Commit Graph

12 Commits

Author SHA1 Message Date
slaren
174a461fc6 move BLAS to a separate backend (llama/6210)
* move BLAS to a separate backend

* rename GGML_USE_OPENBLAS to GGML_USE_BLAS

* alloc : reuse same buffer when the same buffer type if used multiple times

* set number of threads automatically for openblas and blis

* sched : print assignments when GGML_SCHED_DEBUG env variable is set

* sched : allow ops with weights on an incompatible buffer type

This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-16 18:19:48 +03:00
Georgi Gerganov
2948c740a2
sync : ggml (#2001)
* sync : update scripts

* sync : ggml

* talk-llama : sync llama.cpp

* make : WHISPER_CUBLAS -> WHISPER_CUDA

* ci : try to fix sycl build

* talk-llama : fix make build
2024-03-27 18:55:10 +02:00
slaren
8932c2d6ce
llama : add pipeline parallelism support (llama/6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15 14:01:13 +02:00
Michael Podvitskiy
9a0b59d990
ggml : introduce ggml_status (ggml/750)
* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-08 11:38:32 +02:00
UEXTM.com
1cb64f7368
Introduce backend GUIDs (ggml/743)
* Introduce backend GUIDs

Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)

Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID

* Remove redundant functions

Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion

* Add spaces to match style

Co-authored-by: slaren <slarengh@gmail.com>

* Fix brace style to match

Co-authored-by: slaren <slarengh@gmail.com>

* Add void to () in function signature

Co-authored-by: slaren <slarengh@gmail.com>

* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid

* add guids to all backends

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-25 19:58:45 +02:00
0cc4m
23c648e98d
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:30:20 +02:00
Justine Tunney
138eaebead
ggml : introduce GGML_CALL function annotation (llama/4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-17 21:21:09 +02:00
slaren
70840aed5f
llama : ggml-backend integration (llama/4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (llama/4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (llama/4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 21:55:42 +02:00
Finn Voorhees
a3d0aa73d1
ggml : add error handling to graph_compute (#1714) 2024-01-03 15:39:43 +02:00
Georgi Gerganov
3a5302108d
sync : ggml (ggml_scale, ggml_row_size, etc.) (#1677)
* sync : ggml

* sync : llama.cpp

* talk-llama : fix obsolete param

* ggml-alloc : fix ggml_tallocr_is_own

* talk.wasm : update to new ggml

* ggml : fix type punning in ggml_scale

* ggml : cuda jetson + arm quants warnings
2023-12-22 17:53:39 +02:00
Georgi Gerganov
afce6fa113
sync : ggml (new ops, new backend, etc) (#1602)
* sync : ggml (new ops, new backend, etc)

* whisper : remove obsolete broadcasting code

* ggml : remove backend self-registers + fix ggml_concat + n_task logic

* metal : fix assert

* metal : print resource path

* whisper : fix bug if metal init fails
2023-12-07 22:27:19 +02:00
Georgi Gerganov
f96e1c5b78
sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.) (#1422)
* sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.)

* metal : allow env metal variable to override resource path (#1415)

* Allow env variable to override resource path

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* sync : restore common / main from `master`

* sync : restore whisper from `master`

* talk-llama : update to latest llama.cpp

* ruby : fix build

* ggml : fix 32-bit ARM build

* ggml : fix MIN / MAX macro collisions + update ios bindings

* ggml : fix ifdefs and MIN / MAX again

* exampels : fix Obj-C and Swift examples

* ggml : fix 32-bit ARM compatibility

* ggml : one more attempt to fix 32-bit ARM compat

* whisper : fix support for larger graphs

---------

Co-authored-by: Chris Raethke <codesoda@users.noreply.github.com>
2023-11-03 21:35:05 +02:00