mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-25 09:31:44 +00:00
Compare commits
1 Commits
grammar-de
...
java-bindi
Author | SHA1 | Date | |
---|---|---|---|
3efe146d27 |
7
.github/workflows/build.yml
vendored
7
.github/workflows/build.yml
vendored
@ -431,12 +431,9 @@ jobs:
|
||||
uses: gradle/gradle-build-action@v2
|
||||
with:
|
||||
arguments: publish
|
||||
build-root-directory: bindings/java
|
||||
env:
|
||||
MAVEN_USERNAME: ${{ secrets.JIRA_USER }}
|
||||
MAVEN_PASSWORD: ${{ secrets.JIRA_PASS }}
|
||||
# MAVEN_USERNAME: ${{ secrets.OSSRH_USERNAME }}
|
||||
# MAVEN_PASSWORD: ${{ secrets.OSSRH_TOKEN }}
|
||||
MAVEN_USERNAME: ${{ secrets.OSSRH_USERNAME }}
|
||||
MAVEN_PASSWORD: ${{ secrets.OSSRH_TOKEN }}
|
||||
|
||||
quantize:
|
||||
runs-on: ubuntu-latest
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -11,7 +11,6 @@ build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-rwdi/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-no-accel/
|
||||
|
46
Makefile
46
Makefile
@ -65,57 +65,57 @@ endif
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CPUINFO_CMD := sysctl machdep.cpu.features
|
||||
else ifeq ($(UNAME_S),Linux)
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter MINGW32_NT% MINGW64_NT%,$(UNAME_S)))
|
||||
CPUINFO_CMD := cat /proc/cpuinfo
|
||||
else ifneq (,$(filter DragonFly FreeBSD,$(UNAME_S)))
|
||||
CPUINFO_CMD := grep Features /var/run/dmesg.boot
|
||||
else ifeq ($(UNAME_S),Haiku)
|
||||
CPUINFO_CMD := sysinfo -cpu
|
||||
endif
|
||||
|
||||
ifdef CPUINFO_CMD
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -iwE 'AVX|AVX1.0')
|
||||
ifneq (,$(AVX_M))
|
||||
AVX_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx ")
|
||||
ifneq (,$(findstring avx,$(AVX_M)))
|
||||
CFLAGS += -mavx
|
||||
CXXFLAGS += -mavx
|
||||
endif
|
||||
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -iw 'AVX2')
|
||||
ifneq (,$(AVX2_M))
|
||||
AVX2_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx2 ")
|
||||
ifneq (,$(findstring avx2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
CXXFLAGS += -mavx2
|
||||
endif
|
||||
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -iw 'FMA')
|
||||
ifneq (,$(FMA_M))
|
||||
FMA_M := $(shell $(CPUINFO_CMD) | grep -m 1 "fma ")
|
||||
ifneq (,$(findstring fma,$(FMA_M)))
|
||||
CFLAGS += -mfma
|
||||
CXXFLAGS += -mfma
|
||||
endif
|
||||
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -iw 'F16C')
|
||||
ifneq (,$(F16C_M))
|
||||
F16C_M := $(shell $(CPUINFO_CMD) | grep -m 1 "f16c ")
|
||||
ifneq (,$(findstring f16c,$(F16C_M)))
|
||||
CFLAGS += -mf16c
|
||||
CXXFLAGS += -mf16c
|
||||
|
||||
AVX1_M := $(shell $(CPUINFO_CMD) | grep -m 1 "avx ")
|
||||
ifneq (,$(findstring avx,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
endif
|
||||
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -iwE 'PNI|SSE3')
|
||||
ifneq (,$(SSE3_M))
|
||||
SSE3_M := $(shell $(CPUINFO_CMD) | grep -m 1 "sse3 ")
|
||||
ifneq (,$(findstring sse3,$(SSE3_M)))
|
||||
CFLAGS += -msse3
|
||||
CXXFLAGS += -msse3
|
||||
endif
|
||||
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -iw 'SSSE3')
|
||||
ifneq (,$(SSSE3_M))
|
||||
SSSE3_M := $(shell $(CPUINFO_CMD) | grep -m 1 "ssse3 ")
|
||||
ifneq (,$(findstring ssse3,$(SSSE3_M)))
|
||||
CFLAGS += -mssse3
|
||||
CXXFLAGS += -mssse3
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
@ -297,8 +297,8 @@ quantize: examples/quantize/quantize.cpp ggml.o $(WHISPER_OBJ) $(SRC_COMMON)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp examples/grammar-parser.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
lsp: examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/lsp/lsp.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o lsp $(CC_SDL) $(LDFLAGS)
|
||||
|
16
README.md
16
README.md
@ -287,8 +287,8 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cmake -B build -DWHISPER_COREML=1
|
||||
cmake --build build -j --config Release
|
||||
cd build
|
||||
cmake -DWHISPER_COREML=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
@ -366,8 +366,8 @@ This can result in significant speedup in encoder performance. Here are the inst
|
||||
|
||||
And then build the project using cmake:
|
||||
```bash
|
||||
cmake -B build -DWHISPER_OPENVINO=1
|
||||
cmake --build build -j --config Release
|
||||
cd build
|
||||
cmake -DWHISPER_OPENVINO=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
@ -418,9 +418,11 @@ make clean
|
||||
WHISPER_CLBLAST=1 make -j
|
||||
|
||||
CMake:
|
||||
cd whisper.cpp
|
||||
cmake -B build -DWHISPER_CLBLAST=ON
|
||||
cmake --build build -j --config Release
|
||||
cd whisper.cpp ; mkdir build ; cd build
|
||||
cmake -DWHISPER_CLBLAST=ON ..
|
||||
make clean
|
||||
make -j
|
||||
cp bin/* ../
|
||||
```
|
||||
|
||||
|
||||
|
@ -1 +1 @@
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:f=>(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f),postMessage:msg=>parentPort.postMessage(msg),performance:global.performance||{now:Date.now}})}var initializedJS=false;function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var module=Module["wasmModule"];Module["wasmModule"]=null;var instance=new WebAssembly.Instance(module,info);return receiveInstance(instance)};self.onunhandledrejection=e=>{throw e.reason||e};function handleMessage(e){try{if(e.data.cmd==="load"){let messageQueue=[];self.onmessage=e=>messageQueue.push(e);self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"});for(let msg of messageQueue){handleMessage(msg)}self.onmessage=handleMessage};Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=(...args)=>{postMessage({cmd:"callHandler",handler:handler,args:args})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["__emscripten_thread_mailbox_await"](e.data.pthread_ptr);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){throw ex}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="checkMailbox"){if(initializedJS){Module["checkMailbox"]()}}else if(e.data.cmd){err(`worker.js received unknown command ${e.data.cmd}`);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}}self.onmessage=handleMessage;
|
||||
"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"\n");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}whisper_factory(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){Module["__embind_initialize_bindings"]();pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};
|
||||
|
File diff suppressed because one or more lines are too long
@ -23,7 +23,6 @@ add_library(${TARGET} STATIC
|
||||
common.cpp
|
||||
common-ggml.h
|
||||
common-ggml.cpp
|
||||
grammar-parser.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
@ -9,7 +9,6 @@
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <sstream>
|
||||
#include <cassert>
|
||||
@ -22,11 +21,6 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
bool file_exists(const std::string & fname) {
|
||||
std::ifstream f(fname.c_str());
|
||||
return f.good();
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
@ -39,10 +33,6 @@ struct whisper_params {
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
float grammar_penalty = 100.0f;
|
||||
|
||||
grammar_parser::parse_state grammar_parsed;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
@ -54,8 +44,6 @@ struct whisper_params {
|
||||
std::string fname_out;
|
||||
std::string commands;
|
||||
std::string prompt;
|
||||
std::string context;
|
||||
std::string grammar;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
@ -85,9 +73,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
|
||||
else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else if (arg == "-ctx" || arg == "--context") { params.context = argv[++i]; }
|
||||
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -121,30 +106,16 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
|
||||
fprintf(stderr, " -p, --prompt [%-7s] the required activation prompt\n", params.prompt.c_str());
|
||||
fprintf(stderr, " -ctx, --context [%-7s] sample text to help the transcription\n", params.context.c_str());
|
||||
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
|
||||
fprintf(stderr, " --grammar-penalty N [%-7.1f] scales down logits of nongrammar tokens\n", params.grammar_penalty);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string transcribe(
|
||||
whisper_context * ctx,
|
||||
const whisper_params & params,
|
||||
const std::vector<float> & pcmf32,
|
||||
const std::string & grammar_rule,
|
||||
float & logprob_min,
|
||||
float & logprob_sum,
|
||||
int & n_tokens,
|
||||
int64_t & t_ms) {
|
||||
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
logprob_min = 0.0f;
|
||||
logprob_sum = 0.0f;
|
||||
n_tokens = 0;
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
//whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH);
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
@ -152,7 +123,6 @@ std::string transcribe(
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.no_timestamps = params.no_timestamps;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
@ -161,28 +131,11 @@ std::string transcribe(
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
wparams.temperature = 0.4f;
|
||||
wparams.temperature_inc = 1.0f;
|
||||
wparams.greedy.best_of = 5;
|
||||
|
||||
wparams.beam_search.beam_size = 5;
|
||||
|
||||
wparams.initial_prompt = params.context.data();
|
||||
|
||||
const auto & grammar_parsed = params.grammar_parsed;
|
||||
auto grammar_rules = grammar_parsed.c_rules();
|
||||
|
||||
if (!params.grammar_parsed.rules.empty() && !grammar_rule.empty()) {
|
||||
wparams.grammar_rules = grammar_rules.data();
|
||||
wparams.n_grammar_rules = grammar_rules.size();
|
||||
wparams.i_start_rule = grammar_parsed.symbol_ids.at(grammar_rule);
|
||||
wparams.grammar_penalty = params.grammar_penalty;
|
||||
}
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
@ -191,17 +144,19 @@ std::string transcribe(
|
||||
|
||||
result += text;
|
||||
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
if(token.plog > 0.0f) exit(0);
|
||||
logprob_min = std::min(logprob_min, token.plog);
|
||||
logprob_sum += token.plog;
|
||||
++n_tokens;
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
@ -460,9 +415,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
|
||||
bool is_running = true;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float logprob_min = 0.0f;
|
||||
float logprob_sum = 0.0f;
|
||||
int n_tokens = 0;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
|
||||
@ -500,7 +453,7 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
|
||||
// detect the commands
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "", logprob_min, logprob_sum, n_tokens, t_ms));
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
const auto words = get_words(txt);
|
||||
|
||||
@ -536,27 +489,18 @@ int always_prompt_transcription(struct whisper_context * ctx, audio_async & audi
|
||||
|
||||
// general-purpose mode
|
||||
// freely transcribe the voice into text
|
||||
int process_general_transcription(struct whisper_context * ctx, audio_async & audio, const whisper_params & params) {
|
||||
int process_general_transcription(struct whisper_context * ctx, audio_async &audio, const whisper_params ¶ms) {
|
||||
bool is_running = true;
|
||||
bool have_prompt = false;
|
||||
bool ask_prompt = true;
|
||||
|
||||
float logprob_min0 = 0.0f;
|
||||
float logprob_min = 0.0f;
|
||||
|
||||
float logprob_sum0 = 0.0f;
|
||||
float logprob_sum = 0.0f;
|
||||
|
||||
int n_tokens0 = 0;
|
||||
int n_tokens = 0;
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
std::string k_prompt = "Ok Whisper, start listening for commands.";
|
||||
if (!params.prompt.empty()) {
|
||||
k_prompt = params.prompt;
|
||||
}
|
||||
const std::string k_prompt = "Ok Whisper, start listening for commands.";
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: general-purpose mode\n", __func__);
|
||||
@ -589,11 +533,9 @@ int process_general_transcription(struct whisper_context * ctx, audio_async & au
|
||||
// wait for activation phrase
|
||||
audio.get(params.prompt_ms, pcmf32_cur);
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "prompt", logprob_min0, logprob_sum0, n_tokens0, t_ms));
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
|
||||
|
||||
const float p = 100.0f * std::exp(logprob_min0);
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms, p = %.2f%%)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms, p);
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
const float sim = similarity(txt, k_prompt);
|
||||
|
||||
@ -614,30 +556,19 @@ int process_general_transcription(struct whisper_context * ctx, audio_async & au
|
||||
// we have heard the activation phrase, now detect the commands
|
||||
audio.get(params.command_ms, pcmf32_cur);
|
||||
|
||||
//printf("len prompt: %.4f\n", pcmf32_prompt.size() / (float) WHISPER_SAMPLE_RATE);
|
||||
//printf("len command: %.4f\n", pcmf32_cur.size() / (float) WHISPER_SAMPLE_RATE);
|
||||
|
||||
// prepend 3 second of silence
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), 3.0f*WHISPER_SAMPLE_RATE, 0.0f);
|
||||
|
||||
// prepend the prompt audio
|
||||
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
|
||||
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, "root", logprob_min, logprob_sum, n_tokens, t_ms));
|
||||
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
|
||||
|
||||
//const float p = 100.0f * std::exp((logprob - logprob0) / (n_tokens - n_tokens0));
|
||||
const float p = 100.0f * std::exp(logprob_min);
|
||||
prob = 100.0f*(prob - prob0);
|
||||
|
||||
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
|
||||
|
||||
// find the prompt in the text
|
||||
float best_sim = 0.0f;
|
||||
size_t best_len = 0;
|
||||
for (size_t n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
if (n >= txt.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
|
||||
const auto prompt = txt.substr(0, n);
|
||||
|
||||
const float sim = similarity(prompt, k_prompt);
|
