mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-14 04:58:06 +00:00
sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.) (#1422)
* sync : ggml (backend v2, k-quants, CUDA opts, Metal opts, etc.) * metal : allow env metal variable to override resource path (#1415) * Allow env variable to override resource path * Update ggml-metal.m --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * sync : restore common / main from `master` * sync : restore whisper from `master` * talk-llama : update to latest llama.cpp * ruby : fix build * ggml : fix 32-bit ARM build * ggml : fix MIN / MAX macro collisions + update ios bindings * ggml : fix ifdefs and MIN / MAX again * exampels : fix Obj-C and Swift examples * ggml : fix 32-bit ARM compatibility * ggml : one more attempt to fix 32-bit ARM compat * whisper : fix support for larger graphs --------- Co-authored-by: Chris Raethke <codesoda@users.noreply.github.com>
This commit is contained in:
500
ggml-opencl.cpp
500
ggml-opencl.cpp
@ -19,7 +19,7 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define CL_DMMV_BLOCK_SIZE 32
|
||||
#define CL_DMMV_LOCAL_SIZE 32
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 1
|
||||
@ -202,14 +202,14 @@ inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8
|
||||
|
||||
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
|
||||
{
|
||||
const int i = get_group_id(0);
|
||||
const int i = get_group_id(0) + get_global_offset(0);
|
||||
const int tid = get_local_id(0);
|
||||
const int n = tid / 32;
|
||||
const int l = tid - 32 * n;
|
||||
const int is = 8 * n + l / 16;
|
||||
|
||||
const uint8_t q = x[i].qs[32 * n + l];
|
||||
__global float *y = yy + i * QK_K + 128 * n;
|
||||
__global float *y = yy + get_group_id(0) * QK_K + 128 * n;
|
||||
|
||||
const float dall = vload_half(0, &x[i].d);
|
||||
const float dmin = vload_half(0, &x[i].dmin);
|
||||
@ -223,7 +223,7 @@ __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __globa
|
||||
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
|
||||
{
|
||||
int r = get_local_id(0) / 4;
|
||||
int i = get_group_id(0);
|
||||
int i = get_group_id(0) + get_global_offset(0);
|
||||
int tid = r / 2;
|
||||
int is0 = r % 2;
|
||||
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
|
||||
@ -241,7 +241,7 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa
|
||||
float d_all = vload_half(0, &x[i].d);
|
||||
float dl = d_all * (us - 32);
|
||||
|
||||
__global float *y = yy + i * QK_K + 128 * n + 32 * j;
|
||||
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
|
||||
const __global uint8_t *q = x[i].qs + 32 * n;
|
||||
const __global uint8_t *hm = x[i].hmask;
|
||||
|
||||
@ -251,14 +251,14 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa
|
||||
|
||||
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
|
||||
{
|
||||
const int i = get_group_id(0);
|
||||
const int i = get_group_id(0) + get_global_offset(0);
|
||||
const int tid = get_local_id(0);
|
||||
const int il = tid / 8;
|
||||
const int ir = tid % 8;
|
||||
const int is = 2 * il;
|
||||
const int n = 4;
|
||||
|
||||
__global float *y = yy + i * QK_K + 64 * il + n * ir;
|
||||
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;
|
||||
|
||||
const float dall = vload_half(0, &x[i].d);
|
||||
const float dmin = vload_half(0, &x[i].dmin);
|
||||
@ -281,13 +281,13 @@ __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __globa
|
||||
|
||||
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
|
||||
{
|
||||
const int i = get_group_id(0);
|
||||
const int i = get_group_id(0) + get_global_offset(0);
|
||||
const int tid = get_local_id(0);
|
||||
const int il = tid / 16;
|
||||
const int ir = tid % 16;
|
||||
const int is = 2 * il;
|
||||
|
||||
__global float *y = yy + i * QK_K + 64 * il + 2 * ir;
|
||||
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;
|
||||
|
||||
const float dall = vload_half(0, &x[i].d);
|
||||
const float dmin = vload_half(0, &x[i].dmin);
|
||||
@ -313,13 +313,13 @@ __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __globa
|
||||
|
||||
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
|
||||
{
|
||||
const int i = get_group_id(0);
|
||||
const int i = get_group_id(0) + get_global_offset(0);
|
||||
const int tid = get_local_id(0);
|
||||
const int ip = tid / 32;
|
||||
const int il = tid - 32 * ip;
|
||||
const int is = 8 * ip + il / 16;
|
||||
|
||||
__global float *y = yy + i * QK_K + 128 * ip + il;
|
||||
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;
|
||||
|
||||
const float d = vload_half(0, &x[i].d);
|
||||
|
||||
@ -338,7 +338,7 @@ __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q2_K * x = xx + ib0;
|
||||
|
