Commit Graph

58 Commits

Author SHA1 Message Date
Diego Devesa
9c817edb48 ggml : move CPU backend to a separate file (llama/10144) 2024-11-15 15:21:04 +02:00
Diego Devesa
2ab8cce7e3 llama : add simple-chat example (llama/10124)
* llama : add simple-chat example

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-11-15 15:21:04 +02:00
Diego Devesa
b40c255e98 llama : use smart pointers for ggml resources (llama/10117) 2024-11-15 15:21:04 +02:00
Georgi Gerganov
0665168ef3 ggml : remove ggml_scratch (llama/10121)
ggml-ci
2024-11-15 15:21:04 +02:00
Sergio López
1e122d66f9 kompute: add backend registry / device interfaces (llama/10045)
Get in line with the other backends by supporting the newer
backend/device registry interfaces.

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-11-15 15:21:04 +02:00
Diego Devesa
1d48457aa6 llama : refactor model loader with backend registry (llama/10026) 2024-11-15 15:21:04 +02:00
Ma Mingfei
b5b4b0f5de ggml : add AMX backend (llama/8998) 2024-11-01 10:19:05 +02:00
leo-pony
13db492f83 Adapt to dynamically loadable backends mechanism (llama/9970)
* [CANN] Adapt to dynamically loadable backends mechanism

* Fix the Bug: inference running result is garbled in debug running model for LM models who's type is Q4_0 class

* Handle the review comments of this pull request
2024-11-01 10:19:05 +02:00
Ouadie EL FAROUKI
a4a22daa8f Add SYCL Backend registry, device and Event Interfaces (llama/9705)
* implemented missing SYCL event APIs

* sycl : Added device and backend reg interfaces

* Restructured ggml-sycl.cpp
2024-11-01 10:19:05 +02:00
Ma Mingfei
e1936eb2a5 add amx kernel for gemm (llama/8998)
add intel amx isa detection

add vnni kernel for gemv cases

add vnni and amx kernel support for block_q8_0

code cleanup

fix packing B issue

enable openmp

fine tune amx kernel

switch to aten parallel pattern

add error message for nested parallelism

code cleanup

add f16 support in ggml-amx

add amx kernels for QK_K quant formats: Q4_K, Q5_K, Q6_K and IQ4_XS

update CMakeList

update README

fix some compilation warning

fix compiler warning when amx is not enabled

minor change

ggml-ci

move ggml_amx_init from ggml.c to ggml-amx/mmq.cpp

ggml-ci

update CMakeLists with -mamx-tile, -mamx-int8 and -mamx-bf16

ggml-ci

add amx as an ggml-backend

update header file, the old path for immintrin.h has changed to ggml-cpu-impl.h

minor change

update CMakeLists.txt

minor change

apply weight prepacking in set_tensor method in ggml-backend

fix compile error

ggml-ci

minor change

ggml-ci

update CMakeLists.txt

ggml-ci

add march dependency

minor change

ggml-ci

change ggml_backend_buffer_is_host to return false for amx backend

ggml-ci

fix supports_op

use device reg for AMX backend

ggml-ci

minor change

ggml-ci

minor change

fix rebase

set .buffer_from_host_ptr to be false for AMX backend
2024-11-01 10:19:05 +02:00
Diego Devesa
28b044dad9 vulkan : add backend registry / device interfaces (llama/9721)
* vulkan : add backend registry / device interfaces

* llama : print devices used on model load
2024-11-01 10:19:05 +02:00
Diego Devesa
c313723860 rpc : add backend registry / device interfaces (llama/9812)
* rpc : add backend registry / device interfaces

* llama : add llama_supports_rpc API

* ggml_backend_rpc_start_rpc_server -> ggml_backend_rpc_start_server
2024-11-01 10:19:05 +02:00
Diego Devesa
1531259b2c ggml : fix BLAS with unsupported types (llama/9775)
* ggml : do not use BLAS with types without to_float

* ggml : return pointer from ggml_internal_get_type_traits to avoid unnecessary copies