||||
@ -650,16 +581,9 @@ int process_general_transcription(struct whisper_context * ctx, audio_async & au
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: DEBUG: txt = '%s', prob = %.2f%%\n", __func__, txt.c_str(), p);
|
||||
if (best_len == 0) {
|
||||
fprintf(stdout, "%s: WARNING: command not recognized, try again\n", __func__);
|
||||
} else {
|
||||
// cut the prompt from the decoded text
|
||||
const std::string command = ::trim(txt.substr(best_len));
|
||||
|
||||
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
|
||||
}
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
@ -724,37 +648,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
int ret_val = 0;
|
||||
|
||||
if (!params.grammar.empty()) {
|
||||
auto & grammar = params.grammar_parsed;
|
||||
if (file_exists(params.grammar.c_str())) {
|
||||
// read grammar from file
|
||||
std::ifstream ifs(params.grammar.c_str());
|
||||
const std::string txt = std::string((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
|
||||
grammar = grammar_parser::parse(txt.c_str());
|
||||
} else {
|
||||
// read grammar from string
|
||||
grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
}
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (grammar.rules.empty()) {
|
||||
ret_val = 1;
|
||||
} else {
|
||||
fprintf(stderr, "%s: grammar:\n", __func__);
|
||||
grammar_parser::print_grammar(stderr, grammar);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
if (ret_val == 0) {
|
||||
if (!params.commands.empty()) {
|
||||
ret_val = process_command_list(ctx, audio, params);
|
||||
} else if (!params.prompt.empty() && params.grammar_parsed.rules.empty()) {
|
||||
} else if (!params.prompt.empty()) {
|
||||
ret_val = always_prompt_transcription(ctx, audio, params);
|
||||
} else {
|
||||
ret_val = process_general_transcription(ctx, audio, params);
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
#define _USE_MATH_DEFINES // for M_PI
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// third-party utilities
|
||||
@ -15,59 +13,53 @@
|
||||
#include <codecvt>
|
||||
#include <sstream>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// Function to check if the next argument exists
|
||||
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
||||
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
||||
return argv[++i];
|
||||
} else {
|
||||
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
||||
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
||||
params.prompt = argv[++i];
|
||||
} else if (arg == "-n" || arg == "--n_predict") {
|
||||
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_predict = std::stoi(argv[++i]);
|
||||
} else if (arg == "--top_k") {
|
||||
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.top_k = std::max(1, std::stoi(argv[++i]));
|
||||
} else if (arg == "--top_p") {
|
||||
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
params.top_p = std::stof(argv[++i]);
|
||||
} else if (arg == "--temp") {
|
||||
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
params.temp = std::stof(argv[++i]);
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.repeat_last_n = std::stof(argv[++i]);
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||
params.repeat_penalty = std::stof(argv[++i]);
|
||||
} else if (arg == "-b" || arg == "--batch_size") {
|
||||
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.n_batch = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = get_next_arg(i, argc, argv, arg, params);
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "-ip" || arg == "--interactive-port") {
|
||||
params.interactive = true;
|
||||
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||
params.interactive_port = std::stoi(argv[++i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
get_next_arg(i, argc, argv, arg, params);
|
||||
if (++i > argc) {
|
||||
fprintf(stderr, "Invalid file param");
|
||||
break;
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
@ -78,7 +70,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "-tt" || arg == "--token_test") {
|
||||
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
||||
params.token_test = argv[++i];
|
||||
}
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
@ -97,7 +89,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
@ -764,46 +755,3 @@ float similarity(const std::string & s0, const std::string & s1) {
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
params.seed = std::stoi(argv[++i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
params.n_threads = std::stoi(argv[++i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
params.model = argv[++i];
|
||||
} else if (arg == "-i" || arg == "--inp") {
|
||||
params.fname_inp = argv[++i];
|
||||
} else if (arg == "-o" || arg == "--out") {
|
||||
params.fname_out = argv[++i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
sam_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void sam_print_usage(int argc, char ** argv, const sam_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -i FNAME, --inp FNAME\n");
|
||||
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
|
||||
fprintf(stderr, " -o FNAME, --out FNAME\n");
|
||||
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
#define COMMON_SAMPLE_RATE 16000
|
||||
|
||||
//
|
||||
// GPT CLI argument parsing
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct gpt_params {
|
||||
@ -33,8 +33,6 @@ struct gpt_params {
|
||||
|
||||
bool interactive = false;
|
||||
int32_t interactive_port = -1;
|
||||
|
||||
int32_t n_gpu_layers = 0;
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@ -157,20 +155,3 @@ bool vad_simple(
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1);
|
||||
|
||||
//
|
||||
// SAM argument parsing
|
||||
//
|
||||
|
||||
struct sam_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
|
||||
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
|
||||
std::string fname_inp = "img.jpg";
|
||||
std::string fname_out = "img.out";
|
||||
};
|
||||
|
||||
bool sam_params_parse(int argc, char ** argv, sam_params & params);
|
||||
|
||||
void sam_print_usage(int argc, char ** argv, const sam_params & params);
|
||||
|
@ -1,423 +0,0 @@
|
||||
#include "grammar-parser.h"
|
||||
#include <cstdint>
|
||||
#include <cwchar>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <stdexcept>
|
||||
#include <exception>
|
||||
|
||||
namespace grammar_parser {
|
||||
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||
// copied from whisper.cpp
|
||||
std::pair<uint32_t, const char *> decode_utf8(const char * src) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t first_byte = static_cast<uint8_t>(*src);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
int len = lookup[highbits];
|
||||
uint8_t mask = (1 << (8 - len)) - 1;
|
||||
uint32_t value = first_byte & mask;
|
||||
const char * end = src + len; // may overrun!
|
||||
const char * pos = src + 1;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
|
||||
return next_id;
|
||||
}
|
||||
|
||||
void add_rule(
|
||||
parse_state & state,
|
||||
uint32_t rule_id,
|
||||
const std::vector<whisper_grammar_element> & rule) {
|
||||
if (state.rules.size() <= rule_id) {
|
||||
state.rules.resize(rule_id + 1);
|
||||
}
|
||||
state.rules[rule_id] = rule;
|
||||
}
|
||||
|
||||
bool is_word_char(char c) {
|
||||
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
|
||||
}
|
||||
|
||||
std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
|
||||
const char * pos = src;
|
||||
const char * end = src + size;
|
||||
uint32_t value = 0;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value <<= 4;
|
||||
char c = *pos;
|
||||
if ('a' <= c && c <= 'f') {
|
||||
value += c - 'a' + 10;
|
||||
} else if ('A' <= c && c <= 'F') {
|
||||
value += c - 'A' + 10;
|
||||
} else if ('0' <= c && c <= '9') {
|
||||
value += c - '0';
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (pos != end) {
|
||||
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
const char * parse_space(const char * src, bool newline_ok) {
|
||||
const char * pos = src;
|
||||
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
|
||||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
|
||||
if (*pos == '#') {
|
||||
while (*pos && *pos != '\r' && *pos != '\n') {
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_name(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_word_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting name at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
if (*src == '\\') {
|
||||
switch (src[1]) {
|
||||
case 'x': return parse_hex(src + 2, 2);
|
||||
case 'u': return parse_hex(src + 2, 4);
|
||||
case 'U': return parse_hex(src + 2, 8);
|
||||
case 't': return std::make_pair('\t', src + 2);
|
||||
case 'r': return std::make_pair('\r', src + 2);
|
||||
case 'n': return std::make_pair('\n', src + 2);
|
||||
case '\\':
|
||||
case '"':
|
||||
case '[':
|
||||
case ']':
|
||||
return std::make_pair(src[1], src + 2);
|
||||
default:
|
||||
throw std::runtime_error(std::string("unknown escape at ") + src);
|
||||
}
|
||||
} else if (*src) {
|
||||
return decode_utf8(src);
|
||||
}
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested);
|
||||
|
||||
const char * parse_sequence(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
std::vector<whisper_grammar_element> & out_elements,
|
||||
bool is_nested) {
|
||||
size_t last_sym_start = out_elements.size();
|
||||
const char * pos = src;
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({WHISPER_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum whisper_gretype start_type = WHISPER_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = WHISPER_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum whisper_gretype type = last_sym_start < out_elements.size()
|
||||
? WHISPER_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({WHISPER_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = out_elements.size();
|
||||
// output reference to synthesized rule
|
||||
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// rewrite rules:
|
||||
// S* --> S' ::= S S' |
|
||||
// S+ --> S' ::= S S' | S
|
||||
// S? --> S' ::= S |
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
std::vector<whisper_grammar_element> sub_rule;
|
||||
// add preceding symbol to generated rule
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
if (*pos == '*' || *pos == '+') {
|
||||
// cause generated rule to recurse
|
||||
sub_rule.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
|
||||
}
|
||||
// mark start of alternate def
|
||||
sub_rule.push_back({WHISPER_GRETYPE_ALT, 0});
|
||||
if (*pos == '+') {
|
||||
// add preceding symbol as alternate only for '+' (otherwise empty)
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
}
|
||||
sub_rule.push_back({WHISPER_GRETYPE_END, 0});
|
||||
add_rule(state, sub_rule_id, sub_rule);
|
||||
|
||||
// in original rule, replace previous symbol with reference to generated rule
|
||||
out_elements.resize(last_sym_start);
|
||||
out_elements.push_back({WHISPER_GRETYPE_RULE_REF, sub_rule_id});
|
||||
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested) {
|
||||
std::vector<whisper_grammar_element> rule;
|
||||
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
|
||||
while (*pos == '|') {
|
||||
rule.push_back({WHISPER_GRETYPE_ALT, 0});
|
||||
pos = parse_space(pos + 1, true);
|
||||
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
|
||||
}
|
||||
rule.push_back({WHISPER_GRETYPE_END, 0});
|
||||
add_rule(state, rule_id, rule);
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_rule(parse_state & state, const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(state, src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(state, pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
parse_state parse(const char * src) {
|
||||
try {
|
||||
parse_state state;
|
||||
const char * pos = parse_space(src, true);
|
||||
while (*pos) {
|
||||
pos = parse_rule(state, pos);
|
||||
}
|
||||
return state;
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
return parse_state();
|
||||
}
|
||||
}
|
||||
|
||||
void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
} else {
|
||||
// cop out of encoding UTF-8
|
||||
fprintf(file, "<U+%04X>", c);
|
||||
}
|
||||
}
|
||||
|
||||
bool is_char_element(whisper_grammar_element elem) {
|
||||
switch (elem.type) {
|
||||
case WHISPER_GRETYPE_CHAR: return true;
|
||||
case WHISPER_GRETYPE_CHAR_NOT: return true;
|
||||
case WHISPER_GRETYPE_CHAR_ALT: return true;
|
||||
case WHISPER_GRETYPE_CHAR_RNG_UPPER: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
void print_rule_binary(FILE * file, const std::vector<whisper_grammar_element> & rule) {
|
||||
for (auto elem : rule) {
|
||||
switch (elem.type) {
|
||||
case WHISPER_GRETYPE_END: fprintf(file, "END"); break;
|
||||
case WHISPER_GRETYPE_ALT: fprintf(file, "ALT"); break;
|
||||
case WHISPER_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
|
||||
case WHISPER_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
|
||||
case WHISPER_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
|
||||
case WHISPER_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case WHISPER_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case WHISPER_GRETYPE_END:
|
||||
case WHISPER_GRETYPE_ALT:
|
||||
case WHISPER_GRETYPE_RULE_REF:
|
||||
fprintf(file, "(%u) ", elem.value);
|
||||
break;
|
||||
case WHISPER_GRETYPE_CHAR:
|
||||
case WHISPER_GRETYPE_CHAR_NOT:
|
||||
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
|
||||
case WHISPER_GRETYPE_CHAR_ALT:
|
||||
fprintf(file, "(\"");
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_rule(
|
||||
FILE * file,
|
||||
uint32_t rule_id,
|
||||
const std::vector<whisper_grammar_element> & rule,
|
||||
const std::map<uint32_t, std::string> & symbol_id_names) {
|
||||
if (rule.empty() || rule.back().type != WHISPER_GRETYPE_END) {
|
||||
throw std::runtime_error(