||||
@ -413,7 +413,7 @@ __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q3_K * x = xx + ib0;
|
||||
|
||||
@ -489,7 +489,7 @@ __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
|
||||
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
|
||||
@ -562,7 +562,7 @@ __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/2; // 0...15
|
||||
const int ix = get_local_id(0)%2;
|
||||
@ -641,7 +641,7 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q6_K * x = xx + ib0;
|
||||
|
||||
@ -730,7 +730,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
||||
const uint qk = QUANT_K;
|
||||
const uint qr = QUANT_R;
|
||||
|
||||
const int ib = i/qk; // block index
|
||||
const int ib = i/qk + get_global_offset(0); // block index
|
||||
const int iqs = (i%qk)/qr; // quant index
|
||||
const int iybs = i - i%qk; // y block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
@ -745,19 +745,21 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
||||
|
||||
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
||||
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
||||
const int block_size = get_local_size(0);
|
||||
const int local_size = get_local_size(0);
|
||||
const int row = get_group_id(0);
|
||||
const int tid = get_local_id(0);
|
||||
|
||||
const uint qk = QUANT_K;
|
||||
const uint qr = QUANT_R;
|
||||
|
||||
const int col_step = local_size * 2;
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
x += get_global_offset(0);
|
||||
|
||||
tmp[tid] = 0;
|
||||
|
||||
for (int i = 0; i < ncols/block_size; i += 2) {
|
||||
const int col = i*block_size + 2*tid;
|
||||
for (int col = tid*2; col < ncols; col += col_step) {
|
||||
const int ib = (row*ncols + col)/qk; // block index
|
||||
const int iqs = (col%qk)/qr; // quant index
|
||||
const int iybs = col - col%qk; // y block start index
|
||||
@ -773,7 +775,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
|
||||
|
||||
// sum up partial sums and write back result
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int s=block_size/2; s>0; s>>=1) {
|
||||
for (int s=local_size/2; s>0; s>>=1) {
|
||||
if (tid < s) {
|
||||
tmp[tid] += tmp[tid + s];
|
||||
}
|
||||
@ -847,7 +849,7 @@ std::array<std::string, 2> mul_str_values = {
|
||||
"mul_f32", "float"
|
||||
};
|
||||
|
||||
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
||||
static std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(from, pos)) != std::string::npos) {
|
||||
s.replace(pos, from.length(), to);
|
||||
@ -856,7 +858,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string&
|
||||
return s;
|
||||
}
|
||||
|
||||
std::string generate_kernels() {
|
||||
static std::string generate_kernels() {
|
||||
std::stringstream src;
|
||||
src << program_source << '\n';
|
||||
src << k_quants_source << '\n';
|
||||
@ -1349,30 +1351,42 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
||||
const enum ggml_type type = src->type;
|
||||
const size_t ts = ggml_type_size(type);
|
||||
const size_t bs = ggml_blck_size(type);
|
||||
const uint64_t row_size = ts*ne0/bs;
|
||||
|
||||
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
|
||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
|
||||
return err;
|
||||
const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
|
||||
if (nb0 == ts && nb1 == row_size) {
|
||||
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
|
||||
}
|
||||
if (nb0 == ts) {
|
||||
const size_t buffer_origin[3] = { offset, 0, 0 };
|
||||
const size_t host_origin[3] = { 0, 0, 0 };
|
||||
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
|
||||
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
|
||||
return err;
|
||||
const size_t region[3] = { row_size, ne1, 1 };
|
||||
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
|
||||
}
|
||||
std::vector<cl_event> events;
|
||||
if (ev && ne1>1) events.reserve(ne1-1);
|
||||
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
||||
// pretend the row is a matrix with cols=1
|
||||
const size_t buffer_origin[3] = { offset, i1, 0 };
|
||||
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
|
||||
const size_t host_origin[3] = { 0, 0, 0 };
|
||||
const size_t region[3] = { ts/bs, ne0, 1 };
|
||||
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
|
||||
const size_t region[3] = { ts, ne0/bs, 1 };
|
||||
// if an event is requested, make the last write wait for all previous writes to complete
|
||||
if (ev && i1) {
|
||||
events.push_back(*ev);
|
||||
}
|
||||
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
|
||||
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
|
||||
if (err != CL_SUCCESS) {
|
||||
break;
|
||||
for (auto event : events) {
