mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-20 17:11:17 +00:00
CUDA: use mma PTX instructions for FlashAttention (llama/11583)
* CUDA: use mma PTX instructions for FlashAttention * __shfl_sync workaround for movmatrix * add __shfl_sync to HIP Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
parent
85451e3612
commit
f8a831779e
@ -1775,7 +1775,7 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
#define GGML_KQ_MASK_PAD 32
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
|
||||
// q: [n_embd, n_batch, n_head, 1]
|
||||
// k: [n_embd, n_kv, n_head_kv, 1]
|
||||
|
@ -28,7 +28,7 @@ if (CUDAToolkit_FOUND)
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
@ -148,7 +148,7 @@ typedef float2 dfloat2;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define INT8_MMA_AVAILABLE
|
||||
#define NEW_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
@ -159,11 +159,13 @@ static constexpr bool fast_fp16_available(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
// Any FP16 tensor cores are available.
|
||||
static constexpr bool fp16_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
static constexpr bool int8_mma_available(const int cc) {
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static constexpr bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
|
||||
|
@ -516,6 +516,104 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
nullptr;
|
||||
}
|
||||
|
||||
template<int D, int ncols, int KQ_stride> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_stream_k_fixup(
|
||||
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne11) {
|
||||
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);
|
||||
|
||||
const int iter_k = ne11 / KQ_stride;
|
||||
const int iter_j = (ne01 + (ncols - 1)) / ncols;
|
||||
|
||||
const int bidx0 = blockIdx.x;
|
||||
|
||||
const int kbc0 = (bidx0 + 0)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
const int kbc0_stop = (bidx0 + 1)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
|
||||
const bool did_not_have_any_data = kbc0 == kbc0_stop;
|
||||
const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
|
||||
const bool did_not_write_last = kbc0/iter_k == kbc0_stop/iter_k && kbc0_stop % iter_k != 0;
|
||||
if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int channel = kbc0 / (iter_k*iter_j);
|
||||
const int jt = (kbc0 - channel*iter_k*iter_j) / iter_k;
|
||||
|
||||
dst += jt*ncols*ne02*D + channel*D;
|
||||
|
||||
// Load the partial result that needs a fixup:
|
||||
float dst_val[ncols] = {0.0f};
|
||||
float max_val[ncols] = {0.0f};
|
||||
float rowsum[ncols] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
break;
|
||||
}
|
||||
dst_val[j] = dst[j*ne02*D + threadIdx.x];
|
||||
|
||||
const float2 tmp = dst_fixup[bidx0*ncols + j];
|
||||
max_val[j] = tmp.x;
|
||||
rowsum[j] = tmp.y;
|
||||
}
|
||||
|
||||
// Iterate over previous blocks and compute the combined results.
|
||||
// All CUDA blocks that get here must have a previous block that needs a fixup.
|
||||
int bidx = bidx0 - 1;
|
||||
int kbc_stop = kbc0;
|
||||
while(true) {
|
||||
const int kbc = bidx*iter_k*iter_j*ne02 / gridDim.x;
|
||||
if (kbc == kbc_stop) { // Did not have any data.
|
||||
bidx--;
|
||||
kbc_stop = kbc;
|
||||
continue;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
break;
|
||||
}
|
||||
const float dst_add = dst_fixup_data[bidx*ncols*D + j*D + threadIdx.x];
|
||||
|
||||
const float2 tmp = dst_fixup[(gridDim.x + bidx)*ncols + j];
|
||||
|
||||
// Scale the current and new value accumulators depending on the max. values.
|
||||
const float max_val_new = fmaxf(max_val[j], tmp.x);
|
||||
|
||||
const float diff_val = max_val[j] - max_val_new;
|
||||
const float diff_add = tmp.x - max_val_new;
|
||||
|
||||
const float scale_val = diff_val >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_val) : 0.0f;
|
||||
const float scale_add = diff_add >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_add) : 0.0f;
|
||||
|
||||
dst_val[j] = scale_val*dst_val[j] + scale_add*dst_add;
|
||||
rowsum[j] = scale_val*rowsum[j] + scale_add*tmp.y;
|
||||
|
||||
max_val[j] = max_val_new;
|
||||
}
|
||||
|
||||
// If this block started in a previous tile we are done and don't need to combine additional partial results.