|
||||
"malformed rule, does not end with WHISPER_GRETYPE_END: " + std::to_string(rule_id));
|
||||
}
|
||||
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
|
||||
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
|
||||
whisper_grammar_element elem = rule[i];
|
||||
switch (elem.type) {
|
||||
case WHISPER_GRETYPE_END:
|
||||
throw std::runtime_error(
|
||||
"unexpected end of rule: " + std::to_string(rule_id) + "," +
|
||||
std::to_string(i));
|
||||
case WHISPER_GRETYPE_ALT:
|
||||
fprintf(file, "| ");
|
||||
break;
|
||||
case WHISPER_GRETYPE_RULE_REF:
|
||||
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
|
||||
break;
|
||||
case WHISPER_GRETYPE_CHAR:
|
||||
fprintf(file, "[");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case WHISPER_GRETYPE_CHAR_NOT:
|
||||
fprintf(file, "[^");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"WHISPER_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
fprintf(file, "-");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case WHISPER_GRETYPE_CHAR_ALT:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"WHISPER_GRETYPE_CHAR_ALT without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
case WHISPER_GRETYPE_CHAR_ALT:
|
||||
case WHISPER_GRETYPE_CHAR_RNG_UPPER:
|
||||
break;
|
||||
default:
|
||||
fprintf(file, "] ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_grammar(FILE * file, const parse_state & state) {
|
||||
try {
|
||||
std::map<uint32_t, std::string> symbol_id_names;
|
||||
for (auto kv : state.symbol_ids) {
|
||||
symbol_id_names[kv.second] = kv.first;
|
||||
}
|
||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||
// fprintf(file, "%zu: ", i);
|
||||
// print_rule_binary(file, state.rules[i]);
|
||||
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||
// fprintf(file, "\n");
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const whisper_grammar_element *> parse_state::c_rules() const{
|
||||
std::vector<const whisper_grammar_element *> ret;
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
@ -1,29 +0,0 @@
|
||||
// Implements a parser for an extended Backus-Naur form (BNF), producing the
|
||||
// binary context-free grammar format specified by whisper.h. Supports character
|
||||
// ranges, grouping, and repetition operators. As an example, a grammar for
|
||||
// arithmetic might look like:
|
||||
//
|
||||
// root ::= expr
|
||||
// expr ::= term ([-+*/] term)*
|
||||
// term ::= num | "(" space expr ")" space
|
||||
// num ::= [0-9]+ space
|
||||
// space ::= [ \t\n]*
|
||||
|
||||
#pragma once
|
||||
#include "whisper.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
namespace grammar_parser {
|
||||
struct parse_state {
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
std::vector<std::vector<whisper_grammar_element>> rules;
|
||||
|
||||
std::vector<const whisper_grammar_element *> c_rules() const;
|
||||
};
|
||||
|
||||
parse_state parse(const char * src);
|
||||
void print_grammar(FILE * file, const parse_state & state);
|
||||
}
|
@ -1164,7 +1164,7 @@ static bool llama_eval_internal(
|
||||
const llama_token * tokens,
|
||||
const int n_tokens,
|
||||
const int n_past,
|
||||
int n_threads) {
|
||||
const int n_threads) {
|
||||
|
||||
// enforce that the first token is BOS
|
||||
if (n_past == 0 && tokens[0] != llama_token_bos()) {
|
||||
@ -1190,8 +1190,6 @@ static bool llama_eval_internal(
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
const int n_rot = hparams.n_embd/hparams.n_head;
|
||||
|
||||
const float eps = 5e-6f; // TODO: take from hparams
|
||||
|
||||
auto & mem_per_token = lctx.mem_per_token;
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
@ -1206,7 +1204,7 @@ static bool llama_eval_internal(
|
||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||
ggml_cgraph gf = {};
|
||||
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
||||
gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
ggml_set_name(embd, "embd");
|
||||
@ -1223,7 +1221,7 @@ static bool llama_eval_internal(
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL, eps);
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// cur = cur*attention_norm(broadcasted)
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
|
||||
@ -1331,7 +1329,7 @@ static bool llama_eval_internal(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpFF, eps);
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
|
||||
// cur = cur*ffn_norm(broadcasted)
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
|
||||
@ -1369,7 +1367,7 @@ static bool llama_eval_internal(
|
||||
// norm
|
||||
{
|
||||
|
||||
inpL = ggml_rms_norm(ctx0, inpL, eps);
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// inpL = inpL*norm(broadcasted)
|
||||
inpL = ggml_mul(ctx0, inpL, model.norm);
|
||||
@ -1386,8 +1384,8 @@ static bool llama_eval_internal(
|
||||
//inpL = ggml_soft_max_inplace(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
#ifdef GGML_PERF
|
||||
// print timing information per ggml operation (for debugging purposes)
|
||||
@ -2490,7 +2488,8 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||
}
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(r);
|
||||
ggml_graph_compute_with_ctx(lora_ctx, &gf, n_threads);
|
||||
gf.n_threads = n_threads;
|
||||
ggml_graph_compute(lora_ctx, &gf);
|
||||
|
||||
// we won't need these tensors again, reset the context to save memory
|
||||
ggml_free(lora_ctx);
|
||||
@ -2636,6 +2635,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
|
||||
ggml_cgraph gf{};
|
||||
gf.n_threads = 1;
|
||||
|
||||
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
|
||||
kout3d->data = out;
|
||||
@ -2655,7 +2655,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
|
||||
ggml_graph_compute_with_ctx(cpy_ctx, &gf, 1);
|
||||
ggml_graph_compute(cpy_ctx, &gf);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
}
|
||||
@ -2743,6 +2743,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
|
||||
ggml_cgraph gf{};
|
||||
gf.n_threads = 1;
|
||||
|
||||
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
|
||||
kin3d->data = (void *) inp;
|
||||
@ -2762,7 +2763,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
|
||||
ggml_graph_compute_with_ctx(cpy_ctx, &gf, 1);
|
||||
ggml_graph_compute(cpy_ctx, &gf);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
}
|
||||
|
@ -191,9 +191,9 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
.mem_size = ctx_size,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -420,6 +420,7 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -441,7 +442,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -588,7 +589,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -643,7 +644,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -663,8 +664,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
@ -379,7 +379,6 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
//
|
||||
// TODO: sync latest version from ggml repo
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
@ -421,6 +420,7 @@ bool gpt2_eval(
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
@ -442,7 +442,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
@ -589,7 +589,7 @@ bool gpt2_eval(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
@ -644,7 +644,7 @@ bool gpt2_eval(
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
@ -664,8 +664,8 @@ bool gpt2_eval(
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, inpL);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
|
594
ggml-alloc.c
594
ggml-alloc.c
@ -1,594 +0,0 @@
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml.h"
|
||||
#include <assert.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
|
||||
//#define GGML_ALLOCATOR_DEBUG
|
||||
|
||||
//#define AT_PRINTF printf
|
||||
#define AT_PRINTF(...) ((void)0)
|
||||
|
||||
struct hash_node {
|
||||
struct ggml_tensor * t;
|
||||
int n_children;
|
||||
int n_views;
|
||||
};
|
||||
|
||||
static size_t hash(void * p) {
|
||||
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
}
|
||||
|
||||
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
||||
size_t h = hash(t);
|
||||
|
||||
// linear probing
|
||||
size_t i = h;
|
||||
while (hash_table[i].t != NULL) {
|
||||
if (hash_table[i].t == t) {
|
||||
return &hash_table[i];
|
||||
}
|
||||
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
if (i == h) {
|
||||
// hash table is full
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
hash_table[i].t = t;
|
||||
return &hash_table[i];
|
||||
}
|
||||
|
||||
// TODO: GGML_PAD ?
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
return offset + align;
|
||||
}
|
||||
|
||||
struct free_block {
|
||||
void * addr;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
#define MAX_FREE_BLOCKS 128
|
||||
|
||||
struct ggml_allocr {
|
||||
void * data;
|
||||
size_t size;
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
size_t max_size;
|
||||
bool measure;
|
||||
int parse_seq[GGML_MAX_CONCUR];
|
||||
int parse_seq_len;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == NULL) {
|
||||
alloc->allocated_tensors[i] = tensor;
|
||||
return;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(!"out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == tensor ||
|
||||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
||||
alloc->allocated_tensors[i] = NULL;
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("tried to free tensor %s not found\n", tensor->name);
|
||||
GGML_ASSERT(!"tensor not found");
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
|
||||
size_t max_avail = 0;
|
||||
|
||||
// find the best fitting free block besides the last block
|
||||
int best_fit_block = -1;
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size && block->size <= best_fit_size) {
|
||||
best_fit_block = i;
|
||||
best_fit_size = block->size;
|
||||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d\n", best_fit_block);
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
if (block->size >= size) {
|
||||
best_fit_block = alloc->n_free_blocks - 1;
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
} else {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
}
|
||||
}
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
void * addr = block->addr;
|
||||
block->addr = (char*)block->addr + size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
|
||||
tensor->data = addr;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, tensor);
|
||||
size_t cur_max = (char*)addr - (char*)alloc->data + size;
|
||||
if (cur_max > alloc->max_size) {
|
||||
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i]) {
|
||||
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
#endif
|
||||
|
||||
// see if we can merge with an existing block
|
||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
// check if ptr is at the end of the block
|
||||
if ((char*)block->addr + block->size == ptr) {
|
||||
block->size += size;
|
||||
// check if we can merge with the next block
|
||||
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
||||
block->size += alloc->free_blocks[i+1].size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
// check if ptr is at the beginning of the block
|
||||
if ((char*)ptr + size == block->addr) {
|
||||
block->addr = ptr;
|
||||
block->size += size;
|
||||
// check if we can merge with the previous block
|
||||
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
||||
alloc->free_blocks[i-1].size += block->size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
||||
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
alloc->free_blocks[insert_pos].addr = ptr;
|
||||
alloc->free_blocks[insert_pos].size = size;
|
||||
alloc->n_free_blocks++;
|
||||
}
|
||||
|
||||
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
alloc->parse_seq[i] = list[i];
|
||||
}
|
||||
alloc->parse_seq_len = n;
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||
alloc->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||
alloc->free_blocks[0].size = alloc->size - align_offset;
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ data,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// address and size of the buffer when measuring
|
||||
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
|
||||
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ MEASURE_BASE_ADDR,
|
||||
/*.size = */ MEASURE_MAX_SIZE,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ true,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
return alloc->measure;
|
||||
}
|
||||
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (a->ne[i] != b->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (a->nb[i] != b->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||
switch (t->op) {
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_VIEW:
|
||||
return t->src[0];
|
||||
case GGML_OP_CPY:
|
||||
return t->src[1];
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||
struct ggml_tensor * parent = t;
|
||||
do {
|
||||
parent = get_view_parent(parent);
|
||||
} while (ggml_is_view(parent));
|
||||
return parent;
|
||||
}
|
||||
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_ADD_REL_POS:
|
||||
return true;
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
switch(node->op) {
|
||||
case GGML_OP_VIEW:
|
||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||
node->data = (char *) node->src[0]->data + offset;
|
||||
break;
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
node->data = node->src[0]->data;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
node->data = node->src[1]->data;
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(!"unknown view op");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * parent = node->src[i];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if ((char *) parent->data < (char *) alloc->data ||
|
||||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||
// we cannot free the tensor because the original address of the allocation is lost.