|
||||
clReleaseEvent(event);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
}
|
||||
return err;
|
||||
for (auto event : events) {
|
||||
CL_CHECK(clReleaseEvent(event));
|
||||
}
|
||||
return CL_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -1381,75 +1395,46 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
size_t x_size;
|
||||
size_t d_size;
|
||||
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
||||
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
|
||||
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
||||
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const int i0 = i03*ne02 + i02;
|
||||
|
||||
cl_event ev;
|
||||
|
||||
// copy src0 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
// Contiguous, avoid overhead from queueing many kernel runs
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11;
|
||||
|
||||
cl_int x_offset = 0;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = 0;
|
||||
cl_int x_offset = 0;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = 0;
|
||||
|
||||
size_t global = ne00 * ne01;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
} else {
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
const int64_t i13 = i03%ne13;
|
||||
const int64_t i12 = i02%ne12;
|
||||
const int64_t i11 = i01%ne11;
|
||||
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
|
||||
size_t global = ne00 * ne01;
|
||||
cl_int ky = ne10 * ne11;
|
||||
|
||||
cl_int x_offset = i01*ne00;
|
||||
cl_int y_offset = i1*ne10;
|
||||
cl_int d_offset = i01*ne00;
|
||||
|
||||
// compute
|
||||
size_t global = ne00;
|
||||
cl_int ky = ne10;
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
}
|
||||
}
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
||||
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
||||
|
||||
CL_CHECK(clReleaseEvent(ev));
|
||||
CL_CHECK(clFinish(queue));
|
||||
@ -1476,10 +1461,15 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
@ -1498,35 +1488,46 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
|
||||
size_t x_offset = 0;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy data to device
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||
}
|
||||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
cl_event ev_sgemm;
|
||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, x_offset, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, &ev_sgemm);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
}
|
||||
}
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
cl_event ev_sgemm;
|
||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, 0, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, &ev_sgemm);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
}
|
||||
}
|
||||
|
||||
@ -1537,7 +1538,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||
GGML_ASSERT(fp16_support);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
@ -1547,6 +1548,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
const int nb10 = src1->nb[0];
|
||||
const int nb11 = src1->nb[1];
|
||||
@ -1556,12 +1559,19 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
|
||||
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
||||
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
|
||||
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
|
||||
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
|
||||
|
||||
size_t x_size;
|
||||
size_t y_size;
|
||||
size_t d_size;
|
||||
@ -1577,63 +1587,71 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
bool src1_cont_rows = nb10 == sizeof(float);
|
||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||
|
||||
size_t x_offset = 0;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy src0 to device
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||
}
|
||||
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
||||
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
||||
if (src1_cont_rows) {
|
||||
if (src1_cont_cols) {
|
||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
||||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
||||
if (src1_cont_rows) {
|
||||
if (src1_cont_cols) {
|
||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||
}
|
||||
else {
|
||||
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
||||
// very slow due to no inlining
|
||||
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
||||
else {
|
||||
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||||
// very slow due to no inlining
|
||||
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy src1 to device
|
||||
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
cl_event ev_sgemm;
|
||||
