Commit Graph

60 Commits

Author SHA1 Message Date
snadampal
b7ef178b9c
ggml : add mmla kernels for quantized GEMM (llama/4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-12 09:31:11 +02:00
slaren
1d3270cc8f
ggml-alloc : v3 (ggml/727)
* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci
2024-02-12 09:31:11 +02:00
JidongZhang-THU
12c462d656
llava : add MobileVLM support (llama/5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-10 09:55:46 +02:00
Jared Van Bortel
f850a067ed
kompute : llama-bench support and ggml_cpu_has_kompute() (llama/5226) 2024-02-10 09:55:46 +02:00
Michael Podvitskiy
f75e1197f1
ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:55:46 +02:00
Kawrakow
6adb969b09
SOTA 3-bit quants (llama/5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 21:27:59 +02:00
0cc4m
23c648e98d
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
Abhilash Majumder
75ab2d06f5
ggml : add unified SYCL backend for Intel GPUs (llama/2690)
* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
Georgi Gerganov
9afa7ff624
minor : clean-up some warnings and style (llama/5094)
* minor : clean-up some warnings and style

ggml-ci

* ggml : add comment
2024-01-27 17:19:51 +02:00
XiaotaoChen
aaeaa43878
llava : MobileVLM support (llama/4954)
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-27 17:19:51 +02:00
Georgi Gerganov
4aea058e5a
ggml : add IQ2 to test-backend-ops + refactoring (llama/4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 21:21:10 +02:00
Georgi Gerganov
fd10234363
imatrix : offload to GPU support (llama/4957)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* imatrix : offload to GPU support

* imatrix : fix ggml_mul_mat_id hanlding

ggml-ci

* ci : add imatrix test

ggml-ci

* ci : rearrange output

ggml-ci
2024-01-17 21:21:10 +02:00
Justine Tunney
138eaebead
ggml : introduce GGML_CALL function annotation (llama/4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-17 21:21:09 +02:00
Kawrakow
dabc964d83
2-bit quantizations (llama/4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:54:09 +02:00
slaren
70840aed5f
llama : ggml-backend integration (llama/4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (llama/4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (llama/4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 21:55:42 +02:00
Kawrakow
3fa98f4395
Importance Matrix calculation (llama/4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 21:55:41 +02:00
Kawrakow
97b12212dd
ggml : SOTA 2-bit quants (add IQ2_XS) (llama/4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:01 +02:00
Timothy Cronin
73072a7c73
ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 21:50:00 +02:00
leejet
e66a9a7806
ggml : change GGML_MAX_NAME at compile time (ggml/682)
* change GGML_MAX_NAME to 128

* allow controlling the value of GGML_MAX_NAME through external macro definitions
2024-01-11 21:50:00 +02:00
Kawrakow
10651bddf6
SOTA 2-bit quants (llama/4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:50:00 +02:00
automaticcat
dbe29d4e33 ggml : add ggml_cpu_has_avx_vnni() (llama/4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:43:51 +02:00
Georgi Gerganov
e77b27c331
sync : ggml (VMM, sync-ggml-am, dotprod ARM fixes, CUDA fixes) ()
* scripts : add sync-ggml-am.sh

* sync : ggml (VMM, ARM dot prod fix, etc.)

* build : fix CUDA build

* ggml : fix some mul mat cases + add tests for src1 F16

dbd02958fa
2023-12-29 11:30:47 +02:00
Georgi Gerganov
3a5302108d
sync : ggml (ggml_scale, ggml_row_size, etc.) ()
* sync : ggml

* sync : llama.cpp

* talk-llama : fix obsolete param

* ggml-alloc : fix ggml_tallocr_is_own

* talk.wasm : update to new ggml

* ggml : fix type punning in ggml_scale

* ggml : cuda jetson + arm quants warnings
2023-12-22 17:53:39 +02:00
Georgi Gerganov
8171e621fc
sync : ggml (Metal fixes, new ops, tests) ()
* sync : ggml (Metal fixes, new ops, tests)

* cuda : fix bin bcast when src1 and dst have different types
2023-12-13 21:55:03 +02:00
Georgi Gerganov
afce6fa113
sync : ggml (new ops, new backend, etc) ()
* sync : ggml (new ops, new backend, etc)