|
||||
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_allocr_alloc(alloc, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
|
||||
// reset hash table
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
||||
|
||||
// count number of children and views
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = get_view_source(node);
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
hash_get(ht, parent)->n_children += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
||||
if (inputs != NULL && inputs[g] != NULL) {
|
||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * input = inputs[g][i];
|
||||
AT_PRINTF("input: %s\n", input->name);
|
||||
allocate_node(alloc, input);
|
||||
}
|
||||
}
|
||||
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
||||
int last_barrier_pos = 0;
|
||||
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
|
||||
|
||||
for (int ind = 0; ind < n_nodes; ind++) {
|
||||
// allocate a node if there is no parse_seq or this is not a barrier
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
|
||||
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
allocate_node(alloc, parent);
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
|
||||
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
|
||||
struct ggml_tensor * node = gf->nodes[node_i];
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
if (alloc->parse_seq_len) {
|
||||
last_barrier_pos = ind + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocator_free_tensor(alloc, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
26
ggml-alloc.h
26
ggml-alloc.h
@ -1,26 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
4255
ggml-cuda.cu
4255
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
46
ggml-cuda.h
46
ggml-cuda.h
@ -2,44 +2,34 @@
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#else
|
||||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_init_cublas(void);
|
||||
GGML_API void * ggml_cuda_host_malloc(size_t size);
|
||||
GGML_API void ggml_cuda_host_free(void * ptr);
|
||||
void ggml_init_cublas(void);
|
||||
void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
|
||||
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
|
||||
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
// TODO: export these with GGML_API
|
||||
void * ggml_cuda_host_malloc(size_t size);
|
||||
void ggml_cuda_host_free(void * ptr);
|
||||
|
||||
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void ggml_cuda_set_main_device(int main_device);
|
||||
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
GGML_API void ggml_cuda_free_scratch(void);
|
||||
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API int ggml_cuda_get_device_count(void);
|
||||
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_set_main_device(int main_device);
|
||||
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
void ggml_cuda_free_scratch(void);
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
20
ggml-metal.h
20
ggml-metal.h
@ -24,7 +24,6 @@
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
@ -35,16 +34,9 @@ extern "C" {
|
||||
|
||||
struct ggml_metal_context;
|
||||
|
||||
// number of command buffers to use
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||
struct ggml_metal_context * ggml_metal_init(void);
|
||||
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||
|
||||
void * ggml_metal_host_malloc(size_t n);
|
||||
void ggml_metal_host_free (void * data);
|
||||
|
||||
// set the number of command buffers to use
|
||||
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
||||
|
||||
// creates a mapping between a host memory buffer and a device memory buffer
|
||||
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
||||
// - the mapping is used during computation to determine the arguments of the compute kernels
|
||||
@ -65,16 +57,6 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
|
||||
// get data from the device into host memory
|
||||
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
||||
|
||||
// try to find operations that can be run concurrently in the graph
|
||||
// you should run it again if the topology of your graph changes
|
||||
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
|
||||
|
||||
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
|
||||
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
||||
|
||||
// output the concur_list for ggml_alloc
|
||||
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
||||
|
||||
// same as ggml_graph_compute but uses Metal
|
||||
// creates gf->n_threads command buffers in parallel
|
||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||
|
686
ggml-metal.m
686
ggml-metal.m
File diff suppressed because it is too large
Load Diff
2346
ggml-metal.metal
2346
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
@ -656,14 +656,10 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
|
||||
\n#if K_QUANTS_PER_ITERATION == 1\n
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||
const int is = 0;
|
||||
|
||||
\n#else\n
|
||||
|
||||
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||
const int is = in / 4;
|
||||
|
||||
\n#endif\n
|
||||
|
||||
const int ql_offset = 64*im + l0;
|
||||
const int qh_offset = 32*im + l0;
|
||||
const int s_offset = 8*im + is;
|
||||
@ -1334,7 +1330,7 @@ void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
||||
return;
|
||||
}
|
||||
|
||||
cl_mem mem = (cl_mem)tensor->extra;
|
||||
cl_mem mem = (cl_mem)tensor->data;
|
||||
clReleaseMemObject(mem);
|
||||
}
|
||||
|
||||
@ -1380,7 +1376,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t ne03 = src0->ne[2];
|
||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
@ -1393,7 +1389,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
||||
|
||||
|
||||
@ -1491,9 +1487,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
d_X = (cl_mem) src0->data;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
@ -1567,7 +1563,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
d_X = (cl_mem) src0->data;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
}
|
||||
@ -1697,7 +1693,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
d_Q = (cl_mem) src0->data;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -1860,6 +1856,6 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
tensor->extra = dst;
|
||||
tensor->data = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
}
|
||||
|
640
ggml.h
640
ggml.h
@ -65,7 +65,7 @@
|
||||
// ggml_set_f32(a, 3.0f);
|
||||
// ggml_set_f32(b, 4.0f);
|
||||
//
|
||||
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
||||
// ggml_graph_compute(ctx0, &gf);
|
||||
//
|
||||
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||
//
|
||||
@ -130,16 +130,13 @@
|
||||
// The data of the tensor is accessed via the "data" pointer. For example:
|
||||
//
|
||||
// {
|
||||
// const int nx = 2;
|
||||
// const int ny = 3;
|
||||
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
||||
//
|
||||
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
|
||||
// // a[1, 2] = 1.0f;
|
||||
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
||||
//
|
||||
// for (int y = 0; y < ny; y++) {
|
||||
// for (int x = 0; x < nx; x++) {
|
||||
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
||||
// }
|
||||
// }
|
||||
// // a[2, 0] = 2.0f;
|
||||
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
@ -186,15 +183,6 @@
|
||||
# define GGML_API
|
||||
#endif
|
||||
|
||||
// TODO: support for clang
|
||||
#ifdef __GNUC__
|
||||
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
#elif defined(_MSC_VER)
|
||||
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||
#else
|
||||
# define GGML_DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
@ -209,29 +197,12 @@
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 256
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 32
|
||||
#define GGML_MAX_OPT 4
|
||||
#define GGML_MAX_NAME 48
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
#if UINTPTR_MAX == 0xFFFFFFFF
|
||||
#define GGML_MEM_ALIGN 4
|
||||
#else
|
||||
#define GGML_MEM_ALIGN 16
|
||||
#endif
|
||||
|
||||
#define GGML_EXIT_SUCCESS 0
|
||||
#define GGML_EXIT_ABORTED 1
|
||||
|
||||
#define GGUF_MAGIC 0x46554747 // "GGUF"
|
||||
#define GGUF_VERSION 2
|
||||
|
||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||
|
||||
#define GGML_UNUSED(x) (void)(x)
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
|
||||
#define GGML_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
@ -268,9 +239,8 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__CUDACC__)
|
||||
typedef half ggml_fp16_t;
|
||||
#elif defined(__ARM_NEON)
|
||||
#ifdef __ARM_NEON
|
||||
// we use the built-in 16-bit float type
|
||||
typedef __fp16 ggml_fp16_t;
|
||||
#else
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
@ -280,8 +250,8 @@ extern "C" {
|
||||
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
|
||||
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
|
||||
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
|
||||
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
|
||||
|
||||
struct ggml_object;
|
||||
struct ggml_context;
|
||||
@ -354,12 +324,20 @@ extern "C" {
|
||||
GGML_OP_ARGMAX,
|
||||
GGML_OP_REPEAT,
|
||||
GGML_OP_REPEAT_BACK,
|
||||
GGML_OP_CONCAT,
|
||||
GGML_OP_ABS,
|
||||
GGML_OP_SGN,
|
||||
GGML_OP_NEG,
|
||||
GGML_OP_STEP,
|
||||
GGML_OP_TANH,
|
||||
GGML_OP_ELU,
|
||||
GGML_OP_RELU,
|
||||
GGML_OP_GELU,
|
||||
GGML_OP_GELU_QUICK,
|
||||
GGML_OP_SILU,
|
||||
GGML_OP_SILU_BACK,
|
||||
GGML_OP_NORM, // normalize
|
||||
GGML_OP_RMS_NORM,
|
||||
GGML_OP_RMS_NORM_BACK,
|
||||
GGML_OP_GROUP_NORM,
|
||||
|
||||
GGML_OP_MUL_MAT,
|
||||
GGML_OP_OUT_PROD,
|
||||
@ -385,29 +363,16 @@ extern "C" {
|
||||
GGML_OP_CLAMP,
|
||||
GGML_OP_CONV_1D,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
|
||||
GGML_OP_FLASH_ATTN,
|
||||
GGML_OP_FLASH_FF,
|
||||
GGML_OP_FLASH_ATTN_BACK,
|
||||
GGML_OP_WIN_PART,
|
||||
GGML_OP_WIN_UNPART,
|
||||
GGML_OP_GET_REL_POS,
|
||||
GGML_OP_ADD_REL_POS,
|
||||
|
||||
GGML_OP_UNARY,
|
||||
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1_F32,
|
||||
GGML_OP_MAP_CUSTOM2_F32,
|
||||
GGML_OP_MAP_CUSTOM3_F32,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1,
|
||||
GGML_OP_MAP_CUSTOM2,
|
||||
GGML_OP_MAP_CUSTOM3,
|
||||
@ -418,24 +383,6 @@ extern "C" {
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_unary_op {
|
||||
GGML_UNARY_OP_ABS,
|
||||
GGML_UNARY_OP_SGN,
|
||||
GGML_UNARY_OP_NEG,
|
||||
GGML_UNARY_OP_STEP,
|
||||
GGML_UNARY_OP_TANH,
|
||||
GGML_UNARY_OP_ELU,
|
||||
GGML_UNARY_OP_RELU,
|
||||
GGML_UNARY_OP_GELU,
|
||||
GGML_UNARY_OP_GELU_QUICK,
|
||||
GGML_UNARY_OP_SILU,
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
GGML_OBJECT_TENSOR,
|
||||
GGML_OBJECT_GRAPH,
|
||||
GGML_OBJECT_WORK_BUFFER
|
||||
};
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
@ -444,9 +391,7 @@ extern "C" {
|
||||
|
||||
struct ggml_object * next;
|
||||
|
||||
enum ggml_object_type type;
|
||||
|
||||
char padding[4];
|
||||
char padding[8];
|
||||
};
|
||||
|
||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||
@ -466,22 +411,21 @@ extern "C" {
|
||||
// compute data
|
||||
enum ggml_op op;
|
||||
|
||||
// op params - allocated as int32_t for alignment
|
||||
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
||||
|
||||
bool is_param;
|
||||
|
||||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src[GGML_MAX_SRC];
|
||||
struct ggml_tensor * src0;
|
||||
struct ggml_tensor * src1;
|
||||
struct ggml_tensor * opt[GGML_MAX_OPT];
|
||||
|
||||
// thread scheduling
|
||||
int n_tasks;
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
|
||||
struct ggml_tensor * view_src;
|
||||
size_t view_offs;
|
||||
|
||||
void * data;
|
||||
|
||||
char name[GGML_MAX_NAME];
|
||||
@ -493,46 +437,25 @@ extern "C" {
|
||||
|
||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
|
||||
// the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
|
||||
int n_tasks[GGML_MAX_NODES];
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
bool (*abort_callback)(void * data);
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
// next prime after GGML_MAX_NODES
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
||||
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
||||
#define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||
|
||||
// computation graph
|
||||
struct ggml_cgraph {
|
||||
int n_nodes;
|
||||
int n_leafs;
|
||||
int n_threads;
|
||||
|
||||
size_t work_size;
|
||||
struct ggml_tensor * work;
|
||||
|
||||
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
||||
struct ggml_tensor * grads[GGML_MAX_NODES];
|
||||
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
||||
|
||||
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
|
||||
|
||||
// scratch buffer
|
||||
struct ggml_scratch {
|
||||
size_t offs;
|
||||
@ -586,7 +509,6 @@ extern "C" {
|
||||
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
||||
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
|
||||
|
||||
GGML_API int ggml_blck_size (enum ggml_type type);
|
||||
@ -595,7 +517,6 @@ extern "C" {
|
||||
|
||||
GGML_API const char * ggml_type_name(enum ggml_type type);
|
||||
GGML_API const char * ggml_op_name (enum ggml_op op);
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
|
||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
@ -608,8 +529,6 @@ extern "C" {
|
||||
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
|
||||
@ -621,7 +540,6 @@ extern "C" {
|
||||
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
||||
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
||||
|
||||
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
||||
@ -664,7 +582,7 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
||||
|
||||
@ -681,11 +599,9 @@ extern "C" {
|
||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
||||
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
||||
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
|
||||
GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...);
|
||||
|
||||
//
|
||||
// operations on tensors with backpropagation
|
||||
@ -695,11 +611,6 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -824,13 +735,6 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// concat a and b on dim 2
|
||||
// used in stable-diffusion
|
||||
GGML_API struct ggml_tensor * ggml_concat(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_abs(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@ -920,46 +824,29 @@ extern "C" {
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// normalize along rows
|
||||
// TODO: eps is hardcoded to 1e-5 for now
|
||||
GGML_API struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
|
||||
// group normalize along ne0*ne1*n_groups
|
||||
// used in stable-diffusion
|
||||
// TODO: eps is hardcoded to 1e-6 for now
|
||||
GGML_API struct ggml_tensor * ggml_group_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_groups);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// a - x
|
||||
// b - dy
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
float eps);
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// A: n columns, m rows
|
||||
// B: n columns, p rows (i.e. we transpose it internally)
|
||||
@ -1047,22 +934,11 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// a -> b, in-place, return view(b)
|
||||
GGML_API struct ggml_tensor * ggml_cpy_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// make contiguous
|
||||
GGML_API struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// make contiguous, in-place
