template static void sigmoid(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = 1.0f / (static_cast(1.0f) + sycl::native::exp(-x[i])); } template static void sqrt(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::sqrt(x[i]); } template static void sin(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::sin(x[i]); } template static void cos(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::cos(x[i]); } template static void hardsigmoid(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::fmin(static_cast(1.0f), sycl::fmax(static_cast(0.0f), (x[i] + static_cast(3.0f)) / static_cast(6.0f))); } template static void hardswish(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] * sycl::fmin(static_cast(1.0f), sycl::fmax(static_cast(0.0f), (x[i] + static_cast(3.0f)) / static_cast(6.0f))); } template static void exp(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::exp(x[i]); } template static void log(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } T xi = x[i]; if (xi <= 0) { dst[i] = neg_infinity(); } else { dst[i] = sycl::log(xi); } } template static void neg(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = -x[i]; } template static void step(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] > static_cast(0.0f); } template static void leaky_relu(const T *x, T *dst, const int k, const float negative_slope, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = sycl::fmax((x[i]), static_cast(0)) + sycl::fmin((x[i]), static_cast(0.0f)) * negative_slope; } template static void sqr(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] * x[i]; } template static void upscale(const T *x, T *dst, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int ne13, const float sf0, const float sf1, const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) { int index = item_ct1.get_local_id(0) + item_ct1.get_group(0) * item_ct1.get_local_range(0); if (index >= ne10 * ne11 * ne12 * ne13) { return; } // operation int i10 = index % ne10; int i11 = (index / ne10) % ne11; int i12 = (index / (ne10 * ne11)) % ne12; int i13 = (index / (ne10 * ne11 * ne12)) % ne13; int i00 = i10 / sf0; int i01 = i11 / sf1; int i02 = i12 / sf2; int i03 = i13 / sf3; dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00); } template static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02, const sycl::nd_item<3> &item_ct1) { int nidx = item_ct1.get_local_id(2) + item_ct1.get_group(2) * item_ct1.get_local_range(2); if (nidx >= ne0) { return; } // operation int offset_dst = nidx + item_ct1.get_group(1) * ne0 + item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1); if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) { int offset_src = nidx + item_ct1.get_group(1) * ne00 + item_ct1.get_group(0) * ne00 * ne01; dst[offset_dst] = x[offset_src]; } else { dst[offset_dst] = static_cast(0.0f); } } template static void clamp(const T * x, T * dst, const float min, const float max, const int k, const sycl::nd_item<3> &item_ct1) { const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2); if (i >= k) { return; } dst[i] = x[i] < static_cast(min) ? static_cast(min) : (x[i] > static_cast(max) ? static_cast(max) : x[i]); } static void acc_f32_sycl(const float *x, const float *y, float *dst, const int n_elements, const int ne10, const int ne11, const int ne12, const int nb1, const int nb2, const int offset, queue_ptr stream) { int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset, item_ct1); }); } template static void gelu_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { gelu(x, dst, k, item_ct1); }); } template static void silu_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { silu(x, dst, k, item_ct1); }); } template static void sgn_sycl(const T * x, T * dst, const int k, queue_ptr stream) { // hard code for now const int num_blocks = ceil_div(k, 256); stream->parallel_for( sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range(1, 1, 256)), sycl::range(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) { sgn(x, dst, k, item_ct1); }); } template static void abs_sycl(const T * x, T * dst, const int k, queue_ptr stream) { // hard code for now const int num_blocks = ceil_div(k, 256); stream->parallel_for( sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) { abs_op(x, dst, k, item_ct1); }); } template static void elu_sycl(const T * x, T * dst, const int k, queue_ptr stream) { // hard code for now const int num_blocks = ceil_div(k, 256); stream->parallel_for( sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) { elu_op(x, dst, k, item_ct1); }); } template static void gelu_quick_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { gelu_quick(x, dst, k, item_ct1); }); } template static void gelu_erf_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { gelu_erf(x, dst, k, item_ct1); }); } template static void tanh_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { tanh(x, dst, k, item_ct1); }); } template static void relu_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { relu(x, dst, k, item_ct1); }); } template static void hardsigmoid_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { hardsigmoid(x, dst, k, item_ct1); }); } template static void hardswish_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { hardswish(x, dst, k, item_ct1); }); } template static void exp_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { exp(x, dst, k, item_ct1); }); } template static void log_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { log(x, dst, k, item_ct1); }); } template static void neg_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { neg(x, dst, k, item_ct1); }); } template static void step_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { step(x, dst, k, item_ct1); }); } template static void sigmoid_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SIGMOID_BLOCK_SIZE - 1) / SYCL_SIGMOID_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { sigmoid(x, dst, k, item_ct1); }); } template static void sqrt_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SQRT_BLOCK_SIZE - 1) / SYCL_SQRT_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { sqrt(x, dst, k, item_ct1); }); } template static void sin_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { sin(x, dst, k, item_ct1); }); } template static void cos_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { cos(x, dst, k, item_ct1); }); } template static void leaky_relu_sycl(const T *x, T *dst, const int k, const float negative_slope, queue_ptr stream) { const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { leaky_relu(x, dst, k, negative_slope, item_ct1); }); } template static void sqr_sycl(const T *x, T *dst, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { sqr(x, dst, k, item_ct1); }); } template static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, const int ne12, const int ne13, const float sf0, const float sf1, const float sf2, const float sf3, queue_ptr stream) { int dst_size = ne10 * ne11 * ne12 * ne13; int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE; sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE); stream->parallel_for( sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) { upscale(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1); }); } template