#define _USE_MATH_DEFINES // for M_PI #include "common.h" // third-party utilities // use your favorite implementations #define DR_WAV_IMPLEMENTATION #include "dr_wav.h" #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef _WIN32 #include #include #endif // Function to check if the next argument exists std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) { if (i + 1 < argc && argv[i + 1][0] != '-') { return argv[++i]; } else { fprintf(stderr, "error: %s requires one argument.\n", flag.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-p" || arg == "--prompt") { params.prompt = get_next_arg(i, argc, argv, arg, params); } else if (arg == "-n" || arg == "--n_predict") { params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-np" || arg == "--n_parallel") { params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--top_k") { params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--top_p") { params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--temp") { params.temp = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--repeat-last-n") { params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--repeat-penalty") { params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-b" || arg == "--batch_size") { params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-c" || arg == "--context") { params.n_ctx= std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "-m" || arg == "--model") { params.model = get_next_arg(i, argc, argv, arg, params); } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "-ip" || arg == "--interactive-port") { params.interactive = true; params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params)); } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, params); exit(0); } else if (arg == "-f" || arg == "--file") { get_next_arg(i, argc, argv, arg, params); std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); break; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-tt" || arg == "--token_test") { params.token_test = get_next_arg(i, argc, argv, arg, params); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } return true; } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: random)\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " load prompt from a file\n"); fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n"); fprintf(stderr, " test tokenization\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp); fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n); fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty); fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx); fprintf(stderr, " --ignore-eos ignore EOS token during generation\n"); fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, "\n"); } std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; case 1: return "Once upon a time"; case 2: return "When"; case 3: return "The"; case 4: return "After"; case 5: return "If"; case 6: return "import"; case 7: return "He"; case 8: return "She"; case 9: return "They"; default: return "To"; } return "The"; } std::string trim(const std::string & s) { std::regex e("^\\s+|\\s+$"); return std::regex_replace(s, e, ""); } std::string replace(const std::string & s, const std::string & from, const std::string & to) { std::string result = s; size_t pos = 0; while ((pos = result.find(from, pos)) != std::string::npos) { result.replace(pos, from.length(), to); pos += to.length(); } return result; } void gpt_vocab::add_special_token(const std::string & token) { special_tokens.push_back(token); } std::map json_parse(const std::string & fname) { std::map result; // read file into string std::string json; { std::ifstream ifs(fname); if (!ifs) { fprintf(stderr, "Failed to open %s\n", fname.c_str()); exit(1); } json = std::string((std::istreambuf_iterator(ifs)), (std::istreambuf_iterator())); } if (json[0] != '{') { return result; } // parse json { bool has_key = false; bool in_token = false; std::string str_key = ""; std::string str_val = ""; int n = json.size(); for (int i = 1; i < n; ++i) { if (!in_token) { if (json[i] == ' ') continue; if (json[i] == '"') { in_token = true; continue; } } else { if (json[i] == '\\' && i+1 < n) { if (has_key == false) { str_key += json[i]; } else { str_val += json[i]; } ++i; } else if (json[i] == '"') { if (has_key == false) { has_key = true; ++i; while (json[i] == ' ') ++i; ++i; // : while (json[i] == ' ') ++i; if (json[i] != '\"') { while (json[i] != ',' && json[i] != '}') { str_val += json[i++]; } has_key = false; } else { in_token = true; continue; } } else { has_key = false; } str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> " try { result[str_key] = std::stoi(str_val); } catch (...) { //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str()); } str_key = ""; str_val = ""; in_token = false; continue; } if (has_key == false) { str_key += json[i]; } else { str_val += json[i]; } } } } return result; } std::string convert_to_utf8(const std::wstring & input) { std::wstring_convert> converter; return converter.to_bytes(input); } std::wstring convert_to_wstring(const std::string & input) { std::wstring_convert> converter; return converter.from_bytes(input); } void gpt_split_words(std::string str, std::vector& words) { const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"; const std::regex re(pattern); std::smatch m; while (std::regex_search(str, m, re)) { for (auto x : m) { words.push_back(x); } str = m.suffix(); } } std::vector gpt_tokenize(const gpt_vocab & vocab, const std::string & text) { std::vector words; // first split the text into words { std::string str = text; // Generate the subpattern from the special_tokens vector if it's not empty if (!vocab.special_tokens.empty()) { const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])"); std::string special_tokens_subpattern; for (const auto & token : vocab.special_tokens) { if (!special_tokens_subpattern.empty()) { special_tokens_subpattern += "|"; } special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)"); } std::regex re(special_tokens_subpattern); std::smatch m; // Split the text by special tokens. while (std::regex_search(str, m, re)) { // Split the substrings in-between special tokens into words. gpt_split_words(m.prefix(), words); // Add matched special tokens as words. for (auto x : m) { words.push_back(x); } str = m.suffix(); } // Remaining text without special tokens will be handled below. } gpt_split_words(str, words); } // find the longest token that forms each word in words: std::vector tokens; for (const auto & word : words) { for (int i = 0; i < (int) word.size(); ){ for (int j = word.size() - 1; j >= i; j--){ auto cand = word.substr(i, j-i+1); auto it = vocab.token_to_id.find(cand); if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab tokens.push_back(it->second); i = j + 1; break; } else if (j == i){ // word.substr(i, 1) has no matching fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data()); i++; } } } } return tokens; } std::vector parse_tokens_from_string(const std::string& input, char delimiter) { std::vector output; std::stringstream ss(input); std::string token; while (std::getline(ss, token, delimiter)) { output.push_back(std::stoi(token)); } return output; } std::map> extract_tests_from_file(const std::string & fpath_test){ if (fpath_test.empty()){ fprintf(stderr, "%s : No test file found.\n", __func__); return std::map>(); } std::map> tests; auto fin = std::ifstream(fpath_test, std::ios_base::in); const char * delimeter = " => "; const char del_tok = ','; std::string line; while (std::getline(fin, line)) { size_t delimiterPos = line.find(delimeter); if (delimiterPos != std::string::npos) { std::string text = line.substr(0, delimiterPos); std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter)); tests[text] = parse_tokens_from_string(s_tokens, del_tok); } } return tests; } void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){ std::map> tests = extract_tests_from_file(fpath_test); size_t n_fails = 0; for (const auto & test : tests) { std::vector tokens = gpt_tokenize(vocab, test.first); if (tokens != test.second){ n_fails++; // print out failure cases fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str()); fprintf(stderr, "%s : tokens in hf: ", __func__); for (const auto & t : test.second) { fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t); } fprintf(stderr, "\n"); fprintf(stderr, "%s : tokens in ggml: ", __func__); for (const auto & t : tokens) { fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t); } fprintf(stderr, "\n"); } } fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size()); } bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) { printf("%s: loading vocab from '%s'\n", __func__, fname.c_str()); vocab.token_to_id = ::json_parse(fname); for (const auto & kv : vocab.token_to_id) { vocab.id_to_token[kv.second] = kv.first; } printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size()); // print the vocabulary //for (auto kv : vocab.token_to_id) { // printf("'%s' -> %d\n", kv.first.data(), kv.second); //} return true; } gpt_vocab::id gpt_sample_top_k_top_p( const gpt_vocab & vocab, const float * logits, int top_k, double