// Various helper functions and utilities #pragma once #include <string> #include <map> #include <vector> #include <random> #include <thread> #include <ctime> #include <fstream> #define COMMON_SAMPLE_RATE 16000 // // GPT CLI argument parsing // struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_predict = 200; // new tokens to predict int32_t n_parallel = 1; // number of parallel streams int32_t n_batch = 8; // batch size for prompt processing int32_t n_ctx = 2048; // context size (this is the KV cache max size) int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU bool ignore_eos = false; // ignore EOS token when generating text // sampling parameters int32_t top_k = 40; float top_p = 0.9f; float temp = 0.9f; int32_t repeat_last_n = 64; float repeat_penalty = 1.00f; std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path std::string prompt = ""; std::string token_test = ""; bool interactive = false; int32_t interactive_port = -1; }; bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); std::string gpt_random_prompt(std::mt19937 & rng); // // Vocab utils // std::string trim(const std::string & s); std::string replace( const std::string & s, const std::string & from, const std::string & to); struct gpt_vocab { using id = int32_t; using token = std::string; std::map<token, id> token_to_id; std::map<id, token> id_to_token; std::vector<std::string> special_tokens; void add_special_token(const std::string & token); }; // poor-man's JSON parsing std::map<std::string, int32_t> json_parse(const std::string & fname); std::string convert_to_utf8(const std::wstring & input); std::wstring convert_to_wstring(const std::string & input); void gpt_split_words(std::string str, std::vector<std::string>& words); // split text into tokens // // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 // // Regex (Python): // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" // // Regex (C++): // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" // std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text); // test outputs of gpt_tokenize // // - compare with tokens generated by the huggingface tokenizer // - test cases are chosen based on the model's main language (under 'prompt' directory) // - if all sentences are tokenized identically, print 'All tests passed.' // - otherwise, print sentence, huggingface tokens, ggml tokens // void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test); // load the tokens from encoder.json bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); // sample next token given probabilities for each embedding // // - consider only the top K tokens // - from them, consider only the top tokens with cumulative probability > P // // TODO: not sure if this implementation is correct // TODO: temperature is not implemented // gpt_vocab::id gpt_sample_top_k_top_p( const gpt_vocab & vocab, const float * logits, int top_k, double top_p, double temp, std::mt19937 & rng); gpt_vocab::id gpt_sample_top_k_top_p_repeat( const gpt_vocab & vocab, const float * logits, const int32_t * last_n_tokens_data, size_t last_n_tokens_data_size, int top_k, double top_p, double temp, int repeat_last_n, float repeat_penalty, std::mt19937 & rng); // // Audio utils // // Read WAV audio file and store the PCM data into pcmf32 // The sample rate of the audio must be equal to COMMON_SAMPLE_RATE // If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM bool read_wav( const std::string & fname, std::vector<float> & pcmf32, std::vector<std::vector<float>> & pcmf32s, bool stereo); // Write PCM data into WAV audio file class wav_writer { private: std::ofstream file; uint32_t dataSize = 0; std::string wav_filename; bool write_header(const uint32_t sample_rate, const uint16_t bits_per_sample, const uint16_t channels) { file.write("RIFF", 4); file.write("\0\0\0\0", 4); // Placeholder for file size file.write("WAVE", 4); file.write("fmt ", 4); const uint32_t sub_chunk_size = 16; const uint16_t audio_format = 1; // PCM format const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8; const uint16_t block_align = channels * bits_per_sample / 8; file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4); file.write(reinterpret_cast<const char *>(&audio_format), 2); file.write(reinterpret_cast<const char *>(&channels), 2); file.write(reinterpret_cast<const char *>(&sample_rate), 4); file.write(reinterpret_cast<const char *>(&byte_rate), 4); file.write(reinterpret_cast<const char *>(&block_align), 2); file.write(reinterpret_cast<const char *>(&bits_per_sample), 2); file.write("data", 4); file.write("\0\0\0\0", 4); // Placeholder for data size return true; } // It is assumed that PCM data is normalized to a range from -1 to 1 bool write_audio(const float * data, size_t length) { for (size_t i = 0; i < length; ++i) { const int16_t intSample = data[i] * 32767; file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t)); dataSize += sizeof(int16_t); } if (file.is_open()) { file.seekp(4, std::ios::beg); uint32_t fileSize = 36 + dataSize; file.write(reinterpret_cast<char *>(&fileSize), 4); file.seekp(40, std::ios::beg); file.write(reinterpret_cast<char *>(&dataSize), 4); file.seekp(0, std::ios::end); } return true; } bool open_wav(const std::string & filename) { if (filename != wav_filename) { if (file.is_open()) { file.close(); } } if (!file.is_open()) { file.open(filename, std::ios::binary); wav_filename = filename; dataSize = 0; } return file.is_open(); } public: bool open(const std::string & filename, const uint32_t sample_rate, const uint16_t bits_per_sample, const uint16_t channels) { if (open_wav(filename)) { write_header(sample_rate, bits_per_sample, channels); } else { return false; } return true; } bool close() { file.close(); return true; } bool write(const float * data, size_t length) { return write_audio(data, length); } ~wav_writer() { if (file.is_open()) { file.close(); } } }; // Apply a high-pass frequency filter to PCM audio // Suppresses frequencies below cutoff Hz void high_pass_filter( std::vector<float> & data, float cutoff, float sample_rate); // Basic voice activity detection (VAD) using audio energy adaptive threshold bool vad_simple( std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose); // compute similarity between two strings using Levenshtein distance float similarity(const std::string & s0, const std::string & s1); // // SAM argument parsing // struct sam_params { int32_t seed = -1; // RNG seed int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path std::string fname_inp = "img.jpg"; std::string fname_out = "img.out"; }; bool sam_params_parse(int argc, char ** argv, sam_params & params); void sam_print_usage(int argc, char ** argv, const sam_params & params);