* ggml : rename ggml_internal_get_type_traits -> ggml_get_type_traits

it's not really internal if everybody uses it
2024-11-01 10:19:05 +02:00
Diego Devesa
44bc2767fd ggml : add backend registry / device interfaces to BLAS backend (llama/9752)
* ggml : add backend registry / device interfaces to BLAS backend

* fix mmap usage when using host buffers
2024-11-01 10:19:05 +02:00
Georgi Gerganov
315364d7de ggml : add metal backend registry / device (llama/9713)
* ggml : add metal backend registry / device

ggml-ci

* metal : fix names [no ci]

* metal : global registry and device instances

ggml-ci

* cont : alternative initialization of global objects

ggml-ci

* llama : adapt to backend changes

ggml-ci

* fixes

* metal : fix indent

* metal : fix build when MTLGPUFamilyApple3 is not available

ggml-ci

* fix merge

* metal : avoid unnecessary singleton accesses

ggml-ci

* metal : minor fix [no ci]

* metal : g_state -> g_ggml_ctx_dev_main [no ci]

* metal : avoid reference of device context in the backend context

ggml-ci

* metal : minor [no ci]

* metal : fix maxTransferRate check

* metal : remove transfer rate stuff

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-11-01 10:19:05 +02:00
Georgi Gerganov
aa037a60f3
ggml : alloc ggml_contexts on the heap (#2525)
* whisper : reduce ggml_context usage

* ggml : allocate contexts on the heap (v2)

* ggml : aligned malloc -> malloc
2024-10-31 22:00:09 +02:00
Daniel Bevenius
0b1b094a67 ggml : fix typo in example usage ggml_gallocr_new (ggml/984) 2024-10-05 15:23:51 +03:00
Diego Devesa
cf977670e6 ggml-backend : add device and backend reg interfaces (llama/9707)
Also:

- metal : fix compute pass descriptor autorelease crash
- ggml-backend : add device description to CPU backend
- ggml: unify backend logging mechanism
2024-10-05 15:23:51 +03:00
Diego Devesa
1acfadb721 ggml-backend : add device and backend reg interfaces (llama/9707)
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-10-05 15:23:51 +03:00
Johannes Gäßler
936cf3beb7 ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980) 2024-10-05 15:23:51 +03:00
Johannes Gäßler
bc92c2f8f0 ggml: refactor cross entropy loss CPU impl. (ggml/976) 2024-10-05 15:23:51 +03:00
Georgi Gerganov
162a455402 metal : reduce command encoding overhead (llama/9698) 2024-10-03 12:22:17 +03:00
Johannes Gäßler
5e9d6baa48 test: fix OPT_STEP_ADAMW for test-backend-ops (ggml/974) 2024-10-03 12:22:17 +03:00
Johannes Gäßler
0ac6666cd2 ggml: fix gradient allocation logic (ggml/966)
* ggml: fix gradient allocation logic

* gradient allocation in ggml_build_backward_expand

* fixup

* fix test-backend-ops grad

* suggestions by slaren

* fix test1.c

* fix legacy opt API

* fix test-grad0

* remove keep arg
2024-10-03 12:22:17 +03:00
Dan Johansson
c245168ba3 ggml : add run-time detection of neon, i8mm and sve (llama/9331)
* ggml: Added run-time detection of neon, i8mm and sve

Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.

* ggml: Extend feature detection to include non aarch64 Arm arch

* ggml: Move definition of ggml_arm_arch_features to the global data section
2024-10-03 12:22:17 +03:00
Georgi Gerganov
5963004ff9 ggml : fix GGML_MAX_N_THREADS + improve formatting (ggml/969) 2024-10-03 12:22:17 +03:00
Georgi Gerganov
3b183cfae7 log : add CONT level for continuing previous log entry (llama/9610) 2024-09-24 19:45:08 +03:00
Georgi Gerganov
54e5095765 examples : adapt to ggml.h changes (ggml/0)
ggml-ci
2024-09-24 19:45:08 +03:00
Georgi Gerganov
34291099fb ggml : refactoring (llama/#0)
- d6a04f87
- 23e0d70b
2024-09-24 19:45:08 +03:00
Georgi Gerganov
288ae5176e common : reimplement logging (llama/9418)
https://github.com/ggerganov/llama.cpp/pull/9418
2024-09-24 19:45:08 +03:00
Dou Xinpeng
c6cc8d16c3 cann: Add host buffer type for Ascend NPU (llama/9406)
* feat: Add host buffer type for Ascend NPU(CANN backend)