top_p, double temp, std::mt19937 & rng) { int n_logits = vocab.id_to_token.size(); std::vector> logits_id; logits_id.reserve(n_logits); { const double scale = 1.0/temp; for (int i = 0; i < n_logits; ++i) { logits_id.push_back(std::make_pair(logits[i]*scale, i)); } } // find the top K tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); logits_id.resize(top_k); double maxl = -INFINITY; for (const auto & kv : logits_id) { maxl = std::max(maxl, kv.first); } // compute probs for the top K tokens std::vector probs; probs.reserve(logits_id.size()); double sum = 0.0; for (const auto & kv : logits_id) { double p = exp(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0f) { double cumsum = 0.0f; for (int i = 0; i < top_k; i++) { cumsum += probs[i]; if (cumsum >= top_p) { top_k = i + 1; probs.resize(top_k); logits_id.resize(top_k); break; } } cumsum = 1.0/cumsum; for (int i = 0; i < (int) probs.size(); i++) { probs[i] *= cumsum; } } //printf("\n"); //for (int i = 0; i < (int) probs.size(); i++) { // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); //} //exit(0); std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } gpt_vocab::id gpt_sample_top_k_top_p_repeat( const gpt_vocab & vocab, const float * logits, const int32_t * last_n_tokens_data, size_t last_n_tokens_data_size, int top_k, double top_p, double temp, int repeat_last_n, float repeat_penalty, std::mt19937 & rng) { int n_logits = vocab.id_to_token.size(); const auto * plogits = logits; const auto last_n_tokens = std::vector(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size); if (temp <= 0) { // select the token with the highest logit directly float max_logit = plogits[0]; gpt_vocab::id max_id = 0; for (int i = 1; i < n_logits; ++i) { if (plogits[i] > max_logit) { max_logit = plogits[i]; max_id = i; } } return max_id; } std::vector> logits_id; logits_id.reserve(n_logits); { const float scale = 1.0f/temp; for (int i = 0; i < n_logits; ++i) { // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) { // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if (plogits[i] < 0.0f) { logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); } else { logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); } } else { logits_id.push_back(std::make_pair(plogits[i]*scale, i)); } } } // find the top K tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); logits_id.resize(top_k); double maxl = -INFINITY; for (const auto & kv : logits_id) { maxl = std::max(maxl, kv.first); } // compute probs for the top K tokens std::vector probs; probs.reserve(logits_id.size()); double sum = 0.0; for (const auto & kv : logits_id) { double p = exp(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0f) { double cumsum = 0.0f; for (int i = 0; i < top_k; i++) { cumsum += probs[i]; if (cumsum >= top_p) { top_k = i + 1; probs.resize(top_k); logits_id.resize(top_k); break; } } cumsum = 1.0/cumsum; for (int i = 0; i < (int) probs.size(); i++) { probs[i] *= cumsum; } } // printf("\n"); // for (int i = 0; i < (int) probs.size(); i++) { // for (int i = 0; i < 10; i++) { // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); // } std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } bool is_wav_buffer(const std::string buf) { // RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format // WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html if (buf.size() < 12 || buf.substr(0, 4) != "RIFF" || buf.substr(8, 4) != "WAVE") { return false; } uint32_t chunk_size = *reinterpret_cast(buf.data() + 4); if (chunk_size + 8 != buf.size()) { return false; } return true; } bool read_wav(const std::string & fname, std::vector& pcmf32, std::vector>& pcmf32s, bool stereo) { drwav wav; std::vector wav_data; // used for pipe input from stdin if (fname == "-") { { #ifdef _WIN32 _setmode(_fileno(stdin), _O_BINARY); #endif uint8_t buf[1024]; while (true) { const size_t n = fread(buf, 1, sizeof(buf), stdin); if (n == 0) { break; } wav_data.insert(wav_data.end(), buf, buf + n); } } if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) { fprintf(stderr, "error: failed to open WAV file from stdin\n"); return false; } fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size()); } else if (is_wav_buffer(fname)) { if (drwav_init_memory(&wav, fname.c_str(), fname.size(), nullptr) == false) { fprintf(stderr, "error: failed to open WAV file from fname buffer\n"); return false; } } else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) { fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str()); return false; } if (wav.channels != 1 && wav.channels != 2) { fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str()); drwav_uninit(&wav); return false; } if (stereo && wav.channels != 2) { fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str()); drwav_uninit(&wav); return false; } if (wav.sampleRate != COMMON_SAMPLE_RATE) { fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000); drwav_uninit(&wav); return false; } if (wav.bitsPerSample != 16) { fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str()); drwav_uninit(&wav); return false; } const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8); std::vector pcm16; pcm16.resize(n*wav.channels); drwav_read_pcm_frames_s16(&wav, n, pcm16.data()); drwav_uninit(&wav); // convert to mono, float pcmf32.resize(n); if (wav.channels == 1) { for (uint64_t i = 0; i < n; i++) { pcmf32[i] = float(pcm16[i])/32768.0f; } } else { for (uint64_t i = 0; i < n; i++) { pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f; } } if (stereo) { // convert to stereo, float pcmf32s.resize(2); pcmf32s[0].resize(n); pcmf32s[1].resize(n); for (uint64_t i = 0; i < n; i++) { pcmf32s[0][i] = float(pcm16[2*i])/32768.0f; pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f; } } return true; } void high_pass_filter(std::vector & data, float cutoff, float sample_rate) { const float rc = 1.0f / (2.0f * M_PI * cutoff); const float dt = 1.0f / sample_rate; const float alpha = dt / (rc + dt); float y = data[0]; for (size_t i = 1; i < data.size(); i++) { y = alpha * (y + data[i] - data[i - 1]); data[i] = y; } } bool vad_simple(std::vector & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { const int n_samples = pcmf32.size(); const int n_samples_last = (sample_rate * last_ms) / 1000; if (n_samples_last >= n_samples) { // not enough samples - assume no speech return false; } if (freq_thold > 0.0f) { high_pass_filter(pcmf32, freq_thold, sample_rate); } float energy_all = 0.0f; float energy_last = 0.0f; for (int i = 0; i < n_samples; i++) { energy_all += fabsf(pcmf32[i]); if (i >= n_samples - n_samples_last) { energy_last += fabsf(pcmf32[i]); } } energy_all /= n_samples; energy_last /= n_samples_last; if (verbose) { fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); } if (energy_last > vad_thold*energy_all) { return false; } return true; } float similarity(const std::string & s0, const std::string & s1) { const size_t len0 = s0.size() + 1; const size_t len1 = s1.size() + 1; std::vector col(len1, 0); std::vector prevCol(len1, 0); for (size_t i = 0; i < len1; i++) { prevCol[i] = i; } for (size_t i = 0; i < len0; i++) { col[0] = i; for (size_t j = 1; j < len1; j++) { col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1)); } col.swap(prevCol); } const float dist = prevCol[len1 - 1]; return 1.0f - (dist / std::max(s0.size(), s1.size())); } bool sam_params_parse(int argc, char ** argv, sam_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-i" || arg == "--inp") { params.fname_inp = argv[++i]; } else if (arg == "-o" || arg == "--out") { params.fname_out = argv[++i]; } else if (arg == "-h" || arg == "--help") { sam_print_usage(argc, argv, params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); sam_print_usage(argc, argv, params); exit(0); } } return true; } void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " -i FNAME, --inp FNAME\n"); fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str()); fprintf(stderr, " -o FNAME, --out FNAME\n"); fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str()); fprintf(stderr, "\n"); } // 500 -> 00:05.000 // 6000 -> 01:00.000 std::string to_timestamp(int64_t t, bool comma) { int64_t msec = t * 10; int64_t hr = msec / (1000 * 60 * 60); msec = msec - hr * (1000 * 60 * 60); int64_t min = msec / (1000 * 60); msec = msec - min * (1000 * 60); int64_t sec = msec / 1000; msec = msec - sec * 1000; char buf[32]; snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); return std::string(buf); } int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate) { return std::max(0, std::min((int) n_samples - 1, (int) ((t*whisper_sample_rate)/100))); } bool is_file_exist(const char *fileName) { std::ifstream infile(fileName); return infile.good(); } bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id) { std::ofstream speak_file(path.c_str()); if (speak_file.fail()) { fprintf(stderr, "%s: failed to open speak_file\n", __func__); return false; } else { speak_file.write(text.c_str(), text.size()); speak_file.close(); int ret = system((command + " " + std::to_string(voice_id) + " " + path).c_str()); if (ret != 0) { fprintf(stderr, "%s: failed to speak\n", __func__); return false; } } return true; }