# whisper.cpp Node.js package for Whisper speech recognition Package: https://www.npmjs.com/package/whisper.cpp ## Details The performance is comparable to when running `whisper.cpp` in the browser via WASM. The API is currently very rudimentary: [bindings/javascript/emscripten.cpp](/bindings/javascript/emscripten.cpp) For sample usage check [tests/test-whisper.js](/tests/test-whisper.js) ## Package building + test ```bash # load emscripten source /path/to/emsdk/emsdk_env.sh # clone repo git clone https://github.com/ggerganov/whisper.cpp cd whisper.cpp # grab base.en model ./models/download-ggml-model.sh base.en # prepare PCM sample for testing ffmpeg -i samples/jfk.wav -f f32le -acodec pcm_f32le samples/jfk.pcmf32 # build mkdir build-em && cd build-em emcmake cmake .. && make -j # run test node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js # publish npm package make publish-npm ``` ## Sample run ```text $ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js whisper_model_load: loading model from 'whisper.bin' whisper_model_load: n_vocab = 51864 whisper_model_load: n_audio_ctx = 1500 whisper_model_load: n_audio_state = 512 whisper_model_load: n_audio_head = 8 whisper_model_load: n_audio_layer = 6 whisper_model_load: n_text_ctx = 448 whisper_model_load: n_text_state = 512 whisper_model_load: n_text_head = 8 whisper_model_load: n_text_layer = 6 whisper_model_load: n_mels = 80 whisper_model_load: f16 = 1 whisper_model_load: type = 2 whisper_model_load: adding 1607 extra tokens whisper_model_load: mem_required = 506.00 MB whisper_model_load: ggml ctx size = 140.60 MB whisper_model_load: memory size = 22.83 MB whisper_model_load: model size = 140.54 MB system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 | operator(): processing 176000 samples, 11.0 sec, 8 threads, 1 processors, lang = en, task = transcribe ... [00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country. whisper_print_timings: load time = 162.37 ms whisper_print_timings: mel time = 183.70 ms whisper_print_timings: sample time = 4.27 ms whisper_print_timings: encode time = 8582.63 ms / 1430.44 ms per layer whisper_print_timings: decode time = 436.16 ms / 72.69 ms per layer whisper_print_timings: total time = 9370.90 ms ```