* fix some checking errors

* Add a few comments
2024-09-24 19:45:08 +03:00
Ahmad Tameem
3f8f8a78a2 riscv : modify Makefile and add a RISCV_VECT to print log info (llama/9442)
- Added ggml_cpu_has_riscv_v() in GGML to print system info in log
- Modified Makefile to only use flag when cross compiling for RISC-V
2024-09-24 19:45:08 +03:00
Johannes Gäßler
c7515b0995 ggml/examples: add backend support for numerical optimization (ggml/949)
* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
compilade
6f5514b6e2 ggml-quants : ternary packing for TriLMs and BitNet b1.58 (llama/8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-24 19:45:08 +03:00
Molly Sophia
fcffc912a9 llama : support RWKV v6 models (llama/8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-24 19:45:08 +03:00
Faisal Zaghloul
38d40b9972 Threadpool: take 2 (llama/8672)
* Introduce ggml_compute_threadpool

- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems

* Minor fixes

* fixed use after release bug

* fixed a harmless race condition

* Fix Android bulid issue

* fix more race conditions

* fix deadlock for cases where cgraph.n_nodes == 1

and fix --poll case

* threadpool: use cpu_get_num_math to set the default number of threadpool threads

This way we avoid using E-Cores and Hyperthreaded siblings.

* bench: create fresh threadpool for each test

For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).

* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier

This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.

* threadpool: make polling the default to match openmp behavior

All command line args now allow for setting poll to 0 (false).

* threadpool: do not wakeup threads in already paused threadpool

* fix potential race condition in check_for_work

* threadpool: do not create two threadpools if their params are identical

* threadpool: reduce pause/resume/wakeup overhead in common cases

We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.

* threadpool: add support for hybrid polling

poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...

The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.

* threadpool: reduce the number of barrier required

New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.

* threadpool: remove special-casing for disposable threadpools

With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.

Include n_threads in debug print for disposable threadpool.

Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.

* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)

This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.

* threadpool: use relaxed order for chunk sync

Full memory barrier is an overkill for this since each thread works on different chunk

* threadpool: remove abort_callback from threadpool state

* threadpool: better naming for thread/cpumask releated functions

* threadpool: consistent use of int type for n_threads params

* threadpool: add support for ggml_threadpool_params_default/init

Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.

* threadpool: move typedef into ggml.h

* threadpool: fix apply_priority() function name

* threadpool: fix swift wrapper errors due to n_threads int type cleanup

* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled

* threadpool: replace checks for compute_thread ret code with proper status check

* threadpool: simplify threadpool init logic and fix main thread affinity application

Most of the init code is now exactly the same between threadpool and openmp.

* threadpool: update threadpool resume/pause function names

* threadpool: enable openmp by default for now

* threadpool: don't forget to free workers state when omp is enabled

* threadpool: avoid updating process priority on the platforms that do not require it

On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.

* threadpool: update calling thread prio and affinity only at start/resume

This avoids extra syscalls for each graph_compute()

* llama-bench: turn threadpool params into vectors, add output headers, etc

* llama-bench: add support for cool off between tests --delay

This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.

* threadpool: move process priority setting into the apps (bench and cli)

This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.

* threadpool: move all pause/resume logic into ggml

* threadpool: futher api cleanup and prep for future refactoring

All threadpool related functions and structs use ggml_threadpool prefix.

