#include "ggml.h" #include "ggml-backend.h" #include "ggml-backend-impl.h" #include "ggml-kompute.h" // These are generated at build time by cmake custom command #include "shaderop_scale.h" #include "shaderop_scale_8.h" #include "shaderop_add.h" #include "shaderop_addrow.h" #include "shaderop_mul.h" #include "shaderop_silu.h" #include "shaderop_relu.h" #include "shaderop_gelu.h" #include "shaderop_softmax.h" #include "shaderop_norm.h" #include "shaderop_rmsnorm.h" #include "shaderop_diagmask.h" #include "shaderop_mul_mat_f16.h" #include "shaderop_mul_mat_q8_0.h" #include "shaderop_mul_mat_q4_0.h" #include "shaderop_mul_mat_q4_1.h" #include "shaderop_mul_mat_q6_k.h" #include "shaderop_mul_mat_mat_f32.h" #include "shaderop_getrows_f16.h" #include "shaderop_getrows_q4_0.h" #include "shaderop_getrows_q4_1.h" #include "shaderop_getrows_q6_k.h" #include "shaderop_rope_f16.h" #include "shaderop_rope_f32.h" #include "shaderop_cpy_f16_f16.h" #include "shaderop_cpy_f16_f32.h" #include "shaderop_cpy_f32_f16.h" #include "shaderop_cpy_f32_f32.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __linux__ #include // for setenv #endif #define QK4_0 32 #define QR4_0 2 #define QK4_1 32 #define QK_NL 16 typedef ggml_fp16_t half; static std::string ggml_kompute_format_name(int device) { return "Kompute" + std::to_string(device); } struct ggml_kompute_context { int device; std::string name; std::shared_ptr pool; ggml_kompute_context(int device) : device(device), name(ggml_kompute_format_name(device)) {} }; // FIXME: It would be good to consolidate the kompute manager and the kompute context into one object // and consolidate the init functions and simplify object lifetime management. As it currently stands, // we *have* to have the kompute manager no matter what for device discovery, but the kompute context // is only created when a device is set and vulkan is explicitly turned on. static ggml_kompute_context *s_kompute_context = nullptr; class kompute_manager { kp::Manager *s_mgr = nullptr; public: kp::Manager *operator()() { if (s_mgr && !s_mgr->hasInstance()) { destroy(); } if (!s_mgr) { s_mgr = new kp::Manager; } return s_mgr; } void destroy() { delete s_mgr; s_mgr = nullptr; } }; static kompute_manager komputeManager; struct ggml_vk_memory { void *data = nullptr; size_t size = 0; vk::DeviceMemory *primaryMemory = nullptr; vk::Buffer *primaryBuffer = nullptr; vk::DeviceMemory *stagingMemory = nullptr; vk::Buffer *stagingBuffer = nullptr; }; #ifdef __linux__ __attribute__((constructor)) static void enable_sam() { setenv("RADV_PERFTEST", "sam", false); } #endif static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) { vk::PhysicalDeviceFeatures availableFeatures; physical_device.getFeatures(&availableFeatures); if (!availableFeatures.shaderInt16) return false; vk::PhysicalDeviceVulkan11Features availableFeatures11; vk::PhysicalDeviceVulkan12Features availableFeatures12; availableFeatures11.pNext = &availableFeatures12; availableFeatures12.pNext = nullptr; vk::PhysicalDeviceFeatures2 features2; features2.pNext = &availableFeatures11; physical_device.getFeatures2(&features2); if (!availableFeatures11.uniformAndStorageBuffer16BitAccess || !availableFeatures11.storageBuffer16BitAccess) { return false; } if (!availableFeatures12.storageBuffer8BitAccess || !availableFeatures12.uniformAndStorageBuffer8BitAccess || !availableFeatures12.shaderFloat16 || !availableFeatures12.shaderInt8) { return false; } return true; } static const char * ggml_vk_getVendorName(uint32_t vendorID) { switch (vendorID) { case 0x10DE: return "nvidia"; case 0x1002: return "amd"; case 0x8086: return "intel"; default: return "unknown"; } } static std::vector ggml_vk_available_devices_internal(size_t memoryRequired) { std::vector results; if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance()) return results; std::vector physical_devices; try { physical_devices = komputeManager()->listDevices(); } catch (vk::SystemError & err) { std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n"; return results; } uint32_t deviceCount = physical_devices.size(); if (deviceCount == 0) return results; std::unordered_map count_by_name; for (uint32_t i = 0; i < deviceCount; i++) { const auto & physical_device = physical_devices[i]; VkPhysicalDeviceProperties dev_props = physical_device.getProperties(); VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties(); const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion); const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion); if (major < 1 || minor < 2) continue; if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device)) continue; size_t heapSize = 0; for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) { VkMemoryHeap heap = memoryProperties.memoryHeaps[j]; if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) { heapSize = heap.size; break; } } if (heapSize < memoryRequired) continue; auto ext_props = physical_device.enumerateDeviceExtensionProperties(); bool has_maintenance4 = false; // Check if maintenance4 is supported for (const auto & properties : ext_props) { if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) { has_maintenance4 = true; } } vk::PhysicalDeviceSubgroupProperties subgroup_props; vk::PhysicalDeviceProperties2 dev_props2; vk::PhysicalDeviceMaintenance3Properties dev_props3; vk::PhysicalDeviceMaintenance4Properties dev_props4; dev_props2.pNext = &dev_props3; dev_props3.pNext = &subgroup_props; if (has_maintenance4) { subgroup_props.pNext = &dev_props4; } physical_device.getProperties2(&dev_props2); if (subgroup_props.subgroupSize < 32) continue; ggml_vk_device d; d.index = i; d.type = dev_props.deviceType; d.heapSize = heapSize; d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID)); d.subgroupSize = subgroup_props.subgroupSize; d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment; if (has_maintenance4) { d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize); } else { d.maxAlloc = dev_props3.maxMemoryAllocationSize; } std::string name(dev_props.deviceName); size_t n_idx = ++count_by_name[name]; if (n_idx > 1) { name += " (" + std::to_string(n_idx) + ")"; } d.name = strdup(name.c_str()); results.push_back(d); } std::stable_sort(results.begin(), results.end(), [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool { if (lhs.type != rhs.type) { if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true; if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false; if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true; if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false; } return lhs.heapSize < rhs.heapSize; } ); return results; } // public API returns a C-style array ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) { auto devices = ggml_vk_available_devices_internal(memoryRequired); *count = devices.size(); if (devices.empty()) { return nullptr; } size_t nbytes = sizeof (ggml_vk_device) * (devices.size()); auto * arr = static_cast(malloc(nbytes)); memcpy(arr, devices.data(), nbytes); return arr; } static void ggml_vk_filterByVendor(std::vector& devices, const std::string& targetVendor) { devices.erase( std::remove_if(devices.begin(), devices.end(), [&targetVendor](const ggml_vk_device& device) { return device.vendor != targetVendor; }), devices.end() ); } static void ggml_vk_filterByName(std::vector& devices, const std::string& targetName) { devices.erase( std::remove_if(devices.begin(), devices.end(), [&targetName](const ggml_vk_device& device) { return device.name != targetName; }), devices.end() ); } static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) { if (name.empty()) return false; auto devices = ggml_vk_available_devices_internal(memoryRequired); if (name == "amd" || name == "nvidia" || name == "intel") { ggml_vk_filterByVendor(devices, name); } else if (name != "gpu") { ggml_vk_filterByName(devices, name); } if (devices.empty()) return false; *device = devices.front(); return true; } bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) { return ggml_vk_get_device(device, memoryRequired, std::string(name)); } bool ggml_vk_has_vulkan() { return komputeManager()->hasVulkan(); } bool ggml_vk_has_device() { return komputeManager()->hasDevice(); } ggml_vk_device ggml_vk_current_device() { if (!komputeManager()->hasDevice()) return ggml_vk_device(); auto devices = ggml_vk_available_devices_internal(0); ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data()); GGML_ASSERT(!devices.empty()); return devices.front(); } static void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) { std::vector descriptorPoolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eStorageBuffer, 3 * size // Descriptor count is number of possible tensors to pass into an algorithm ) }; vk::DescriptorPoolCreateInfo descriptorPoolInfo( vk::DescriptorPoolCreateFlags(), size, // Max sets static_cast(descriptorPoolSizes.size()), descriptorPoolSizes.data()); ctx->pool = std::make_shared(); vk::Result r = komputeManager()->device()->createDescriptorPool( &descriptorPoolInfo, nullptr, ctx->pool.get()); if (r != vk::Result::eSuccess) std::cerr << "Error allocating descriptor pool" << vk::to_string(r); } static void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) { if (ctx->pool) { komputeManager()->device()->destroy( *ctx->pool, (vk::Optional)nullptr); ctx->pool = nullptr; } } static vk::Buffer *ggml_vk_allocate_buffer(size_t size) { vk::BufferCreateInfo bufferCreateInfo; bufferCreateInfo.size = size; bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst; bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive; vk::Buffer *vkBuffer = new vk::Buffer; vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer); if (r != vk::Result::eSuccess) std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl; return vkBuffer; } static vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) { uint32_t memoryTypeIndex = -1; bool memoryTypeIndexFound = false; vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties(); for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i]; const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex]; if (memoryHeap.size < size) { continue; } if (requirements.memoryTypeBits & (1 << i)) { if (((memoryProperties.memoryTypes[i]).propertyFlags & flags) == flags) { memoryTypeIndex = i; memoryTypeIndexFound = true; if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) { *isHostVisible = true; } break; } } } if (!memoryTypeIndexFound) { throw std::runtime_error( "Memory type index for buffer creation not found"); } vk::MemoryAllocateInfo allocInfo; allocInfo.allocationSize = size; allocInfo.memoryTypeIndex = memoryTypeIndex; vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory; vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory); if (r != vk::Result::eSuccess) { std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl; throw std::runtime_error("Error allocating vulkan memory."); } return vkDeviceMemory; } static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) { size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer); // If offset is already aligned, return