* whisper : remove obsolete broadcasting code

* ggml : remove backend self-registers + fix ggml_concat + n_task logic

* metal : fix assert

* metal : print resource path

* whisper : fix bug if metal init fails
2023-12-07 22:27:19 +02:00
Georgi Gerganov
d4353e48f7
sync : ggml (ggml-alloc + linker + gguf fixes) () 2023-11-17 10:00:07 +02:00
Georgi Gerganov
b0502836b8
whisper : add full CUDA and Metal offloading ()
* whisper : migrate to ggml-backend

* whisper : fix logit reading

* whisper : fix tensor allocation during load

* whisper : fix beam-search with CUDA

* whisper : free backends + fix compile warning

* whisper : print when CUDA is enabled

* whisper : fix CoreML

* make : clean-up

* talk : fix compile warning

* whisper : support ggml_conv with CUDA and Metal ()

* ggml : add CUDA support for ggml_conv

* whisper : remove ggml_repeat for conv bias + single backend

* cuda : fix im2col kernel

* metal : add im2col support + mul mat-vec f16 x f16

* bench-all : add q4 models

* whisper : clean-up

* quantize-all : fix

* ggml : im2col opts

* whisper : avoid whisper_model_data wrapper

* whisper : add note that ggml_mul_mat_pad does not work with CUDA

* whisper : factor out graph compute in common function

* whisper : fixes

* whisper : fix UB with measure buffers

* whisper : try to fix the parallel whisper_state functionality ()

* whisper : try to fix the parallel whisper_state functionality

* whisper : fix multi-state Metal

* whisper : free backend instances in whisper_state
2023-11-12 15:31:08 +02:00
Georgi Gerganov
f96e1c5b78
sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.) ()
* sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.)

* metal : allow env metal variable to override resource path ()

* Allow env variable to override resource path

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* sync : restore common / main from `master`

* sync : restore whisper from `master`

* talk-llama : update to latest llama.cpp

* ruby : fix build

* ggml : fix 32-bit ARM build

* ggml : fix MIN / MAX macro collisions + update ios bindings

* ggml : fix ifdefs and MIN / MAX again

* exampels : fix Obj-C and Swift examples

* ggml : fix 32-bit ARM compatibility

* ggml : one more attempt to fix 32-bit ARM compat

* whisper : fix support for larger graphs

---------

Co-authored-by: Chris Raethke <codesoda@users.noreply.github.com>
2023-11-03 21:35:05 +02:00
Georgi Gerganov
80c1512fd5
sync : ggml (const correctness) 2023-09-15 14:49:56 +03:00
Georgi Gerganov
b8432f28f4
metal : add F32 support + update bench output 2023-09-15 13:56:08 +03:00
Georgi Gerganov
c3f319d7c2
ggml : sync latest llama.cpp (view_src + alloc improvements) ()
* ggml : sync latest llama.cpp (view_src + alloc improvements)

* ggml : fix build
2023-09-05 20:57:27 +03:00
Georgi Gerganov
59a3d0cb57
ggml : sync (ggml-alloc, GPU, eps, etc.) ()
* ggml : sync (ggml-alloc, GPU, eps, etc.)

* ggml : fix build

* wasm : fix build
2023-09-05 13:54:40 +03:00
Przemysław Pawełczyk
601c2d2181
ggml : detect SSSE3 ()
* ggml : add ggml_cpu_has_ssse3

* whisper : show SSSE3 in system info

* make : detect SSSE3 via cpuinfo
2023-08-27 21:36:41 +03:00
Georgi Gerganov
d6509bf78d
ggml : sync latest repo (mostly refactoring changes) 2023-07-02 21:46:09 +03:00
Georgi Gerganov
5feb0dffba
ggml : sync latest ggml lib 2023-06-25 14:30:44 +03:00
Georgi Gerganov
e410cfc3ce
ggml : sync latest ggml repo
- new Q4 and Q8 quantization
- updated CUDA
2023-05-20 18:56:30 +03:00
Georgi Gerganov
e693074aa6
ggml : sync latest ggml
- New Q4 and Q5 formats
- Various improvements
2023-05-14 18:04:23 +03:00
Georgi Gerganov
0bcb64b184
ggml : sync ggml (clBLAST + tensor names) 2023-05-02 21:24:18 +03:00
Georgi Gerganov
794b162a46
whisper : add integer quantization support ()
* whisper : add integer quantization support

