# whisper.cpp/tests/librispeech [LibriSpeech](https://www.openslr.org/12) is a standard dataset for training and evaluating automatic speech recognition systems. This directory contains a set of tools to evaluate the recognition performance of whisper.cpp on LibriSpeech corpus. ## Quick Start 1. (Pre-requirement) Compile `whisper-cli` and prepare the Whisper model in `ggml` format. ``` $ # Execute the commands below in the project root dir. $ cmake -B build $ cmake --build build --config Release $ ./models/download-ggml-model.sh tiny ``` Consult [whisper.cpp/README.md](../../README.md) for more details. 2. Download the audio files from LibriSpeech project. ``` $ make get-audio ``` 3. Set up the environment to compute WER score. ``` $ pip install -r requirements.txt ``` For example, if you use `virtualenv`, you can set up it as follows: ``` $ python3 -m venv venv $ . venv/bin/activate $ pip install -r requirements.txt ``` 4. Run the benchmark test. ``` $ make ``` ## How-to guides ### How to change the inferece parameters Create `eval.conf` and override variables. ``` WHISPER_MODEL = large-v3-turbo WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt ``` Check out `eval.mk` for more details.