|
||||
GGML_API struct ggml_tensor * ggml_cont_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// return view(a), b specifies the new shape
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
GGML_API struct ggml_tensor * ggml_reshape(
|
||||
@ -1231,37 +1107,6 @@ extern "C" {
|
||||
int mode,
|
||||
int n_ctx);
|
||||
|
||||
// custom RoPE
|
||||
GGML_API struct ggml_tensor * ggml_rope_custom(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx,
|
||||
float freq_base,
|
||||
float freq_scale);
|
||||
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx,
|
||||
float freq_base,
|
||||
float freq_scale);
|
||||
|
||||
// xPos RoPE, in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
float base,
|
||||
bool down);
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
// a - dy
|
||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||
@ -1269,12 +1114,7 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float xpos_base,
|
||||
bool xpos_down);
|
||||
int mode);
|
||||
|
||||
// alibi position embedding
|
||||
// in-place, returns view(a)
|
||||
@ -1301,15 +1141,6 @@ extern "C" {
|
||||
int p0, // padding
|
||||
int d0); // dilation
|
||||
|
||||
// conv_1d with padding = half
|
||||
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
||||
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int s,
|
||||
int d);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -1321,70 +1152,14 @@ extern "C" {
|
||||
int d0,
|
||||
int d1);
|
||||
|
||||
|
||||
// kernel size is a->ne[0] x a->ne[1]
|
||||
// stride is equal to kernel size
|
||||
// padding is zero
|
||||
// example:
|
||||
// a: 16 16 3 768
|
||||
// b: 1024 1024 3 1
|
||||
// res: 64 64 768 1
|
||||
// used in sam
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// kernel size is a->ne[0] x a->ne[1]
|
||||
// stride is 1
|
||||
// padding is half
|
||||
// example:
|
||||
// a: 3 3 256 256
|
||||
// b: 64 64 256 1
|
||||
// res: 64 64 256 1
|
||||
// used in sam
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
||||
// conv_1d with padding = half
|
||||
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
||||
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int stride);
|
||||
|
||||
enum ggml_op_pool {
|
||||
GGML_OP_POOL_MAX,
|
||||
GGML_OP_POOL_AVG,
|
||||
GGML_OP_POOL_COUNT,
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_pool_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
int k0, // kernel size
|
||||
int s0, // stride
|
||||
int p0); // padding
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_pool_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_op_pool op,
|
||||
int k0,
|
||||
int k1,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
// nearest interpolate
|
||||
// used in stable-diffusion
|
||||
GGML_API struct ggml_tensor * ggml_upscale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int scale_factor);
|
||||
int s,
|
||||
int d);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_flash_attn(
|
||||
struct ggml_context * ctx,
|
||||
@ -1429,37 +1204,6 @@ extern "C" {
|
||||
int h0,
|
||||
int w);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_unary(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_unary_op op);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_unary_op op);
|
||||
|
||||
// used in sam
|
||||
GGML_API struct ggml_tensor * ggml_get_rel_pos(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int qh,
|
||||
int kh);
|
||||
|
||||
// used in sam
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * pw,
|
||||
struct ggml_tensor * ph);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * pw,
|
||||
struct ggml_tensor * ph);
|
||||
|
||||
// custom operators
|
||||
|
||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||
@ -1469,129 +1213,63 @@ extern "C" {
|
||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
ggml_unary_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
ggml_unary_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
ggml_binary_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
ggml_binary_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
ggml_custom1_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
ggml_custom1_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
ggml_custom2_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
ggml_custom2_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3 instead");
|
||||
ggml_custom3_op_f32_t fun);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3_inplace instead");
|
||||
|
||||
// custom operators v2
|
||||
|
||||
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||
|
||||
#define GGML_N_TASKS_MAX -1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
ggml_custom3_op_f32_t fun);
|
||||
|
||||
// loss function
|
||||
|
||||
@ -1614,28 +1292,14 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor);
|
||||
|
||||
|
||||
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
||||
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
|
||||
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_graph_overhead(void);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
||||
|
||||
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
||||
@ -1681,8 +1345,6 @@ extern "C" {
|
||||
GGML_LINESEARCH_INVALID_PARAMETERS,
|
||||
};
|
||||
|
||||
typedef void (*ggml_opt_callback)(void * data, float * sched);
|
||||
|
||||
// optimization parameters
|
||||
//
|
||||
// see ggml.c (ggml_opt_default_params) for default values
|
||||
@ -1718,14 +1380,12 @@ extern "C" {
|
||||
|
||||
float sched; // schedule multiplier (fixed, decay or warmup)
|
||||
float decay; // weight decay for AdamW, use 0.0f to disable
|
||||
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
|
||||
float alpha; // learning rate
|
||||
float beta1;
|
||||
float beta2;
|
||||
float eps; // epsilon for numerical stability
|
||||
float eps_f; // epsilon for convergence test
|
||||
float eps_g; // epsilon for convergence test
|
||||
float gclip; // gradient clipping
|
||||
} adam;
|
||||
|
||||
// LBFGS parameters
|
||||
@ -1753,12 +1413,14 @@ extern "C" {
|
||||
|
||||
bool just_initialized;
|
||||
|
||||
float loss_before;
|
||||
float loss_after;
|
||||
|
||||
struct {
|
||||
struct ggml_tensor * x; // view of the parameters
|
||||
struct ggml_tensor * g1; // gradient
|
||||
struct ggml_tensor * g2; // gradient squared
|
||||
struct ggml_tensor * m; // first moment
|
||||
struct ggml_tensor * v; // second moment
|
||||
struct ggml_tensor * mh; // first moment hat
|
||||
struct ggml_tensor * vh; // second moment hat
|
||||
struct ggml_tensor * pf; // past function values
|
||||
float fx_best;
|
||||
float fx_prev;
|
||||
@ -1812,9 +1474,7 @@ extern "C" {
|
||||
struct ggml_opt_context * opt,
|
||||
struct ggml_tensor * f,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
ggml_opt_callback callback,
|
||||
void * callback_data);
|
||||
struct ggml_cgraph * gb);
|
||||
|
||||
//
|
||||
// quantization
|
||||
@ -1828,127 +1488,6 @@ extern "C" {
|
||||
|
||||
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
||||
|
||||
//
|
||||
// gguf
|
||||
//
|
||||
|
||||
enum gguf_type {
|
||||
GGUF_TYPE_UINT8 = 0,
|
||||
GGUF_TYPE_INT8 = 1,
|
||||
GGUF_TYPE_UINT16 = 2,
|
||||
GGUF_TYPE_INT16 = 3,
|
||||
GGUF_TYPE_UINT32 = 4,
|
||||
GGUF_TYPE_INT32 = 5,
|
||||
GGUF_TYPE_FLOAT32 = 6,
|
||||
GGUF_TYPE_BOOL = 7,
|
||||
GGUF_TYPE_STRING = 8,
|
||||
GGUF_TYPE_ARRAY = 9,
|
||||
GGUF_TYPE_UINT64 = 10,
|
||||
GGUF_TYPE_INT64 = 11,
|
||||
GGUF_TYPE_FLOAT64 = 12,
|
||||
GGUF_TYPE_COUNT, // marks the end of the enum
|
||||
};
|
||||
|
||||
struct gguf_context;
|
||||
|
||||
struct gguf_init_params {
|
||||
bool no_alloc;
|
||||
|
||||
// if not NULL, create a ggml_context and allocate the tensor data in it
|
||||
struct ggml_context ** ctx;
|
||||
};
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_empty(void);
|
||||
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
||||
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
||||
|
||||
GGML_API void gguf_free(struct gguf_context * ctx);
|
||||
|
||||
GGML_API const char * gguf_type_name(enum gguf_type type);
|
||||
|
||||
GGML_API int gguf_get_version (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
|
||||
GGML_API void * gguf_get_data (struct gguf_context * ctx);
|
||||
|
||||
GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
|
||||
GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
|
||||
|
||||
// results are undefined if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
|
||||
GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
|
||||
GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
|
||||
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
|
||||
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i);
|
||||
GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i);
|
||||
GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i);
|
||||
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
|
||||
GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
|
||||
|
||||
GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
|
||||
GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
|
||||
GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
|
||||
|
||||
// overrides existing values or adds a new one
|
||||
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
||||
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
||||
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
||||
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
||||
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
||||
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
||||
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
||||
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
||||
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
||||
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
||||
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
||||
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
||||
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
||||
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
||||
|
||||
// set or add KV pairs from another context
|
||||
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
||||
|
||||
// manage tensor info
|
||||
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
||||
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
||||
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
||||
|
||||
// writing gguf files can be done in 2 ways:
|
||||
//
|
||||
// - write the entire gguf_context to a binary file in a single pass:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname);
|
||||
//
|
||||
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
||||
//
|
||||
// FILE * f = fopen(fname, "wb");
|
||||
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
||||
// fwrite(f, ...);
|
||||
// void * data = gguf_meta_get_meta_data(ctx);
|
||||
// fseek(f, 0, SEEK_SET);
|
||||
// fwrite(f, data, gguf_get_meta_size(ctx));
|
||||
// free(data);
|
||||
// fclose(f);
|
||||
//
|
||||
|
||||
// write the entire context to a binary file
|
||||
GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
|
||||
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
||||
GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
@ -1977,28 +1516,25 @@ extern "C" {
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
#else
|
||||
#define GGML_RESTRICT restrict
|
||||
#endif
|
||||
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
|
||||
typedef struct {
|
||||
const char * type_name;
|
||||
int blck_size;
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_reference;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
dequantize_row_q_t dequantize_row_q;
|
||||
quantize_row_q_t quantize_row_q;
|
||||
quantize_row_q_t quantize_row_q_reference;
|
||||
quantize_row_q_t quantize_row_q_dot;
|
||||
vec_dot_q_t vec_dot_q;
|
||||
enum ggml_type vec_dot_type;
|
||||
} ggml_type_traits_t;
|
||||
} quantize_fns_t;
|
||||
|
||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
||||
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -1,57 +0,0 @@
|
||||
# - "turn on lights."
|
||||
# - "set thermostat to 22."
|
||||
# - "increase TV by 10."
|
||||
# - "decrease oven by 50."
|
||||
# - "play music."
|
||||
# - "stop podcast."
|
||||
# - "schedule cleaning at 3pm."
|
||||
# - "cancel cleaning."
|
||||
# - "remind me to buy milk at 5pm."
|
||||
# - "show me security system."
|
||||
# - "hide washing machine."
|
||||
# - "what is the lights status?"
|
||||
# - "what is the current thermostat value?"
|
||||
# - "what is the security system status?"
|
||||
# - "what is the door lock status?"
|
||||
# - "what is the camera battery level?"
|
||||
# - "what is the weather like today?"
|
||||
# - "what is the forecast for tomorrow?"
|
||||
# - "what is the time?"
|
||||
# - "what is my schedule for today?"
|
||||
# - "what tasks do I have?"
|
||||
# - "what reminders do I have?"
|
||||
#
|
||||
# example:
|
||||
#
|
||||
# ./command -m ./models/ggml-tiny.en.bin -t 8 --grammar ./grammars/assistant.gbnf --prompt "Ok Whisper, start listening for commands." --context "Whisper is a home assistant. It recognizes voice commands. Time is 11pm." --grammar-penalty 10
|
||||
#
|
||||
|
||||
root ::= init " " (command | question) "."
|
||||
prompt ::= init
|
||||
|
||||
# leading space is very important!
|
||||
init ::= " Ok Whisper, start listening for commands."
|
||||
|
||||
command ::= "Turn " ("on" | "off") " " device | "Set " device " to " value |
|
||||
"Increase " device " by " value | "Decrease " device " by " value |
|
||||
"Play " media | "Stop " media | "Schedule " task " at " time | "Cancel " task |
|
||||
"Remind me to " task " at " time | "Show me " device | "Hide " device
|
||||
|
||||
question ::= "What is the " device " status?" | "What is the current " device " value?" |
|
||||
"What is the " device " temperature?" | "What is the " device " humidity?" |
|
||||
"What is the " device " power consumption?" | "What is the " device " battery level?" |
|
||||
"What is the weather like today?" | "What is the forecast for tomorrow?" |
|
||||
"What is the time?" | "What is my schedule for today?" | "What tasks do I have?" |
|
||||
"What reminders do I have?"
|
||||
|
||||
device ::= "lights" | "thermostat" | "security system" | "door lock" | "camera" | "speaker" | "TV" |
|
||||
"music player" | "coffee machine" | "oven" | "refrigerator" | "washing machine" |
|
||||
"vacuum cleaner"
|
||||
|
||||
value ::= [0-9]+
|
||||
|
||||
media ::= "music" | "radio" | "podcast" | "audiobook" | "TV show" | "movie"
|
||||
|
||||
task ::= [a-zA-Z]+ (" " [a-zA-Z]+)?
|
||||
|
||||
time ::= [0-9] [0-9]? ("am" | "pm")?
|
@ -1,29 +0,0 @@
|
||||
# - bishop to c3
|
||||
# - rook to d4
|
||||
# - knight to e5
|
||||
# - d4 d5 knight to c3
|
||||
# - c3 queen to d4 king b1
|
||||
# - pawn to a1 bishop to b2 knight to c3
|
||||
#
|
||||
# The prompt (--prompt) is the initial phrase that the user has to say.
|
||||
# This is used to prime Whisper with how the user is expected to speak.
|
||||
#
|
||||
# Provide long context (--context) with sample moves to help Whisper decode the correct sequence.
|
||||
# Longer context is better, but it slightly increases the processing time.
|
||||
#
|
||||
# example:
|
||||
#
|
||||
# ./command -m ./models/ggml-tiny.en.bin -t 8 --grammar ./grammars/chess.gbnf --prompt "rook to b4, f3," --context "d4 d5 knight to c3, pawn to a1, bishop to b2 king e8," --grammar-penalty 100
|
||||
#
|
||||
|
||||
root ::= init move move? move? "."