it directly if (offset % minStorageBufferOffsetAlignment == 0) { return offset; } // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment; } static ggml_vk_memory ggml_vk_allocate(size_t size) { ggml_vk_memory memory; bool isHostVisible = false; { memory.primaryBuffer = ggml_vk_allocate_buffer(size); vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer); vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal; memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0); if (isHostVisible) { vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data); if (r != vk::Result::eSuccess) std::cerr << "Error mapping memory" << vk::to_string(r); } } if (!isHostVisible) { memory.stagingBuffer = ggml_vk_allocate_buffer(size); vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer); vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached; memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible); komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0); vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data); if (r != vk::Result::eSuccess) std::cerr << "Error mapping memory" << vk::to_string(r); } memory.size = size; return memory; } static void ggml_vk_free_memory(ggml_vk_memory &memory) { komputeManager()->device()->destroy( *memory.primaryBuffer, (vk::Optional)nullptr); if (memory.stagingBuffer) { komputeManager()->device()->destroy( *memory.stagingBuffer, (vk::Optional)nullptr); } komputeManager()->device()->freeMemory( *memory.primaryMemory, (vk::Optional)nullptr); if (memory.stagingMemory) { komputeManager()->device()->freeMemory( *memory.stagingMemory, (vk::Optional)nullptr); } } static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft); static ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) { ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; // compatibility with ggml-backend GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name); ggml_vk_memory * buf_ctx = static_cast(buffer->context); const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data); GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size)); offset = uint64_t(ioffs); return buf_ctx; } static const std::shared_ptr ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) { uint64_t originalOffset = 0; auto * res = ggml_vk_find_tensor(t, originalOffset); if (!res) { static std::shared_ptr nullTensor = nullptr; return nullTensor; } // Create a tensor whose memory will be composed of our buffers at the correct offset const size_t nelements = ggml_nelements(t); size_t nbytes = ggml_nbytes(t); size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset); if (alignedOffset) { *alignedOffset = originalOffset - vulkanOffset; nbytes += *alignedOffset; } return komputeManager()->tensor( t->data, nelements, nbytes, kp::Tensor::TensorDataTypes::eFloat, res->primaryMemory, res->primaryBuffer, res->stagingMemory, res->stagingBuffer, vulkanOffset); } static std::vector getSpirvShader(const unsigned char* rawData, size_t size) { if (size % sizeof(uint32_t) != 0) { throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)"); } const uint32_t* data_ptr = reinterpret_cast(rawData); size_t count = size / sizeof(uint32_t); return std::vector(data_ptr, data_ptr + count); } inline static uint32_t safe_divide(uint32_t a, uint32_t b) { if (b <= 1) { return a; } if ((a % b) != 0) { fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); GGML_ASSERT(!"safe_divide result would've had remainder"); } return a / b; } static void ggml_vk_add( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, int32_t ne0, int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 ) { const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv, kp::shader_data::op_add_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00; int32_t nb00, nb01, nb02, nb03; int32_t ne10, ne11, ne12, ne13; int32_t nb10, nb11, nb12, nb13; int32_t ne0; int32_t nb0, nb1, nb2, nb3; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, nb0, nb1, nb2, nb3 }; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_addrow(kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, uint32_t size, uint32_t row = 0) { const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv, kp::shader_data::op_addrow_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; uint32_t row; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), row }; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_mul( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03, int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13, int32_t ne0, int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3 ) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv, kp::shader_data::op_mul_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00; int32_t nb00, nb01, nb02, nb03; int32_t ne10, ne11, ne12, ne13; int32_t nb10, nb11, nb12, nb13; int32_t ne0; int32_t nb0, nb1, nb2, nb3; } const pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, nb0, nb1, nb2, nb3 }; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_scale(kp::Sequence& seq, const std::shared_ptr& in, const std::shared_ptr& out, uint32_t inOff, uint32_t outOff, uint32_t size, float scale) { const static auto spirv_1 = getSpirvShader( kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len ); const static auto spirv_8 = getSpirvShader( kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len ); struct PushConstants { uint32_t inOff, outOff; float scale; } const pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), scale }; const auto * spirv = &spirv_1; std::string name(__func__); if (size % 8 == 0) { size /= 8; name += "_8"; spirv = &spirv_8; } std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({in, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_xxlu( const std::vector& spirv, const char * suffix, kp::Sequence& seq, const std::shared_ptr& in, const std::shared_ptr& out, uint32_t inOff, uint32_t outOff, uint32_t size ) { struct PushConstants { uint32_t inOff, outOff; } const pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), }; auto name = std::string(__func__) + "_" + suffix; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({in, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } template static void ggml_vk_silu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv, kp::shader_data::op_silu_comp_spv_len); ggml_vk_xxlu(spirv, "silu", std::forward(args)...); } template static void ggml_vk_relu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv, kp::shader_data::op_relu_comp_spv_len); ggml_vk_xxlu(spirv, "relu", std::forward(args)...); } template static void ggml_vk_gelu(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv, kp::shader_data::op_gelu_comp_spv_len); ggml_vk_xxlu(spirv, "gelu", std::forward(args)...); } static void ggml_vk_soft_max( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03, float scale ) { const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv, kp::shader_data::op_softmax_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne01, ne02; float scale; int32_t mask; } pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne01, ne02, scale, bool(inB) }; auto & inB_ = inB ? inB : inA; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device const uint32_t local_x = 32; s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB_, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_norm_( const std::vector& spirv, const char * suffix, kp::Sequence& seq, const std::shared_ptr& in, const std::shared_ptr& out, uint32_t inOff, uint32_t outOff, int32_t ne00, int32_t nb01, int32_t nrows, float epsilon ) { GGML_ASSERT(nb01%sizeof(float) == 0); GGML_ASSERT(ne00%sizeof(float) == 0); struct PushConstants { uint32_t inOff, outOff; uint32_t ne00, nb01; float eps; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), (uint32_t)ne00, (uint32_t)nb01, epsilon }; auto name = std::string(__func__) + "_" + suffix; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({in, out}); s_algo->setWorkgroup({(uint32_t)nrows}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } template static void ggml_vk_norm(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv, kp::shader_data::op_norm_comp_spv_len); ggml_vk_norm_(spirv, "norm", std::forward(args)...); } template static void ggml_vk_rms_norm(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv, kp::shader_data::op_rmsnorm_comp_spv_len); ggml_vk_norm_(spirv, "rms", std::forward(args)...); } static void ggml_vk_diag_mask_inf(kp::Sequence& seq, const std::shared_ptr& in, const std::shared_ptr& out, uint32_t inOff, uint32_t outOff, uint32_t n_past, int32_t ne00, int32_t ne01, int32_t ne02) { const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv, kp::shader_data::op_diagmask_comp_spv_len); struct PushConstants { uint32_t inOff, outOff; uint32_t n_past; int32_t ne00, ne01; } pushConsts { safe_divide(inOff, 4), safe_divide(outOff, 4), n_past, ne00, ne01 }; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_mul_mat_f16( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, uint32_t nb00, uint32_t nb01, uint32_t nb02, int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, uint32_t nb10, uint32_t nb11, uint32_t nb12, int32_t ne0, int32_t ne1, uint32_t r2, uint32_t r3 ) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv, kp::shader_data::op_mul_mat_f16_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne01, ne02; uint32_t nb00, nb01, nb02; int32_t ne10, ne11, ne12; uint32_t nb10, nb11, nb12; int32_t ne0, ne1; uint32_t r2, r3; } pushConsts { safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3 }; const unsigned ny = unsigned((ne11 + 4 - 1)/4); std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, uint32_t nb01, uint32_t nb02, int32_t ne11, int32_t ne12, uint32_t nb11, uint32_t nb12, uint32_t nb1, uint32_t nb2) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv, kp::shader_data::op_mul_mat_mat_f32_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne01, ne02, ne11, ne12; uint32_t nb01, nb02; uint32_t nb11, nb12; uint32_t nb1, nb2; } pushConsts { safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne01, ne02, ne11, ne12, nb01, nb02, nb11, nb12, nb1, nb2 }; const uint32_t local_x = ggml_vk_current_device().subgroupSize; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne11), unsigned(std::max(ne12, ne02)) }, {local_x}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne11), unsigned(std::max(ne12, ne02)), }); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_mul_mat_impl( const std::vector& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13, int32_t ne0, int32_t ne1, uint32_t r2, uint32_t r3 ) { struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne01, ne02; int32_t ne10, ne12; int32_t ne0, ne1; uint32_t r2, r3; } pushConsts { safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3 }; auto name = std::string(__func__) + "_" + suffix; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } template static void ggml_vk_mul_mat_q4_0(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv, kp::shader_data::op_mul_mat_q4_0_comp_spv_len); ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward(args)...); } template