* examples : add common-ggml + prepare to add "quantize" tool

* whisper : quantization tool ready

* whisper : fix F32 support

* whisper : try to fix shared lib linkage

* wasm : update quantized models to Q5

* bench.wasm : remove "medium" button

* bench.wasm : fix custom model button

* ggml : add Q5_0 and Q5_1 WASM SIMD

* wasm : add quantized models to all WASM examples

* wasm : bump DB version number to 2

* talk-llama : update example to latest llama.cpp

* node : increase test timeout to 10s

* readme : add information for model quantization

* wasm : add links to other examples
2023-04-30 18:51:57 +03:00
Georgi Gerganov
05c3ea3bc8
ggml : sync with ggml repo (warning fixes + asserts) 2023-04-29 19:33:28 +03:00
Georgi Gerganov
acec73ab6e
ggml : sync latest ggml + llama.cpp updates (quantization) 2023-04-29 12:32:28 +03:00
Georgi Gerganov
677ad754a0
ggml : sync latest ggml 2023-04-14 19:20:39 +03:00
Georgi Gerganov
2f889132c6
ggml : sync latest changes from ggml and llama.cpp 2023-04-13 18:53:44 +03:00
Georgi Gerganov
69b8503935
ggml : backport llama.cpp updates (close )
- About x2 overall performance improvement on Apple Silicon
- Results should now be the same for different number of threads (not
  tested)
2023-04-10 22:28:54 +03:00
Georgi Gerganov
4a0deb8b1e
talk-llama : add new example + sync ggml from llama.cpp ()
* talk-llama : talk with LLaMA AI

* talk.llama : disable EOS token

* talk-llama : add README instructions

* ggml : fix build in debug
2023-03-27 21:00:32 +03:00
Georgi Gerganov
f3ee4a9673
whisper : reduce memory usage during inference ()
* ggml : add "scratch" buffer support

* ggml : support for scratch ring-buffer

* ggml : bug fix in ggml_repeat()

* ggml : error on scratch buffer overflow

* whisper : use scratch buffers during inference (base model only)

* whisper : update memory usage for all models

* whisper : fix encoder memory usage

* whisper : use whisper_context functions instead of macros

* whisper : fix FF + remove it from README

* ggml : reuse ggml_new_i32

* ggml : refactor the scratch buffer storage

* whisper : reorder scratch buffers in the decoder

* main : add option to disable temp fallback

* Update README.md
2023-02-04 09:45:52 +02:00
Abitofevrything
a62170c656
ggml : add SSE3 and fp16 conversion lookup table ()
* Improves WASM performance:
  On MacBook M1 Pro, I observe 25% faster using Firefox and 35% faster using Chrome

* Add support for SSE3 SIMD

* Add SSE3 to system information

* Add Imath support for fp16-fp32 conversions

* Add Imath to system information

* Wrap Imath calls to avoid static function warnings

* Drop Imath; Add lookup table for f16 -> f32 conversions

* Remove TODO comments

* Update SSE3 to new macro arguments

* Correct updated macro definitions

* Prefer static inline where possible

* ggml : static inlines + add public f16 <-> f32 conversions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-01-06 18:45:59 +02:00
Thomas Fitzsimmons
1944e7c33e whisper : document POWER VSX support 2023-01-05 23:53:00 +02:00
Georgi Gerganov
ac521a566e
ggml : simplify the SIMD code ()
* ggml : simplify the SIMD code

* ggml : generic reduce for all register sizes + comments
2022-12-24 10:22:28 +02:00
Kevin Brothaler
e1432dd91a Check for both __ARM_NEON and __ARM_FEATURE_FMA so that the project can be compiled for armv7a.
Android armeabi-v7a's NEON support doesn't support FMA unless configured with `-mfpu=neon-fp-armv8`, which would need runtime checks.
* Also removed ABI filter from Android project.
2022-12-22 16:47:54 +02:00