|
||||
prompt ::= init "."
|
||||
|
||||
# leading space is very important!
|
||||
init ::= " rook to b4, f3"
|
||||
|
||||
move ::= ", " ((piece | pawn | king) " " "to "?)? [a-h] [1-8]
|
||||
|
||||
piece ::= "bishop" | "rook" | "knight" | "queen"
|
||||
king ::= "king"
|
||||
pawn ::= "pawn"
|
@ -1,16 +0,0 @@
|
||||
# - red
|
||||
# - green
|
||||
# - blue
|
||||
#
|
||||
# example:
|
||||
#
|
||||
# ./command -m ./models/ggml-tiny.en.bin -t 8 --grammar ./grammars/colors.gbnf --prompt "red, green, blue," --context "green, red, blue,"
|
||||
#
|
||||
|
||||
root ::= init color "."
|
||||
prompt ::= init "."
|
||||
|
||||
# leading space is very important!
|
||||
init ::= " red, green, blue"
|
||||
|
||||
color ::= ", " ("red" | "green" | "blue")
|
611
whisper.cpp
611
whisper.cpp
@ -441,7 +441,6 @@ struct whisper_hparams {
|
||||
int32_t n_text_layer = 4;
|
||||
int32_t n_mels = 80;
|
||||
int32_t ftype = 1;
|
||||
float eps = 1e-5f;
|
||||
};
|
||||
|
||||
// audio encoding layer
|
||||
@ -587,25 +586,6 @@ struct whisper_model {
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
struct whisper_partial_utf8 {
|
||||
uint32_t value; // bit value so far (unshifted)
|
||||
int n_remain; // num bytes remaining; -1 indicates invalid sequence
|
||||
};
|
||||
|
||||
struct whisper_grammar {
|
||||
/*const*/ std::vector<std::vector<whisper_grammar_element>> rules;
|
||||
std::vector<std::vector<const whisper_grammar_element *>> stacks;
|
||||
|
||||
// buffer for partially generated UTF-8 sequence from accepted tokens
|
||||
whisper_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
struct whisper_grammar_candidate {
|
||||
whisper_token id;
|
||||
const uint32_t * code_points;
|
||||
whisper_partial_utf8 partial_utf8;
|
||||
};
|
||||
|
||||
struct whisper_sequence {
|
||||
std::vector<whisper_token_data> tokens;
|
||||
|
||||
@ -627,9 +607,6 @@ struct whisper_decoder {
|
||||
// the currently generated sequence of tokens
|
||||
whisper_sequence sequence;
|
||||
|
||||
// grammar parse state of generated sequence of tokens
|
||||
whisper_grammar grammar;
|
||||
|
||||
int seek_delta; // the window shift found so far based on the decoded timestamp tokens
|
||||
|
||||
bool failed; // has the current segment failed to decode?
|
||||
@ -1601,7 +1578,7 @@ static bool whisper_encode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, inpL, hparams.eps);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_0_w*cur + ln_0_b
|
||||
cur = ggml_add(ctx0,
|
||||
@ -1748,7 +1725,7 @@ static bool whisper_encode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, inpFF, hparams.eps);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
@ -1811,7 +1788,7 @@ static bool whisper_encode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, cur, hparams.eps);
|
||||
cur = ggml_norm(ctx0, cur);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
@ -1828,9 +1805,10 @@ static bool whisper_encode_internal(
|
||||
// run the computation
|
||||
{
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
ggml_build_forward_expand (&gf, cur);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, cur);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
@ -1873,11 +1851,12 @@ static bool whisper_encode_internal(
|
||||
// pre-compute cross-attention memory
|
||||
{
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
// TODO: hack to disconnect the encoded features from the previous graph
|
||||
cur->op = GGML_OP_NONE;
|
||||
cur->src[0] = nullptr;
|
||||
cur->src[1] = nullptr;
|
||||
cur->src0 = nullptr;
|
||||
cur->src1 = nullptr;
|
||||
|
||||
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
|
||||
auto& layer = model.layers_decoder[il];
|
||||
@ -1915,7 +1894,7 @@ static bool whisper_encode_internal(
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
||||
}
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
//ggml_graph_print(&gf);
|
||||
}
|
||||
|
||||
@ -1986,6 +1965,7 @@ static bool whisper_decode_internal(
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
struct ggml_cgraph gf = {};
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
||||
@ -2012,7 +1992,7 @@ static bool whisper_decode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, inpL, hparams.eps);
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
// cur = ln_0_w*cur + ln_0_b
|
||||
cur = ggml_add(ctx0,
|
||||
@ -2139,7 +2119,7 @@ static bool whisper_decode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, inpCA, hparams.eps); // note: we use inpCA here
|
||||
cur = ggml_norm(ctx0, inpCA); // note: we use inpCA here
|
||||
|
||||
// cur = ln_0_w*cur + ln_0_b
|
||||
cur = ggml_add(ctx0,
|
||||
@ -2249,7 +2229,7 @@ static bool whisper_decode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, inpFF, hparams.eps);
|
||||
cur = ggml_norm(ctx0, inpFF);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
@ -2304,7 +2284,7 @@ static bool whisper_decode_internal(
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
cur = ggml_norm(ctx0, cur, hparams.eps);
|
||||
cur = ggml_norm(ctx0, cur);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
@ -2328,8 +2308,8 @@ static bool whisper_decode_internal(
|
||||
|
||||
// run the computation
|
||||
{
|
||||
ggml_build_forward_expand (&gf, logits);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_build_forward_expand(&gf, logits);
|
||||
ggml_graph_compute (ctx0, &gf);
|
||||
}
|
||||
|
||||
// extract logits for all N tokens
|
||||
@ -3515,425 +3495,6 @@ const char * whisper_print_system_info(void) {
|
||||
return s.c_str();
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Grammar - ported from llama.cpp
|
||||
//////////////////////////////////
|
||||
|
||||
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
|
||||
// pointer. If an invalid sequence is encountered, returns `whisper_partial_utf8.n_remain == -1`.
|
||||
std::pair<std::vector<uint32_t>, whisper_partial_utf8> decode_utf8(
|
||||
const char * src,
|
||||
whisper_partial_utf8 partial_start) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
|
||||
const char * pos = src;
|
||||
std::vector<uint32_t> code_points;
|
||||
uint32_t value = partial_start.value;
|
||||
int n_remain = partial_start.n_remain;
|
||||
|
||||
// continue previous decode, if applicable
|
||||
while (*pos != 0 && n_remain > 0) {
|
||||
uint8_t next_byte = static_cast<uint8_t>(*pos);
|
||||
if ((next_byte >> 6) != 2) {
|
||||
// invalid sequence, abort
|
||||
code_points.push_back(0);
|
||||
return std::make_pair(std::move(code_points), whisper_partial_utf8{ 0, -1 });
|
||||
}
|
||||
value = (value << 6) + (next_byte & 0x3F);
|
||||
++pos;
|
||||
--n_remain;
|
||||
}
|
||||
|
||||
if (partial_start.n_remain > 0 && n_remain == 0) {
|
||||
code_points.push_back(value);
|
||||
}
|
||||
|
||||
// decode any subsequent utf-8 sequences, which may end in an incomplete one
|
||||
while (*pos != 0) {
|
||||
uint8_t first_byte = static_cast<uint8_t>(*pos);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
n_remain = lookup[highbits] - 1;
|
||||
|
||||
if (n_remain < 0) {
|
||||
// invalid sequence, abort
|
||||
code_points.clear();
|
||||
code_points.push_back(0);
|
||||
return std::make_pair(std::move(code_points), whisper_partial_utf8{ 0, n_remain });
|
||||
}
|
||||
|
||||
uint8_t mask = (1 << (7 - n_remain)) - 1;
|
||||
value = first_byte & mask;
|
||||
++pos;
|
||||
while (*pos != 0 && n_remain > 0) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
++pos;
|
||||
--n_remain;
|
||||
}
|
||||
if (n_remain == 0) {
|
||||
code_points.push_back(value);
|
||||
}
|
||||
}
|
||||
code_points.push_back(0);
|
||||
|
||||
return std::make_pair(std::move(code_points), whisper_partial_utf8{ value, n_remain });
|
||||
}
|
||||
|
||||
// returns true iff pos points to the end of one of the definitions of a rule
|
||||
static bool whisper_grammar_is_end_of_sequence(const whisper_grammar_element * pos) {
|
||||
switch (pos->type) {
|
||||
case WHISPER_GRETYPE_END: return true; // NOLINT
|
||||
case WHISPER_GRETYPE_ALT: return true; // NOLINT
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
// returns true iff chr satisfies the char range at pos (regular or inverse range)
|
||||
// asserts that pos is pointing to a char range element
|
||||
static std::pair<bool, const whisper_grammar_element *> whisper_grammar_match_char(
|
||||
const whisper_grammar_element * pos,
|
||||
const uint32_t chr) {
|
||||
|
||||
bool found = false;
|
||||
bool is_positive_char = pos->type == WHISPER_GRETYPE_CHAR;
|
||||
|
||||
WHISPER_ASSERT(is_positive_char || pos->type == WHISPER_GRETYPE_CHAR_NOT); // NOLINT
|
||||
|
||||
do {
|
||||
if (pos[1].type == WHISPER_GRETYPE_CHAR_RNG_UPPER) {
|
||||
// inclusive range, e.g. [a-z]
|
||||
found = found || (pos->value <= chr && chr <= pos[1].value);
|
||||
pos += 2;
|
||||
} else {
|
||||
// exact char match, e.g. [a] or "a"
|
||||
found = found || pos->value == chr;
|
||||
pos += 1;
|
||||
}
|
||||
} while (pos->type == WHISPER_GRETYPE_CHAR_ALT);
|
||||
|
||||
return std::make_pair(found == is_positive_char, pos);
|
||||
}
|
||||
|
||||
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
|
||||
// range at pos (regular or inverse range)
|
||||
// asserts that pos is pointing to a char range element
|
||||
static bool whisper_grammar_match_partial_char(
|
||||
const whisper_grammar_element * pos,
|
||||
const whisper_partial_utf8 partial_utf8) {
|
||||
|
||||
bool is_positive_char = pos->type == WHISPER_GRETYPE_CHAR;
|
||||
WHISPER_ASSERT(is_positive_char || pos->type == WHISPER_GRETYPE_CHAR_NOT);
|
||||
|
||||
uint32_t partial_value = partial_utf8.value;
|
||||
int n_remain = partial_utf8.n_remain;
|
||||
|
||||
// invalid sequence or 7-bit char split across 2 bytes (overlong)
|
||||
if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// range of possible code points this partial UTF-8 sequence could complete to
|
||||
uint32_t low = partial_value << (n_remain * 6);
|
||||
uint32_t high = low | ((1 << (n_remain * 6)) - 1);
|
||||
|
||||
if (low == 0) {
|
||||
if (n_remain == 2) {
|
||||
low = 1 << 11;
|
||||
} else if (n_remain == 3) {
|
||||
low = 1 << 16;
|
||||
}
|
||||
}
|
||||
|
||||
do {
|
||||
if (pos[1].type == WHISPER_GRETYPE_CHAR_RNG_UPPER) {
|
||||
// inclusive range, e.g. [a-z]
|
||||
if (pos->value <= high && low <= pos[1].value) {
|
||||
return is_positive_char;
|
||||
}
|
||||
pos += 2;
|
||||
} else {
|
||||
// exact char match, e.g. [a] or "a"
|
||||
if (low <= pos->value && pos->value <= high) {
|
||||
return is_positive_char;
|
||||
}
|
||||
pos += 1;
|
||||
}
|
||||
} while (pos->type == WHISPER_GRETYPE_CHAR_ALT);
|
||||
|
||||
return !is_positive_char;
|
||||
}
|
||||
|
||||
|
||||
// transforms a grammar pushdown stack into N possible stacks, all ending
|
||||
// at a character range (terminal element)
|
||||
static void whisper_grammar_advance_stack(
|
||||
const std::vector<std::vector<whisper_grammar_element>> & rules,
|
||||
const std::vector<const whisper_grammar_element *> & stack,
|
||||
std::vector<std::vector<const whisper_grammar_element *>> & new_stacks) {
|
||||
|
||||
if (stack.empty()) {
|
||||
new_stacks.push_back(stack);
|
||||
return;
|
||||
}
|
||||
|
||||
