* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm
armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"
On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.
* ggml: update unit tests for the new vec_dot interface
* llama.cpp: add MATMUL_INT8 capability to system_info
* Make use of ggml-quants.h possible in C++ code
* One cannot possibly be defining static_assert in a C++ compilation
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* ggml : add IQ2 to test-backend-ops + refactoring
ggml-ci
* cuda : update supports_op for IQ2
ggml-ci
* ci : enable LLAMA_CUBLAS=1 for CUDA nodes
ggml-ci
* cuda : fix out-of-bounds-access in `mul_mat_vec_q`
ggml-ci
* tests : avoid creating RNGs for each Q tensor
ggml-ci
* tests : avoid creating RNGs for each tensor
ggml-ci
* iq2_xs: basics
* iq2_xs: this should have been in the basics
* iq2_xs: CUDA and scalar CPU works
* iq2_xs: WIP Metal
* iq2_xs: Metal now works
* iq2_xs: working, but dog slow, ARM_NEON dot product
* iq2_xs: better ARM_NEON dot product
We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.
* iq2_xs: AVX2 dot product - 19.5 t/s
* iq2_xs: faster AVX2 dit product
21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.
* iq2_xs: had forgotten to delete iq2-data.h
* Add llama enum for IQ2_XS
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq2_xxs: basics
* iq2_xxs: scalar and AVX2 dot products
Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.
* iq2_xxs: ARM_NEON dot product
Somehow strangely slow (112 ms/token).
* iq2_xxs: WIP Metal
Dequantize works, something is still wrong with the
dot product.
* iq2_xxs: Metal dot product now works
We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s
Not the greatest performance, but not complete garbage either.
* iq2_xxs: slighty faster dot product
TG-128 is now 48.4 t/s
* iq2_xxs: slighty faster dot product
TG-128 is now 50.9 t/s
* iq2_xxs: even faster Metal dot product
TG-128 is now 54.1 t/s.
Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.
* iq2_xxs: dequantize CUDA kernel - fix conflict with master
* iq2_xxs: quantized CUDA dot product (MMVQ)
We get TG-128 = 153.1 t/s
* iq2_xxs: slightly faster CUDA dot product
TG-128 is now at 155.1 t/s.
* iq2_xxs: add to llama ftype enum
* iq2_xxs: fix MoE on Metal
* Fix missing MMQ ops when on hipBLAS
I had put the ggml_supports_mmq call at the wrong place.
* Fix bug in qequantize_row_iq2_xxs
The 0.25f factor was missing.
Great detective work by @ggerganov!
* Fixing tests
* PR suggestion
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.)
* metal : allow env metal variable to override resource path (#1415)
* Allow env variable to override resource path
* Update ggml-metal.m
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* sync : restore common / main from `master`
* sync : restore whisper from `master`
* talk-llama : update to latest llama.cpp
* ruby : fix build
* ggml : fix 32-bit ARM build
* ggml : fix MIN / MAX macro collisions + update ios bindings
* ggml : fix ifdefs and MIN / MAX again
* exampels : fix Obj-C and Swift examples
* ggml : fix 32-bit ARM compatibility
* ggml : one more attempt to fix 32-bit ARM compat
* whisper : fix support for larger graphs
---------
Co-authored-by: Chris Raethke <codesoda@users.noreply.github.com>