static void ggml_vk_mul_mat_q4_1(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv, kp::shader_data::op_mul_mat_q4_1_comp_spv_len); ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward(args)...); } template static void ggml_vk_mul_mat_q8_0(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv, kp::shader_data::op_mul_mat_q8_0_comp_spv_len); ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward(args)...); } static void ggml_vk_mul_mat_q6_k( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1, int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02 ) { const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv, kp::shader_data::op_mul_mat_q6_k_comp_spv_len); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, ne10, ne0, ne1, ne01, gqa; } pushConsts { inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, ne10, ne0, ne1, ne01, ne12/ne02 }; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(__func__)) { const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2; s_algo = komputeManager()->algorithm(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(__func__); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_get_rows( const std::vector& spirv, const char * suffix, unsigned element_size, unsigned qk, kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, int32_t ne00, int32_t nb01, int32_t nb1, uint32_t size ) { GGML_ASSERT(nb01%element_size == 0); GGML_ASSERT(nb1%sizeof(float) == 0); if (qk) GGML_ASSERT(ne00%qk == 0); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t ne00, nb01, nb1; } pushConsts { safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4), ne00, nb01, nb1 }; auto name = std::string(__func__) + "_" + suffix; std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts}); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({size}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } template static void ggml_vk_get_rows_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv, kp::shader_data::op_getrows_f16_comp_spv_len); ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward(args)...); } template static void ggml_vk_get_rows_q4_0(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv, kp::shader_data::op_getrows_q4_0_comp_spv_len); ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward(args)...); } template static void ggml_vk_get_rows_q4_1(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv, kp::shader_data::op_getrows_q4_1_comp_spv_len); ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward(args)...); } template static void ggml_vk_get_rows_q6_k(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv, kp::shader_data::op_getrows_q6_k_comp_spv_len); ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward(args)...); } static void ggml_vk_rope( kp::Sequence& seq, const std::shared_ptr& inA, const std::shared_ptr& inB, const std::shared_ptr& out, uint32_t inAOff, uint32_t inBOff, uint32_t outOff, ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_orig_ctx, float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow, int32_t ne01, int32_t ne02, int32_t ne03, uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, int32_t ne0, uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 ) { GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32); static const auto spirv_f16 = getSpirvShader( kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len ); static const auto spirv_f32 = getSpirvShader( kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len ); int type_size = src0t == GGML_TYPE_F16 ? 2 : 4; GGML_ASSERT(nb03 % type_size == 0); GGML_ASSERT(nb02 % type_size == 0); GGML_ASSERT(nb01 % type_size == 0); GGML_ASSERT(nb00 % type_size == 0); GGML_ASSERT(nb3 % type_size == 0); GGML_ASSERT(nb2 % type_size == 0); GGML_ASSERT(nb1 % type_size == 0); GGML_ASSERT(nb0 % type_size == 0); struct PushConstants { uint32_t inAOff, inBOff, outOff; int32_t n_dims, mode, n_orig_ctx; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; uint32_t nb00, nb01, nb02, nb03; int32_t ne0; uint32_t nb0, nb1, nb2, nb3; } pushConsts { safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size), n_dims, mode, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 }; auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32"); std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) { s_algo = komputeManager()->algorithm( name, s_kompute_context->pool.get(), {inA, inB, out}, src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts} ); } else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({inA, inB, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } static void ggml_vk_cpy( const std::vector& spirv, uint32_t in_element_size, uint32_t out_element_size, kp::Sequence& seq, const std::shared_ptr& in, const std::shared_ptr& out, uint32_t inOff, uint32_t outOff, int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03, uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03, int32_t ne0, int32_t ne1, int32_t ne2, uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3 ) { struct PushConstants { uint32_t inOff, outOff; int32_t ne00, ne01, ne02; uint32_t nb00, nb01, nb02, nb03; int32_t ne0, ne1, ne2; uint32_t nb0, nb1, nb2, nb3; } pushConsts { safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size), ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3 }; std::string name = std::string(__func__) + "_i_" + std::to_string(in_element_size) + "_o_" + std::to_string(out_element_size); std::shared_ptr s_algo = nullptr; if (!komputeManager()->hasAlgorithm(name)) s_algo = komputeManager()->algorithm(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}); else { s_algo = komputeManager()->getAlgorithm(name); s_algo->setTensors({in, out}); s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)}); s_algo->setPushConstants({pushConsts}); s_algo->updateDescriptors(s_kompute_context->pool.get()); } seq.record(s_algo); } template static void ggml_vk_cpy_f32_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv, kp::shader_data::op_cpy_f32_f16_comp_spv_len); ggml_vk_cpy(spirv, 4, 2, std::forward(args)...); } template static void ggml_vk_cpy_f32_f32(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv, kp::shader_data::op_cpy_f32_f32_comp_spv_len); ggml_vk_cpy(spirv, 4, 4, std::forward(args)...); } template static void ggml_vk_cpy_f16_f16(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv, kp::shader_data::op_cpy_f16_f16_comp_spv_len); ggml_vk_cpy(spirv, 2, 2, std::forward(args)...); } template static void ggml_vk_cpy_f16_f32(Args&&... args) { const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv, kp::shader_data::op_cpy_f16_f32_comp_spv_len); ggml_vk_cpy(spirv, 2, 4, std::forward(args)...); } static bool ggml_vk_supports_op(const struct ggml_tensor * op) { switch (op->type) { case GGML_TYPE_F16: case GGML_TYPE_F32: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: break; default: return false; } switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_SILU: return true; default: ; } break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: case GGML_OP_ADD: case GGML_OP_MUL: case GGML_OP_SCALE: case GGML_OP_SOFT_MAX: case GGML_OP_RMS_NORM: case GGML_OP_NORM: case GGML_OP_ROPE: return true; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: switch (op->src[0]->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: break; default: return false; } switch (op->type) { case GGML_TYPE_F32: case GGML_TYPE_F16: break; default: return false; } return true; case GGML_OP_DIAG_MASK_INF: return op->ne[3] == 1; case GGML_OP_GET_ROWS: switch (op->src[0]->type) { case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q6_K: return op->ne[2] == 1 && op->ne[3] == 1; default: ; } return false; case GGML_OP_MUL_MAT: if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1])) return false; switch (op->src[0]->type) { case GGML_TYPE_F32: case GGML_TYPE_Q6_K: return op->ne[3] == 1; case GGML_TYPE_F16: case GGML_TYPE_Q8_0: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: return true; default: ; } default: ; } return false; } static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) { const int n_seq = 8; // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting // it to the size of the graph, but I think it can be made smaller? ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes); std::vector> sequences(n_seq); for (auto& sequence : sequences) { sequence = komputeManager()->sequence(); } for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) { const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq; auto& seq = *sequences[seq_idx]; const int node_start = (seq_idx + 0) * n_nodes_per_seq; const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes); bool any_commands_recorded = false; for (int i = node_start; i < node_end; ++i) { struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2); struct ggml_tensor * dst = gf->nodes[i]; GGML_ASSERT(dst->data != nullptr); if (ggml_is_empty(dst)) { continue; } switch (dst->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: continue; // noop -> next node default: break; } any_commands_recorded = true; if (!ggml_vk_supports_op(dst)) { fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); GGML_ASSERT(!"unsupported op"); } const int32_t ne00 = src0 ? src0->ne[0] : 0; const int32_t ne01 = src0 ? src0->ne[1] : 0; const int32_t ne02 = src0 ? src0->ne[2] : 0; const int32_t ne03 = src0 ? src0->ne[3] : 0; const uint32_t nb00 = src0 ? src0->nb[0] : 0; const uint32_t nb01 = src0 ? src0->nb[1] : 0; const uint32_t nb02 = src0 ? src0->nb[2] : 0; const uint32_t nb03 = src0 ? src0->nb[3] : 0; const int32_t ne10 = src1 ? src1->ne[0] : 0; const int32_t ne11 = src1 ? src1->ne[1] : 0; const int32_t ne12 = src1 ? src1->ne[2] : 0; const int32_t ne13 = src1 ? src1->ne[3] : 0; const uint32_t nb10 = src1 ? src1->nb[0] : 0; const uint32_t nb11 = src1 ? src1->nb[1] : 0; const uint32_t nb12 = src1 ? src1->nb[2] : 0; const uint32_t nb13 = src1 ? src1->nb[3] : 0; const int32_t ne0 = dst ? dst->ne[0] : 0; const int32_t ne1 = dst ? dst->ne[1] : 0; const int32_t ne2 = dst ? dst->ne[2] : 0; // const int32_t ne3 = dst ? dst->ne[3] : 0; const uint32_t nb0 = dst ? dst->nb[0] : 0; const uint32_t nb1 = dst ? dst->nb[1] : 0; const uint32_t nb2 = dst ? dst->nb[2] : 0; const uint32_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; const static std::shared_ptr nullTensor = nullptr; uint32_t off_src0 = 0; uint32_t off_src1 = 0; uint32_t off_dst = 0; const std::shared_ptr& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor; const std::shared_ptr& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor; const std::shared_ptr& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor; switch (dst->op) { case GGML_OP_ADD: { if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { // src1 is a row ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00); } else { ggml_vk_add( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, nb0, nb1, nb2, nb3 ); } } break; case GGML_OP_MUL: { ggml_vk_mul( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13, ne0, nb0, nb1, nb2, nb3 ); } break; case GGML_OP_SCALE: { float