const whisper_grammar_element * pos = stack.back();
|
||||
|
||||
switch (pos->type) {
|
||||
case WHISPER_GRETYPE_RULE_REF: {
|
||||
const size_t rule_id = static_cast<size_t>(pos->value);
|
||||
const whisper_grammar_element * subpos = rules[rule_id].data();
|
||||
do {
|
||||
// init new stack without the top (pos)
|
||||
std::vector<const whisper_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
|
||||
if (!whisper_grammar_is_end_of_sequence(pos + 1)) {
|
||||
// if this rule ref is followed by another element, add that to stack
|
||||
new_stack.push_back(pos + 1);
|
||||
}
|
||||
if (!whisper_grammar_is_end_of_sequence(subpos)) {
|
||||
// if alternate is nonempty, add to stack
|
||||
new_stack.push_back(subpos);
|
||||
}
|
||||
whisper_grammar_advance_stack(rules, new_stack, new_stacks);
|
||||
while (!whisper_grammar_is_end_of_sequence(subpos)) {
|
||||
// scan to end of alternate def
|
||||
subpos++;
|
||||
}
|
||||
if (subpos->type == WHISPER_GRETYPE_ALT) {
|
||||
// there's another alternate def of this rule to process
|
||||
subpos++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} while (true);
|
||||
break;
|
||||
}
|
||||
case WHISPER_GRETYPE_CHAR:
|
||||
case WHISPER_GRETYPE_CHAR_NOT:
|
||||
new_stacks.push_back(stack);
|
||||
break;
|
||||
default:
|
||||
// end of alternate (WHISPER_GRETYPE_END, WHISPER_GRETYPE_ALT) or middle of char range
|
||||
// (WHISPER_GRETYPE_CHAR_ALT, WHISPER_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
|
||||
// those
|
||||
WHISPER_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
// takes a set of possible pushdown stacks on a grammar, which are required to
|
||||
// be positioned at a character range (see `whisper_grammar_advance_stack`), and
|
||||
// produces the N possible stacks if the given char is accepted at those
|
||||
// positions
|
||||
static std::vector<std::vector<const whisper_grammar_element *>> whisper_grammar_accept(
|
||||
const std::vector<std::vector<whisper_grammar_element>> & rules,
|
||||
const std::vector<std::vector<const whisper_grammar_element *>> & stacks,
|
||||
const uint32_t chr) {
|
||||
|
||||
std::vector<std::vector<const whisper_grammar_element *>> new_stacks;
|
||||
|
||||
for (const auto & stack : stacks) {
|
||||
if (stack.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto match = whisper_grammar_match_char(stack.back(), chr);
|
||||
if (match.first) {
|
||||
const whisper_grammar_element * pos = match.second;
|
||||
|
||||
// update top of stack to next element, if any
|
||||
std::vector<const whisper_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
|
||||
if (!whisper_grammar_is_end_of_sequence(pos)) {
|
||||
new_stack.push_back(pos);
|
||||
}
|
||||
whisper_grammar_advance_stack(rules, new_stack, new_stacks);
|
||||
}
|
||||
}
|
||||
|
||||
return new_stacks;
|
||||
}
|
||||
|
||||
static std::vector<whisper_grammar_candidate> whisper_grammar_reject_candidates(
|
||||
const std::vector<std::vector<whisper_grammar_element>> & rules,
|
||||
const std::vector<std::vector<const whisper_grammar_element *>> & stacks,
|
||||
const std::vector<whisper_grammar_candidate> & candidates);
|
||||
|
||||
static std::vector<whisper_grammar_candidate> whisper_grammar_reject_candidates_for_stack(
|
||||
const std::vector<std::vector<whisper_grammar_element>> & rules,
|
||||
const std::vector<const whisper_grammar_element *> & stack,
|
||||
const std::vector<whisper_grammar_candidate> & candidates) {
|
||||
|
||||
std::vector<whisper_grammar_candidate> rejects;
|
||||
|
||||
if (stack.empty()) {
|
||||
for (auto tok : candidates) {
|
||||
if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
}
|
||||
return rejects;
|
||||
}
|
||||
|
||||
const whisper_grammar_element * stack_pos = stack.back();
|
||||
|
||||
std::vector<whisper_grammar_candidate> next_candidates;
|
||||
for (auto tok : candidates) {
|
||||
if (*tok.code_points == 0) {
|
||||
// reached end of full codepoints in token, reject iff it ended in a partial sequence
|
||||
// that cannot satisfy this position in grammar
|
||||
if (tok.partial_utf8.n_remain != 0 &&
|
||||
!whisper_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
} else if (whisper_grammar_match_char(stack_pos, *tok.code_points).first) {
|
||||
next_candidates.push_back({ tok.id, tok.code_points + 1, tok.partial_utf8 });
|
||||
} else {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
}
|
||||
|
||||
const auto * stack_pos_after = whisper_grammar_match_char(stack_pos, 0).second;
|
||||
|
||||
// update top of stack to next element, if any
|
||||
std::vector<const whisper_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
|
||||
if (!whisper_grammar_is_end_of_sequence(stack_pos_after)) {
|
||||
stack_after.push_back(stack_pos_after);
|
||||
}
|
||||
std::vector<std::vector<const whisper_grammar_element *>> next_stacks;
|
||||
whisper_grammar_advance_stack(rules, stack_after, next_stacks);
|
||||
|
||||
auto next_rejects = whisper_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
||||
for (auto tok : next_rejects) {
|
||||
rejects.push_back({ tok.id, tok.code_points - 1, tok.partial_utf8 });
|
||||
}
|
||||
|
||||
return rejects;
|
||||
}
|
||||
|
||||
static std::vector<whisper_grammar_candidate> whisper_grammar_reject_candidates(
|
||||
const std::vector<std::vector<whisper_grammar_element>> & rules,
|
||||
const std::vector<std::vector<const whisper_grammar_element *>> & stacks,
|
||||
const std::vector<whisper_grammar_candidate> & candidates) {
|
||||
if (candidates.empty() || stacks.empty()) {
|
||||
return std::vector<whisper_grammar_candidate>();
|
||||
}
|
||||
|
||||
auto rejects = whisper_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
|
||||
|
||||
for (size_t i = 1, size = stacks.size(); i < size; ++i) {
|
||||
rejects = whisper_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
|
||||
}
|
||||
return rejects;
|
||||
}
|
||||
|
||||
static struct whisper_grammar whisper_grammar_init(
|
||||
const whisper_grammar_element ** rules,
|
||||
size_t n_rules,
|
||||
size_t i_start_rule) {
|
||||
const whisper_grammar_element * pos;
|
||||
|
||||
// copy rule definitions into vectors
|
||||
std::vector<std::vector<whisper_grammar_element>> vec_rules(n_rules);
|
||||
for (size_t i = 0; i < n_rules; i++) {
|
||||
for (pos = rules[i]; pos->type != WHISPER_GRETYPE_END; pos++) {
|
||||
vec_rules[i].push_back(*pos);
|
||||
}
|
||||
vec_rules[i].push_back({WHISPER_GRETYPE_END, 0});
|
||||
}
|
||||
|
||||
// loop over alternates of start rule to build initial stacks
|
||||
std::vector<std::vector<const whisper_grammar_element *>> stacks;
|
||||
pos = rules[i_start_rule];
|
||||
do {
|
||||
std::vector<const whisper_grammar_element *> stack;
|
||||
if (!whisper_grammar_is_end_of_sequence(pos)) {
|
||||
// if alternate is nonempty, add to stack
|
||||
stack.push_back(pos);
|
||||
}
|
||||
whisper_grammar_advance_stack(vec_rules, stack, stacks);
|
||||
while (!whisper_grammar_is_end_of_sequence(pos)) {
|
||||
// scan to end of alternate def
|
||||
pos++;
|
||||
}
|
||||
if (pos->type == WHISPER_GRETYPE_ALT) {
|
||||
// there's another alternate def of this rule to process
|
||||
pos++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
} while (true);
|
||||
|
||||
return { std::move(vec_rules), std::move(stacks), {} };
|
||||
}
|
||||
|
||||
static void whisper_suppress_invalid_grammar(
|
||||
whisper_context & ctx,
|
||||
const whisper_full_params & params,
|
||||
std::vector<float> & logits,
|
||||
const whisper_grammar & grammar) {
|
||||
|
||||
if (grammar.rules.empty() || grammar.stacks.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
//bool allow_eot = false;
|
||||
//for (const auto & stack : grammar.stacks) {
|
||||
// if (stack.empty()) {
|
||||
// allow_eot = true;
|
||||
// break;
|
||||
// }
|
||||
//}
|
||||
|
||||
const whisper_token eot = whisper_token_eot(&ctx);
|
||||
|
||||
std::vector<std::pair<std::vector<uint32_t>, whisper_partial_utf8>> candidates_decoded;
|
||||
std::vector<whisper_grammar_candidate> candidates_grammar;
|
||||
|
||||
for (whisper_token id = 0; id < eot; ++id) {
|
||||
const std::string & text = ctx.vocab.id_to_token[id];
|
||||
if (!text.empty()) {
|
||||
candidates_decoded.push_back(decode_utf8(text.c_str(), grammar.partial_utf8));
|
||||
candidates_grammar.push_back({ id, candidates_decoded.back().first.data(), candidates_decoded.back().second });
|
||||
}
|
||||
}
|
||||
|
||||
const auto rejects = whisper_grammar_reject_candidates(grammar.rules, grammar.stacks, candidates_grammar);
|
||||
|
||||
for (const auto & reject : rejects) {
|
||||
logits[reject.id] -= params.grammar_penalty;
|
||||
}
|
||||
|
||||
// when the grammar allows a continuation, we penalize the end-of-text token
|
||||
//if (!allow_eot) {
|
||||
// logits[eot] -= params.grammar_penalty;
|
||||
//}
|
||||
//fprintf(stderr, "Allowed: (%zu tokens)\n", size - rejects.size());
|
||||
}
|
||||
|
||||
static void whisper_grammar_accept_token(whisper_context & ctx, whisper_grammar & grammar, whisper_token token) {
|
||||
if (grammar.rules.empty() || grammar.stacks.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
//fprintf(stderr, "Accept: '%s'\n", ctx.vocab.id_to_token[token].c_str());
|
||||
|
||||
const std::string & text = ctx.vocab.id_to_token[token];
|
||||
|
||||
if (text.rfind("[_", 0) == 0) {
|
||||
// fprintf(stderr, " (skipped)\n");
|
||||
return;
|
||||
}
|
||||
// fprintf(stderr, "\n");
|
||||
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(text.c_str(), grammar.partial_utf8);
|
||||
const auto & code_points = decoded.first;
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
grammar.stacks = whisper_grammar_accept(grammar.rules, grammar.stacks, *it);
|
||||
}
|
||||
grammar.partial_utf8 = decoded.second;
|
||||
}
|
||||
|
||||
//////////////
|
||||
// END grammar
|
||||
//////////////
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct whisper_full_params * whisper_full_default_params_by_ref(enum whisper_sampling_strategy strategy) {
|
||||
@ -3955,7 +3516,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ true,
|
||||
/*.no_timestamps =*/ false,
|
||||
/*.single_segment =*/ false,
|
||||
/*.print_special =*/ false,
|
||||
/*.print_progress =*/ true,
|
||||
@ -4015,11 +3575,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
|
||||
/*.logits_filter_callback =*/ nullptr,
|
||||
/*.logits_filter_callback_user_data =*/ nullptr,
|
||||
|
||||
/*.grammar_rules =*/ nullptr,
|
||||
/*.n_grammar_rules =*/ 0,
|
||||
/*.i_start_rule =*/ 0,
|
||||
/*.grammar_penalty =*/ 100.0f,
|
||||
};
|
||||
|
||||
switch (strategy) {
|
||||
@ -4171,11 +3726,6 @@ static void whisper_process_logits(
|
||||
// suppress <|notimestamps|> token
|
||||
// ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L410-L412
|
||||
logits[vocab.token_not] = -INFINITY;
|
||||
if (params.no_timestamps) {
|
||||
for (int i = vocab.token_beg; i < n_logits; ++i) {
|
||||
logits[i] = -INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
// suppress sot and nosp tokens
|
||||
logits[vocab.token_sot] = -INFINITY;
|
||||
@ -4190,14 +3740,6 @@ static void whisper_process_logits(
|
||||
logits[vocab.token_translate] = -INFINITY;
|
||||