* threadpool: minor indent fixes

* threadpool: improve setprioty error message

* Update examples/llama-bench/llama-bench.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* threadpool: fix indent in set_threadpool call

* use int32_t for n_thread type in public llama.cpp API

* threadpool: use _new and _free instead of _create and _release

* fix two more public APIs to use int32_t for n_threads

* build: set _GNU_SOURCE for Adroid

---------

Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 19:45:08 +03:00
Johannes Gäßler
5d6dc19f04 tests: add gradient tests for all backends (ggml/932)
* tests: add gradient checking to test-backend-ops

* remove old comment

* reorder includes

* adjust SIN/COS parameters

* add documentation, use supports_op if possible
2024-09-24 19:45:08 +03:00
Johannes Gäßler
6eb7a0ffbd ggml: fix ggml_graph_cpy undefined behavior (ggml/943) 2024-09-02 15:24:50 +03:00
Johannes Gäßler
24d8534bd8 CPU/CUDA: Gemma 2 FlashAttention support (llama/8542)
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-28 13:22:20 +03:00
compilade
9bf7250bf9 llama : simplify Mamba with advanced batch splits (llama/8526)
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-28 13:22:20 +03:00
Daniel Bevenius
60098d6204 ggml : move rope type enum to ggml.h (llama/8949)
* ggml : move rope type enum to ggml.h

This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.

The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.

Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.

* squash! ggml : move rope type enum to ggml.h

This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.

I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.

* squash! ggml : move rope type enum to ggml.h

This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.

* squash! ggml : move rope type enum to ggml.h

This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.

* squash! ggml : move rope type enum to ggml.h

This commit fixes the editorconfig-checker warnings.

* squash! ggml : move rope type enum to ggml.h

Update comment for ggml_rope function.

* Revert "squash! ggml : move rope type enum to ggml.h"

This reverts commit 6261222bd0dc0efd51f0fb0435ad3f16a5b52fd6.

* squash! ggml : move rope type enum to ggml.h

Add GGML_ROPE_TYPE_NEOX to rope_common.comp.

* remove extra line

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-08-28 13:22:20 +03:00
Johannes Gäßler
8954769aa2 feat: ref. cross entropy, add CUDA, fix grad test (ggml/929) 2024-08-28 13:22:20 +03:00
Johannes Gäßler
1fbd828a5d examples: add MNIST training + missing ops 2024-08-28 13:22:20 +03:00
Ronsor
3643120690 feat: add new sin and cos operators (ggml/919)
* ggml : add sin/cos operators

* ggml-cuda : add sin/cos operators

* ggml : add corresponding tests for sin/cos

* ggml : add backward computation for sin/cos operators

* ggml-vulkan : add sin/cos operators

* ggml-vulkan : add sin/cos shader source

* metal : add sin, cos

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 11:07:13 +03:00
hipudding
be88ee1d75 ggml : add CANN backend (llama/0)
ggml-ci
2024-08-09 09:58:16 +03:00
Molly Sophia
4160b930f1 ggml : add epsilon as a parameter for group_norm (llama/8818)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-08-08 22:48:46 +03:00
Sigbjørn Skjæret
6cb38c3673 Fix conversion of unnormalized BF16->BF16 weights (llama/7843)
* add truncate_bf16

* truncate intermediate fp32 if converting bf16 to bf16

* fix masking in __compute_fp32_to_bf16

* np.int16 no longer used

* missing cast and additional numpy 2.x fix

* ggml-impl : do not flush bf16 subnormals to zero

* ggml : add reference fp32 to bf16 conversion

The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.

* gguf-py : remove flush to zero for bf16 subnormals

* gguf-py : remove float32 truncation to bf16

Rounding achieves the same thing in the cases where this was used.

* missed prototype update in merge

* merge cleanup

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-08-08 22:48:46 +03:00
R0CKSTAR
e471adcfa5 feat: Support Moore Threads GPU (llama/8383)
* Update doc for MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in Makefile

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Add GGML_MUSA in CMake

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* CUDA => MUSA

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* MUSA adds support for __vsubss4

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix CI build failure

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-08-08 22:48:46 +03:00
Conrad Kramer
eb2eb87a58 metal : add abort callback (ggml/905) 2024-08-08 22:48:46 +03:00
Daniel Bevenius
f7bb412878 ggml : move c parameter comment to ggml_rope_ext (ggml/901)
This commit moves the comment for the c parameter from ggml_rope to
ggml_rope_ext. The comment is currently incorrect as ggml_rope does not
have a c parameter (freq_factors tensor).

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-08-08 22:48:46 +03:00