When the device's warp size is less than 16,
it is possible for loadstride_a (mul_mm.comp:114)
and loadstride_b (mul_mm.comp:115) to be set to 0.
Because they are calculated as: the workgroup size,
multiplied by LOAD_VEC_* (which can be 1) and divided by 16.
And the workgroup size is set to be the same as the
warp/subgroup size.
The loadstride_* variables are used as increments in the
loops that populate the buffers used for the multiplication.
When they are 0 they cause an infinite loop.
But infinite loops without side-effects are UB and the
values of loadstride_* are known at compile time.
So, the compiler quietly optimizes all the loops away.
As a consequence, the buffers are not populated and
the multiplication result is just a matrix with all elements
set to 0.
We prevent the UB by making sure that the workgroup size
will never be less than 16, even if our device has a
smaller warp size (e.g. 8).
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* ggml: Added run-time detection of neon, i8mm and sve
Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.
* ggml: Extend feature detection to include non aarch64 Arm arch
* ggml: Move definition of ggml_arm_arch_features to the global data section
* ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels
* added fallback mechanism when the offline re-quantized model is not
optimized for the underlying target.
* fix for build errors
* remove prints from the low-level code
* Rebase to the latest upstream
a return before a barrier (that happens only in some threads in
a workgroup) leads to UB.
While the old code actually works on some devices,
it fails on some others (i.e. "smaller" GPUs).
BTW, I think it would be better to set specialization constants
when the graph is built, in that way the local workgroup
could be sized appropriately.
But it would take a lot of work.
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* Remove possible leftover ffmpeg temp file from a previous failed conversion
* Revert "Remove possible leftover ffmpeg temp file from a previous failed conversion"
This reverts commit 00797403bd.
* Flag to force ffmpeg to overwrite output file if it exists
The script itself has a hashbang indicating that it is a shell script,
but the README indicates that it must be executed with `bash`.
I checked the script itself, and it seems to be valid POSIX shell. I can
confirm that it works with busybox sh.
Clarify the reference on the README, so it is clear that bash is not
actually a dependency for this script.
Make sure n_barrier and n_barrier_passed do not share the cache line to avoid cache line bouncing.
This optimization shows performance improvements even for n_threads <= 8 cases.
Resurect TSAN (Thread Sanitizer) check so that we can avoid doing expensive read-modify-write
in the normal case and just use thread-fence as originally intended.
* AVX512 version of ggml_gemm_q4_0_8x8_q8_0
* Remove zero vector parameter passing
* Rename functions and rearrange order of macros
* Edit commments
* style : minor adjustments
* Update x to start from 0
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* threadpool: skip polling for unused threads
Currently all threads do N polling rounds even if only 1 thread is active (n_threads_cur == 1).
This commit adds a check to skip the polling for unused threads (ith >= n_threads_cur).
n_threads_cur is now an atomic_int to explicitly tell thread sanitizer that it is written
from one thread and read from other threads (not a race conditions).
* threadpool: further simplify and improve ggml_barrier
Avoid using strict memory order while polling, yet make sure that all threads go through
full memory barrier (memory fence) on ggml_barrier entrace and exit.
* threads: add simple barrier test
This test does lots of small, parallel matmul ops where the barriers in between dominate the overhead.
* threadpool: improve thread sync for new-graphs
Using the same tricks as ggml_barrier. All the polling is done with relaxed memory order
to keep it efficient, once the new graph is detected we do full fence using read-modify-write
with strict memory order.
* threadpool: improve abort handling
Do not use threadpool->ec (exit code) to decide whether to exit the compute loop.
threadpool->ec is not atomic which makes thread-sanitizer rightfully unhappy about it.
Instead introduce atomic threadpool->abort flag used for this. This is consistent with
how we handle threadpool->stop or pause.
While at it add an explicit atomic_load for n_threads_cur for consistency.
* test-barrier: release threadpool before releasing the context
fixes use-after-free detected by gcc thread-sanitizer on x86-64
for some reason llvm sanitizer is not detecting this issue.