logits[vocab.token_transcribe] = -INFINITY;
|
||||
|
||||
// suppress lang tokens
|
||||
for (size_t i = 0; i < g_lang.size(); ++i) {
|
||||
logits[whisper_token_lang(&ctx, i)] = -INFINITY;
|
||||
}
|
||||
|
||||
// suppress prev token
|
||||
logits[vocab.token_prev] = -INFINITY;
|
||||
|
||||
if (params.logits_filter_callback) {
|
||||
params.logits_filter_callback(&ctx, &state, tokens_cur.data(), tokens_cur.size(), logits.data(), params.logits_filter_callback_user_data);
|
||||
}
|
||||
@ -4308,33 +3850,10 @@ static void whisper_process_logits(
|
||||
//log("timestamp_logprob=%f max_text_token_logprob=%f\n", timestamp_logprob, max_text_token_logprob);
|
||||
|
||||
if (timestamp_logprob > max_text_token_logprob) {
|
||||
//printf("sampling timestamp\n");
|
||||
for (int i = 0; i < vocab.token_beg; ++i) {
|
||||
logits[i] = -INFINITY;
|
||||
logprobs[i] = -INFINITY;
|
||||
}
|
||||
} else if (params.n_grammar_rules > 0) {
|
||||
whisper_suppress_invalid_grammar(ctx, params, logits, decoder.grammar);
|
||||
|
||||
// populate the logprobs array (log_softmax)
|
||||
{
|
||||
const float logit_max = *std::max_element(logits.begin(), logits.end());
|
||||
float logsumexp = 0.0f;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
if (logits[i] > -INFINITY) {
|
||||
logsumexp += expf(logits[i] - logit_max);
|
||||
}
|
||||
}
|
||||
logsumexp = logf(logsumexp) + logit_max;
|
||||
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
if (logits[i] > -INFINITY) {
|
||||
logprobs[i] = logits[i] - logsumexp;
|
||||
} else {
|
||||
logprobs[i] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -4352,55 +3871,32 @@ static void whisper_process_logits(
|
||||
|
||||
#if 0
|
||||
// print first 100 logits - token string : logit
|
||||
//for (int i = 0; i < 10; i++) {
|
||||
// const auto token = vocab.id_to_token.at(i);
|
||||
// const auto prob = probs[i];
|
||||
// const auto logit = logits[i];
|
||||
// const auto logprob = logprobs[i];
|
||||
// printf("%16s : prob=%9.5f logit=%9.5f logprob=%9.5f\n", token.c_str(), prob, logit, logprob);
|
||||
//}
|
||||
|
||||
// print sorted
|
||||
{
|
||||
std::vector<std::pair<float, int>> pairs;
|
||||
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
pairs.push_back(std::make_pair(probs[i], i));
|
||||
}
|
||||
|
||||
std::sort(pairs.begin(), pairs.end(), [](const std::pair<float, int>& a, const std::pair<float, int>& b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
for (int i = 0; i < 10; i++) {
|
||||
const auto token = vocab.id_to_token.at(pairs[i].second);
|
||||
const auto prob = pairs[i].first;
|
||||
const auto logit = logits[pairs[i].second];
|
||||
const auto logprob = logprobs[pairs[i].second];
|
||||
printf("%16s : id=%6d prob=%9.5f logit=%9.5f logprob=%9.5f '%s'\n", token.c_str(), pairs[i].second, prob, logit, logprob, token.c_str());
|
||||
}
|
||||
|
||||
printf("----------------\n");
|
||||
for (int i = 0; i < 100; i++) {
|
||||
const auto token = vocab.id_to_token.at(i);
|
||||
const auto prob = probs[i];
|
||||
const auto logit = logits[i];
|
||||
const auto logprob = logprobs[i];
|
||||
printf("%s : prob=%9.5f logit=%9.5f logprob=%9.5f\n", token.c_str(), prob, logit, logprob);
|
||||
}
|
||||
|
||||
// "And", "and", " And", " and"
|
||||
//printf("logits[\"and\"] = %f\n", logits[vocab.token_to_id.at("and")]);
|
||||
//printf("logits[\"And\"] = %f\n", logits[vocab.token_to_id.at("And")]);
|
||||
//printf("logits[\" and\"] = %f\n", logits[vocab.token_to_id.at(" and")]);
|
||||
//printf("logits[\" And\"] = %f\n", logits[vocab.token_to_id.at(" And")]);
|
||||
//printf("logits[\" so\"] = %f\n", logits[vocab.token_to_id.at(" so")]);
|
||||
printf("logits[\"and\"] = %f\n", logits[vocab.token_to_id.at("and")]);
|
||||
printf("logits[\"And\"] = %f\n", logits[vocab.token_to_id.at("And")]);
|
||||
printf("logits[\" and\"] = %f\n", logits[vocab.token_to_id.at(" and")]);
|
||||
printf("logits[\" And\"] = %f\n", logits[vocab.token_to_id.at(" And")]);
|
||||
printf("logits[\" so\"] = %f\n", logits[vocab.token_to_id.at(" so")]);
|
||||
|
||||
//printf("logprobs[\"and\"] = %f\n", logprobs[vocab.token_to_id.at("and")]);
|
||||
//printf("logprobs[\"And\"] = %f\n", logprobs[vocab.token_to_id.at("And")]);
|
||||
//printf("logprobs[\" and\"] = %f\n", logprobs[vocab.token_to_id.at(" and")]);
|
||||
//printf("logprobs[\" And\"] = %f\n", logprobs[vocab.token_to_id.at(" And")]);
|
||||
//printf("logprobs[\" so\"] = %f\n", logprobs[vocab.token_to_id.at(" so")]);
|
||||
printf("logprobs[\"and\"] = %f\n", logprobs[vocab.token_to_id.at("and")]);
|
||||
printf("logprobs[\"And\"] = %f\n", logprobs[vocab.token_to_id.at("And")]);
|
||||
printf("logprobs[\" and\"] = %f\n", logprobs[vocab.token_to_id.at(" and")]);
|
||||
printf("logprobs[\" And\"] = %f\n", logprobs[vocab.token_to_id.at(" And")]);
|
||||
printf("logprobs[\" so\"] = %f\n", logprobs[vocab.token_to_id.at(" so")]);
|
||||
|
||||
//printf("probs[\"and\"] = %f\n", probs[vocab.token_to_id.at("and")]);
|
||||
//printf("probs[\"And\"] = %f\n", probs[vocab.token_to_id.at("And")]);
|
||||
//printf("probs[\" and\"] = %f\n", probs[vocab.token_to_id.at(" and")]);
|
||||
//printf("probs[\" And\"] = %f\n", probs[vocab.token_to_id.at(" And")]);
|
||||
//printf("probs[\" so\"] = %f\n", probs[vocab.token_to_id.at(" so")]);
|
||||
printf("probs[\"and\"] = %f\n", probs[vocab.token_to_id.at("and")]);
|
||||
printf("probs[\"And\"] = %f\n", probs[vocab.token_to_id.at("And")]);
|
||||
printf("probs[\" and\"] = %f\n", probs[vocab.token_to_id.at(" and")]);
|
||||
printf("probs[\" And\"] = %f\n", probs[vocab.token_to_id.at(" And")]);
|
||||
printf("probs[\" so\"] = %f\n", probs[vocab.token_to_id.at(" so")]);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -4521,11 +4017,8 @@ static std::vector<whisper_token_data> whisper_sample_token_topk(
|
||||
ptsum = sum_ts;
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
|
||||
for (int i = 0; i < k; ++i) {
|
||||
const auto id = dist(state.rng);
|
||||
//printf("XXX %d %d %f %f %f %f\n", id, tid, probs[id], logprobs[id], pt, ptsum);
|
||||
const auto id = logits_id[i].second;
|
||||
|
||||
result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, 0.0f, });
|
||||
|
||||
@ -4735,7 +4228,7 @@ int whisper_full_with_state(
|
||||
state->exp_n_audio_ctx = params.audio_ctx;
|
||||
|
||||
// these tokens determine the task that will be performed
|
||||
std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx), };
|
||||
std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
|
||||
if (whisper_is_multilingual(ctx)) {
|
||||
const int lang_id = whisper_lang_id(params.language);
|
||||
state->lang_id = lang_id;
|
||||
@ -4746,9 +4239,6 @@ int whisper_full_with_state(
|
||||
prompt_init.push_back(whisper_token_transcribe(ctx));
|
||||
}
|
||||
}
|
||||
if (params.no_timestamps) {
|
||||
prompt_init.push_back(whisper_token_not(ctx));
|
||||
}
|
||||
|
||||
int seek = seek_start;
|
||||
|
||||
@ -4833,7 +4323,7 @@ int whisper_full_with_state(
|
||||
|
||||
n_decoders_cur = std::max(1, n_decoders_cur);
|
||||
|
||||
WHISPER_PRINT_DEBUG("\n%s: strategy = %d, decoding with %d decoders, temperature = %.2f\n", __func__, params.strategy, n_decoders_cur, t_cur);
|
||||
WHISPER_PRINT_DEBUG("\n%s: decoding with %d decoders, temperature = %.2f\n", __func__, n_decoders_cur, t_cur);
|
||||
|
||||
// TAGS: WHISPER_DECODER_INIT
|
||||
for (int j = 0; j < n_decoders_cur; ++j) {
|
||||
@ -4854,13 +4344,6 @@ int whisper_full_with_state(
|
||||
decoder.failed = false;
|
||||
decoder.completed = false;
|
||||
decoder.has_ts = false;
|
||||
|
||||
if (params.grammar_rules != nullptr) {
|
||||
decoder.grammar = whisper_grammar_init(
|
||||
params.grammar_rules, params.n_grammar_rules, params.i_start_rule);
|
||||
} else {
|
||||
decoder.grammar = {};
|
||||
}
|
||||
}
|
||||
|
||||
// init prompt and kv cache for the current iteration
|
||||
@ -4990,10 +4473,6 @@ int whisper_full_with_state(
|
||||
continue;
|
||||
}
|
||||
|
||||
if (cur_c >= beam_candidates.size()) {
|
||||
cur_c = 0;
|
||||
}
|
||||
|
||||
auto & cur = beam_candidates[cur_c++];
|
||||
|
||||
while (beam_candidates.size() > cur_c && beam_candidates[cur_c].sequence.sum_logprobs_all == cur.sequence.sum_logprobs_all && i > 0) {
|
||||
@ -5047,8 +4526,6 @@ int whisper_full_with_state(
|
||||
has_ts = true;
|
||||
}
|
||||
|
||||
whisper_grammar_accept_token(*ctx, decoder.grammar, token.id);
|
||||
|
||||
#ifdef WHISPER_DEBUG
|
||||
{
|
||||
const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token.at(token.tid) : "[?]";
|
||||
@ -5688,15 +5165,17 @@ WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) {
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(c);
|
||||
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
double tsum = 0.0;
|
||||
|
||||
// heat-up
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
for (int i = 0; i < n_max; ++i) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
|
37
whisper.h
37
whisper.h
@ -96,37 +96,6 @@ extern "C" {
|
||||
void (*close)(void * ctx);
|
||||
} whisper_model_loader;
|
||||
|
||||
// grammar element type
|
||||
enum whisper_gretype {
|
||||
// end of rule definition
|
||||
WHISPER_GRETYPE_END = 0,
|
||||
|
||||
// start of alternate definition for rule
|
||||
WHISPER_GRETYPE_ALT = 1,
|
||||
|
||||
// non-terminal element: reference to rule
|
||||
WHISPER_GRETYPE_RULE_REF = 2,
|
||||
|
||||
// terminal element: character (code point)
|
||||
WHISPER_GRETYPE_CHAR = 3,
|
||||
|
||||
// inverse char(s) ([^a], [^a-b] [^abc])
|
||||
WHISPER_GRETYPE_CHAR_NOT = 4,
|
||||
|
||||
// modifies a preceding WHISPER_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
||||
// be an inclusive range ([a-z])
|
||||
WHISPER_GRETYPE_CHAR_RNG_UPPER = 5,
|
||||
|
||||
// modifies a preceding WHISPER_GRETYPE_CHAR or
|
||||
// WHISPER_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
||||
WHISPER_GRETYPE_CHAR_ALT = 6,
|
||||
};
|
||||
|
||||
typedef struct whisper_grammar_element {
|
||||
enum whisper_gretype type;
|
||||
uint32_t value; // Unicode code point or rule ID
|
||||
} whisper_grammar_element;
|
||||
|
||||
// Various functions for loading a ggml whisper model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
@ -389,7 +358,6 @@ extern "C" {
|
||||
|
||||
bool translate;
|
||||
bool no_context; // do not use past transcription (if any) as initial prompt for the decoder
|
||||
bool no_timestamps; // do not generate timestamps
|
||||
bool single_segment; // force single segment output (useful for streaming)
|
||||
bool print_special; // print special tokens (e.g. <SOT>, <EOT>, <BEG>, etc.)
|
||||
bool print_progress; // print progress information
|
||||
@ -463,11 +431,6 @@ extern "C" {
|
||||
// called by each decoder to filter obtained logits
|
||||
whisper_logits_filter_callback logits_filter_callback;
|
||||
void * logits_filter_callback_user_data;
|
||||
|
||||
const whisper_grammar_element ** grammar_rules;
|
||||
size_t n_grammar_rules;
|
||||
size_t i_start_rule;
|
||||
float grammar_penalty;
|
||||
};
|
||||
|
||||
// NOTE: this function allocates memory, and it is the responsibility of the caller to free the pointer - see whisper_free_params()
|
||||
|
Reference in New Issue
Block a user