#include "common-ggml.h" #include #include static const std::map GGML_FTYPE_MAP = { {"q4_0", GGML_FTYPE_MOSTLY_Q4_0}, {"q4_1", GGML_FTYPE_MOSTLY_Q4_1}, {"q5_0", GGML_FTYPE_MOSTLY_Q5_0}, {"q5_1", GGML_FTYPE_MOSTLY_Q5_1}, {"q8_0", GGML_FTYPE_MOSTLY_Q8_0}, {"q2_k", GGML_FTYPE_MOSTLY_Q2_K}, {"q3_k", GGML_FTYPE_MOSTLY_Q3_K}, {"q4_k", GGML_FTYPE_MOSTLY_Q4_K}, {"q5_k", GGML_FTYPE_MOSTLY_Q5_K}, {"q6_k", GGML_FTYPE_MOSTLY_Q6_K}, }; void ggml_print_ftypes(FILE * fp) { for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) { fprintf(fp, " type = \"%s\" or %d\n", it->first.c_str(), it->second); } } enum ggml_ftype ggml_parse_ftype(const char * str) { enum ggml_ftype ftype; if (str[0] == 'q') { const auto it = GGML_FTYPE_MAP.find(str); if (it == GGML_FTYPE_MAP.end()) { fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str); return GGML_FTYPE_UNKNOWN; } ftype = it->second; } else { ftype = (enum ggml_ftype) atoi(str); } return ftype; } bool ggml_common_quantize_0( std::ifstream & finp, std::ofstream & fout, const ggml_ftype ftype, const std::vector & to_quant, const std::vector & to_skip) { ggml_type qtype = GGML_TYPE_F32; switch (ftype) { case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break; case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break; case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break; case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break; case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break; case GGML_FTYPE_MOSTLY_Q2_K: qtype = GGML_TYPE_Q2_K; break; case GGML_FTYPE_MOSTLY_Q3_K: qtype = GGML_TYPE_Q3_K; break; case GGML_FTYPE_MOSTLY_Q4_K: qtype = GGML_TYPE_Q4_K; break; case GGML_FTYPE_MOSTLY_Q5_K: qtype = GGML_TYPE_Q5_K; break; case GGML_FTYPE_MOSTLY_Q6_K: qtype = GGML_TYPE_Q6_K; break; case GGML_FTYPE_UNKNOWN: case GGML_FTYPE_ALL_F32: case GGML_FTYPE_MOSTLY_F16: case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: case GGML_FTYPE_MOSTLY_IQ2_XXS: case GGML_FTYPE_MOSTLY_IQ2_XS: case GGML_FTYPE_MOSTLY_IQ3_XXS: case GGML_FTYPE_MOSTLY_IQ1_S: { fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype); return false; } }; if (!ggml_is_quantized(qtype)) { fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype)); return false; } size_t total_size_org = 0; size_t total_size_new = 0; std::vector work; std::vector data_u8; std::vector data_f16; std::vector data_f32; std::vector hist_all(1 << 4, 0); while (true) { int32_t n_dims; int32_t length; int32_t ttype; finp.read(reinterpret_cast(&n_dims), sizeof(n_dims)); finp.read(reinterpret_cast(&length), sizeof(length)); finp.read(reinterpret_cast(&ttype), sizeof(ttype)); if (finp.eof()) { break; } int32_t nelements = 1; int32_t ne[4] = { 1, 1, 1, 1 }; for (int i = 0; i < n_dims; ++i) { finp.read (reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); finp.read (&name[0], length); printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype)); bool quantize = false; // check if we should quantize this tensor for (const auto & s : to_quant) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // check if we should skip this tensor for (const auto & s : to_skip) { if (std::regex_match(name, std::regex(s))) { quantize = false; break; } } // quantize only 2D tensors quantize &= (n_dims == 2); if (quantize) { if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) { fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype)); return false; } if (ttype == GGML_TYPE_F16) { data_f16.resize(nelements); finp.read(reinterpret_cast(data_f16.data()), nelements * sizeof(ggml_fp16_t)); data_f32.resize(nelements); for (int i = 0; i < nelements; ++i) { data_f32[i] = ggml_fp16_to_fp32(data_f16[i]); } } else { data_f32.resize(nelements); finp.read(reinterpret_cast(data_f32.data()), nelements * sizeof(float)); } ttype = qtype; } else { const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t); data_u8.resize(nelements*bpe); finp.read(reinterpret_cast(data_u8.data()), nelements * bpe); } fout.write(reinterpret_cast(&n_dims), sizeof(n_dims)); fout.write(reinterpret_cast(&length), sizeof(length)); fout.write(reinterpret_cast(&ttype), sizeof(ttype)); for (int i = 0; i < n_dims; ++i) { fout.write(reinterpret_cast(&ne[i]), sizeof(ne[i])); } fout.write(&name[0], length); if (quantize) { work.resize(nelements); // for quantization size_t cur_size = 0; std::vector hist_cur(1 << 4, 0); switch ((ggml_type) ttype) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: { cur_size = ggml_quantize_chunk((ggml_type) ttype, data_f32.data(), work.data(), 0, nelements/ne[0], ne[0], hist_cur.data(), nullptr); } break; case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: case GGML_TYPE_Q8_1: case GGML_TYPE_Q8_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ1_S: case GGML_TYPE_COUNT: { fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype)); return false; } } fout.write(reinterpret_cast(work.data()), cur_size); total_size_new += cur_size; printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0); for (int i = 0; i < (int) hist_cur.size(); ++i) { hist_all[i] += hist_cur[i]; } for (int i = 0; i < (int) hist_cur.size(); ++i) { printf("%5.3f ", hist_cur[i] / (float)nelements); } printf("\n"); } else { printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0); fout.write(reinterpret_cast(data_u8.data()), data_u8.size()); total_size_new += data_u8.size(); } total_size_org += nelements * sizeof(float); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype)); { int64_t sum_all = 0; for (int i = 0; i < (int) hist_all.size(); ++i) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (int i = 0; i < (int) hist_all.size(); ++i) { printf("%5.3f ", hist_all[i] / (float)sum_all); } printf("\n"); } return true; }