scale; memcpy(&scale, dst->op_params, sizeof(float)); ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale); } break; case GGML_OP_UNARY: { int64_t n = ggml_nelements(dst); GGML_ASSERT(n % 4 == 0); switch (ggml_get_unary_op(gf->nodes[i])) { case GGML_UNARY_OP_SILU: { ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4); } break; case GGML_UNARY_OP_RELU: { ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4); } break; case GGML_UNARY_OP_GELU: { GGML_ASSERT(n % 8 == 0); ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8); } break; default: { fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } } break; case GGML_OP_SOFT_MAX: { float scale; float max_bias; memcpy(&scale, (float *)dst->op_params + 0, sizeof(float)); memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float)); #pragma message("TODO: add ggml_vk_soft_max() F16 src1 support") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021") GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32); #pragma message("TODO: add ALiBi support") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") GGML_ASSERT(max_bias == 0.0f); ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale); } break; case GGML_OP_DIAG_MASK_INF: { const int n_past = ((int32_t *)(dst->op_params))[0]; ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02); } break; case GGML_OP_NORM: { float eps; memcpy(&eps, dst->op_params, sizeof(float)); ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); } break; case GGML_OP_RMS_NORM: { GGML_ASSERT(ne00 % 4 == 0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps); } break; case GGML_OP_MUL_MAT: { GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ggml_is_contiguous_2(src0)); GGML_ASSERT(ggml_is_contiguous_2(src1)); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); const uint32_t r2 = ne12/ne02; const uint32_t r3 = ne13/ne03; if (src1t != GGML_TYPE_F32) { fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); goto not_implemented; } if (ggml_is_transposed(src0) || ggml_is_transposed(src1)) { fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); goto not_implemented; } switch (src0t) { case GGML_TYPE_F32: ggml_vk_mul_mat_mat_f32( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2 ); break; case GGML_TYPE_F16: ggml_vk_mul_mat_f16( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12, ne0, ne1, r2, r3 ); break; case GGML_TYPE_Q8_0: ggml_vk_mul_mat_q8_0( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 ); break; case GGML_TYPE_Q4_0: ggml_vk_mul_mat_q4_0( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 ); break; case GGML_TYPE_Q4_1: ggml_vk_mul_mat_q4_1( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3 ); break; case GGML_TYPE_Q6_K: ggml_vk_mul_mat_q6_k( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02 ); break; default: { fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t); goto not_implemented; } } } break; case GGML_OP_GET_ROWS: { if (src0t == GGML_TYPE_F16) { ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else if (src0t == GGML_TYPE_Q4_0) { ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else if (src0t == GGML_TYPE_Q4_1) { ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else if (src0t == GGML_TYPE_Q6_K) { ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1)); } else { fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t); goto not_implemented; } } break; case GGML_OP_ROPE: { #pragma message("TODO: implement phi3 frequency factors support") #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225") GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet"); GGML_ASSERT(ne10 == ne02); GGML_ASSERT(src0t == dstt); // const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); ggml_vk_rope( seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3 ); } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { switch (src0t) { case GGML_TYPE_F32: { switch (dstt) { case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; default: goto not_implemented; } } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break; default: goto not_implemented; } break; default: goto not_implemented; } } } break; default: goto not_implemented; } continue; not_implemented: {} fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); //GGML_ASSERT(false); } // Evaluate sequence if (any_commands_recorded) { seq.evalAsync(); } } // Wait for all sequences to finish for (auto& sequence : sequences) { if (sequence->isRunning()) sequence->evalAwait(); } ggml_vk_free_descriptor_pool(ctx); } template<> kp::Tensor::TensorDataTypes kp::TensorT::dataType() { return TensorDataTypes::eFloat; } template<> kp::Tensor::TensorDataTypes kp::TensorT::dataType() { return TensorDataTypes::eUnsignedInt; } //////////////////////////////////////////////////////////////////////////////// // backend interface struct ggml_backend_kompute_buffer_type_context { int device; int device_ref = 0; uint64_t buffer_alignment; uint64_t max_alloc; std::string name; ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc) : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {} }; static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) { auto * ctx = static_cast(buft->context); if (!ctx->device_ref) { komputeManager()->initializeDevice( ctx->device, {}, { "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage", "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info" } ); } assert(ggml_vk_has_device()); ctx->device_ref++; } static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) { auto * ctx = static_cast(buft->context); assert(ctx->device_ref > 0); ctx->device_ref--; if (!ctx->device_ref) { komputeManager.destroy(); } } static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) { auto * ctx = static_cast(buffer->buft->context); return ctx->name.c_str(); } static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) { auto * memory = (ggml_vk_memory *)buffer->context; if (ggml_vk_has_device()) { ggml_vk_free_memory(*memory); } delete memory; } static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) { return ((ggml_vk_memory *)buffer->context)->data; } static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_UNUSED(buffer); const auto res = ggml_vk_get_tensor(tensor); GGML_ASSERT(res); memcpy((char *)tensor->data + offset, data, size); komputeManager()->sequence()->eval({res}); } static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_UNUSED(buffer); const auto res = ggml_vk_get_tensor(tensor); GGML_ASSERT(res); komputeManager()->sequence()->eval({res}); memcpy(data, (const char *)tensor->data + offset, size); } static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { auto * memory = (ggml_vk_memory *)buffer->context; memset(memory->data, value, buffer->size); if (memory->stagingBuffer) komputeManager()->sequence()->eval(memory->primaryBuffer, memory->stagingBuffer, memory->size); } static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = { /* .get_name = */ ggml_backend_kompute_buffer_get_name, /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer, /* .get_base = */ ggml_backend_kompute_buffer_get_base, /* .init_tensor = */ NULL, /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor, /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor, /* .cpy_tensor = */ NULL, /* .clear = */ ggml_backend_kompute_buffer_clear, /* .reset = */ NULL, }; // default buffer type static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) { auto * ctx = static_cast(buft->context); return ctx->name.c_str(); } static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_kompute_device_ref(buft); auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size)); return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size); } static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { auto * ctx = static_cast(buft->context); return ctx->buffer_alignment; } static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { auto * ctx = static_cast(buft->context); return ctx->max_alloc; } static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { GGML_UNUSED(buft); return ggml_backend_is_kompute(backend); } static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = { /* .get_name = */ ggml_backend_kompute_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend, /* .is_host = */ NULL, }; ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) { static std::vector bufts = []() { std::vector vec; auto devices = ggml_vk_available_devices_internal(0); vec.reserve(devices.size()); for (const auto & dev : devices) { vec.push_back({ /* .iface = */ ggml_backend_kompute_buffer_type_interface, /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc) }); } return vec; }(); auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) { return device == static_cast(t.context)->device; }); return it < bufts.end() ? &*it : nullptr; } // backend static const char * ggml_backend_kompute_name(ggml_backend_t backend) { auto * ctx = static_cast(backend->context); return ctx->name.c_str(); } static void ggml_backend_kompute_free(ggml_backend_t backend) { auto * ctx = static_cast(backend->context); assert(ctx == s_kompute_context); s_kompute_context = nullptr; if (ctx != nullptr) { delete ctx; } delete backend; } static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) { auto * ctx = static_cast(backend->context); return ggml_backend_kompute_buffer_type(ctx->device); } static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { auto * ctx = static_cast(backend->context); ggml_vk_graph_compute(ctx, cgraph); return GGML_STATUS_SUCCESS; } static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { GGML_UNUSED(backend); return ggml_vk_supports_op(op); } static struct ggml_backend_i kompute_backend_i = { /* .get_name = */ ggml_backend_kompute_name, /* .free = */ ggml_backend_kompute_free, /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_kompute_graph_compute, /* .supports_op = */ ggml_backend_kompute_supports_op, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .event_synchronize = */ NULL, }; static ggml_guid_t ggml_backend_kompute_guid() { static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca }; return &guid; } ggml_backend_t ggml_backend_kompute_init(int device) { GGML_ASSERT(s_kompute_context == nullptr); s_kompute_context = new ggml_kompute_context(device); ggml_backend_t kompute_backend = new ggml_backend { /* .guid = */ ggml_backend_kompute_guid(), /* .interface = */ kompute_backend_i, /* .context = */ s_kompute_context, }; return kompute_backend; } bool ggml_backend_is_kompute(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid()); } static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) { GGML_UNUSED(params); return ggml_backend_kompute_init(intptr_t(user_data)); } extern "C" int ggml_backend_kompute_reg_devices(); int ggml_backend_kompute_reg_devices() { auto devices = ggml_vk_available_devices_internal(0); for (const auto & device : devices) { ggml_backend_register( ggml_kompute_format_name(device.index).c_str(), ggml_backend_reg_kompute_init, ggml_backend_kompute_buffer_type(device.index), reinterpret_cast(intptr_t(device.index)) ); } return devices.size(); }