static void pad_sycl(const T *x, T *dst, const int ne00, const int ne01, const int ne02, const int ne0, const int ne1, const int ne2, queue_ptr stream) { int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE; sycl::range<3> gridDim(ne2, ne1, num_blocks); stream->parallel_for( sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); }); } template static void clamp_sycl(const T *x, T *dst, const float min, const float max, const int k, queue_ptr stream) { const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE; stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { clamp(x, dst, min, max, k, item_ct1); }); } inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); silu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); silu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); gelu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); gelu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); gelu_quick_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); gelu_quick_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); tanh_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); tanh_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); hardsigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); hardsigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); hardswish_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); hardswish_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); exp_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); exp_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); log_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); log_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); sigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); sigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); sqrt_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); sqrt_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); sin_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); sin_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); cos_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); cos_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); step_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); step_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); neg_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); neg_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); leaky_relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), negative_slope, main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); leaky_relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), negative_slope, main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); sqr_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); sqr_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0]; const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1]; const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2]; const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3]; switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); upscale_sycl(data_pts.src, data_pts.dst, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2], dst->src[0]->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); upscale_sycl(data_pts.src, data_pts.dst, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2], dst->src[0]->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); switch (dst->type) { #if defined (GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); pad_sycl(data_pts.src, data_pts.dst, dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2], dst->ne[0], dst->ne[1], dst->ne[2], main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); pad_sycl(data_pts.src, data_pts.dst, dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2], dst->ne[0], dst->ne[1], dst->ne[2], main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined(GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); #else GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); #endif GGML_ASSERT(dst->src[0]->type == dst->type); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); float min; float max; memcpy(&min, dst->op_params, sizeof(float)); memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); switch (dst->type) { #if defined(GGML_SYCL_F16) case GGML_TYPE_F16: { auto data_pts = cast_data(dst); clamp_sycl(data_pts.src, data_pts.dst, min, max, ggml_nelements(dst->src[0]), main_stream); break; } #endif case GGML_TYPE_F32: { auto data_pts = cast_data(dst); clamp_sycl(data_pts.src, data_pts.dst, min, max, ggml_nelements(dst->src[0]), main_stream); break; } default: GGML_ABORT("GGML tensor type not supported!\n"); } } inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float * src0_dd = static_cast(dst->src[0]->data); const float * src1_dd = static_cast(dst->src[1]->data); float * dst_dd = static_cast(dst->data); int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused int offset = dst->op_params[3] / 4; // offset in bytes acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), dst->src[1]->ne[0], dst->src[1]->ne[1], dst->src[1]->ne[2], nb1, nb2, offset, main_stream); } void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_sqrt(ctx, dst); } void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_sin(ctx, dst); } void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_cos(ctx, dst); } void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2); ggml_sycl_op_acc(ctx, dst); } void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_gelu(ctx, dst); } void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_silu(ctx, dst); } void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_gelu_quick(ctx, dst); } void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_gelu_erf(ctx, dst); } void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_tanh(ctx, dst); } void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_relu(ctx, dst); } void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_sigmoid(ctx, dst); } void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_hardsigmoid(ctx, dst); } void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_hardswish(ctx, dst); } void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_exp(ctx, dst); } void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_log(ctx, dst); } void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_neg(ctx, dst); } void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_step(ctx, dst); } void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_leaky_relu(ctx, dst); } void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_sqr(ctx, dst); } void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_upscale(ctx, dst); } void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_pad(ctx, dst); } void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_clamp(ctx, dst); } void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_sgn(ctx, dst); } void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_abs(ctx, dst); } void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_elu(ctx, dst); }