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, x_offset, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, &ev_sgemm);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// copy dst to host, then convert to float
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
}
|
||||
}
|
||||
|
||||
// copy src1 to device
|
||||
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
||||
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
cl_event ev_sgemm;
|
||||
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, 0, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, &ev_sgemm);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// copy dst to host, then convert to float
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1652,18 +1670,24 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
const ggml_type type = src0->type;
|
||||
const bool mul_mat_vec = ne11 == 1;
|
||||
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
|
||||
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
const int x_ne = ne01 * ne00;
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
|
||||
const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
|
||||
const size_t q_sz = ggml_type_size(type) * x_bps;
|
||||
|
||||
size_t x_size;
|
||||
size_t y_size;
|
||||
@ -1685,78 +1709,86 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
GGML_ASSERT(to_fp32_cl != nullptr);
|
||||
|
||||
const size_t global_denom = ggml_cl_global_denom(type);
|
||||
const size_t local = ggml_cl_local_size(type);
|
||||
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
|
||||
|
||||
size_t ev_idx = 0;
|
||||
std::vector<cl_event> events;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy src0 to device if necessary
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||
// copy src1 to device
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||
const size_t local = CL_DMMV_BLOCK_SIZE;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
||||
|
||||
events.emplace_back();
|
||||
|
||||
// wait for conversion
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, 0, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, events.data() + ev_idx++);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
// TODO: copy and dequantize src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy src0 to device if necessary
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||
for (auto *event : events) {
|
||||
clReleaseEvent(event);
|
||||
}
|
||||
if (!mul_mat_vec) {
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||
}
|
||||
|
||||
ev_idx = 0;
|
||||
events.clear();
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||
// copy src1 to device
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * local;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
} else { // CLBlast matrix matrix multiplication
|
||||
// copy src1 to device
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
|
||||
// wait for conversion
|
||||
CL_CHECK(clFinish(queue));
|
||||
|
||||
// compute
|
||||
events.emplace_back();
|
||||
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||
ne01, ne11, ne10,
|
||||
alpha,
|
||||
d_X, 0, ne00,
|
||||
d_Y, 0, ne10,
|
||||
beta,
|
||||
d_D, 0, ne01,
|
||||
&queue, events.data() + ev_idx++);
|
||||
|
||||
if (status != clblast::StatusCode::kSuccess) {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||
for (auto *event : events) {
|
||||
clReleaseEvent(event);
|
||||
}
|
||||
|
||||
ev_idx = 0;
|
||||
events.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1788,7 +1820,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
||||
static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
||||
// If device doesn't support FP16
|
||||
if (!fp16_support) {
|
||||
return false;
|
||||
@ -1831,8 +1863,8 @@ void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor *
|
||||
}
|
||||
|
||||
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
||||
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -1844,17 +1876,19 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
||||
const int64_t ne3 = tensor->ne[3];
|
||||
|
||||
const ggml_type type = tensor->type;
|
||||
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
|
||||
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
|
||||
const size_t q_sz = s_sz * (size_t) (ne2 * ne3);
|
||||
|
||||
size_t q_size;
|
||||
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||
|
||||
tensor->data = data;
|
||||
// copy tensor to device
|
||||
size_t offset = 0;
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||
int i = i3*ne2 + i2;
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
|
||||
offset += s_sz;
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user