|
||||
if (kbc % iter_k == 0 || kbc/iter_k < kbc0/iter_k) {
|
||||
break;
|
||||
}
|
||||
bidx--;
|
||||
kbc_stop = kbc;
|
||||
}
|
||||
|
||||
// Write back final result:
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (jt*ncols + j >= ne01) {
|
||||
return;
|
||||
}
|
||||
dst[j*ne02*D + threadIdx.x] = dst_val[j] / rowsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
@ -581,10 +679,11 @@ static void on_no_fattn_vec_case(const int D) {
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int parallel_blocks>
|
||||
// parallel_blocks == 0 is stream-k decomposition
|
||||
template <int D, int cols_per_block, int parallel_blocks, int KQ_stride>
|
||||
void launch_fattn(
|
||||
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
|
||||
const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
|
||||
const int nwarps, const size_t nbytes_shared, const bool need_f16_K, const bool need_f16_V
|
||||
) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
@ -603,20 +702,23 @@ void launch_fattn(
|
||||
|
||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||
|
||||
GGML_ASSERT(Q->ne[3] == 1);
|
||||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t main_stream = ctx.stream();
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
ggml_cuda_pool_alloc<half> K_f16(pool);
|
||||
ggml_cuda_pool_alloc<half> V_f16(pool);
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
char * K_data = (char *) K->data;
|
||||
const char * K_data = (const char *) K->data;
|
||||
size_t nb11 = K->nb[1];
|
||||
size_t nb12 = K->nb[2];
|
||||
size_t nb13 = K->nb[3];
|
||||
|
||||
char * V_data = (char *) V->data;
|
||||
const char * V_data = (const char *) V->data;
|
||||
size_t nb21 = V->nb[1];
|
||||
size_t nb22 = V->nb[2];
|
||||
size_t nb23 = V->nb[3];
|
||||
@ -649,39 +751,60 @@ void launch_fattn(
|
||||
nb23 = nb23*bs*sizeof(half)/ts;
|
||||
}
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
const int ntiles_x = ((Q->ne[1] + cols_per_block - 1) / cols_per_block);
|
||||
const int ntiles_total = ntiles_x*Q->ne[2]*Q->ne[3];
|
||||
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
dim3 blocks_num;
|
||||
if (parallel_blocks == 0) {
|
||||
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
|
||||
const int tiles_nwaves = (ntiles_total - nsm - 1) / nsm;
|
||||
const bool tiles_inefficient = 3*nsm < 2*tiles_nwaves*ntiles_total;
|
||||
const bool short_context = K->ne[1] < 4096;
|
||||
|
||||
const int nblocks_stream_k = 2*nsm;
|
||||
|
||||
blocks_num.x = short_context && !tiles_inefficient ? ntiles_total : nblocks_stream_k;
|
||||
blocks_num.y = 1;
|
||||
blocks_num.z = 1;
|
||||
|
||||
dst_tmp_meta.alloc(blocks_num.x*cols_per_block * (2*2 + D) * sizeof(float));
|
||||
} else {
|
||||
blocks_num.x = parallel_blocks*ntiles_x;
|
||||
blocks_num.y = Q->ne[2];
|
||||
blocks_num.z = Q->ne[3];
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float logit_softcap = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
|
||||
memcpy(&scale, (const float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
scale /= logit_softcap;
|
||||
}
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
const uint32_t n_head_log2 = 1u << uint32_t(floorf(log2f(float(n_head))));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
||||
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
|
||||
(const char *) Q->data,
|
||||
K_data,
|
||||
V_data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
(parallel_blocks) > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
@ -693,16 +816,22 @@ void launch_fattn(
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if ((parallel_blocks) == 1) {
|
||||
return;
|
||||
if constexpr (parallel_blocks == 0) {
|
||||
if (blocks_num.x % ntiles_total != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine = blocks_num;
|
||||
|
||||
flash_attn_stream_k_fixup<D, cols_per_block, KQ_stride>
|
||||
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
|
||||
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], K->ne[1]);
|
||||
}
|
||||
} else if constexpr (parallel_blocks > 1) {
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
637
ggml/src/ggml-cuda/fattn-mma-f16.cuh
Normal file
637
ggml/src/ggml-cuda/fattn-mma-f16.cuh
Normal file
@ -0,0 +1,637 @@
|
||||
#include "common.cuh"
|
||||
#include "mma.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
const half2 * const __restrict__ V_h2,
|
||||
const half * const __restrict__ maskh,
|
||||
float2 * const __restrict__ dstk,
|
||||
float2 * const __restrict__ dstk_fixup,
|
||||
const float scale,
|
||||
const float slope,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3,
|
||||
const int jt,
|
||||
const int kb0_start,
|
||||
const int kb0_stop) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
typedef mma_C_I16J8<float> mma_C_KQ;
|
||||
typedef mma_C_I16J8<half2> mma_C_VKQ;
|
||||
|
||||
static_assert(nwarps*mma_B::J % ncols == 0, "bad nwarps");
|
||||
constexpr int np = nwarps*mma_B::J / ncols; // Number of parallel CUDA warps per Q column.
|
||||
|
||||
static_assert(D % nwarps == 0, "bad D");
|
||||
static_assert(KQ_stride % nwarps == 0, "bad KQ_stride");
|
||||
|
||||
constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
|
||||
extern __shared__ half2 tile_KV[]; // Temporary shared buffer for loading K/V data with KQ_stride*D logical elements.
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float2);
|
||||
const int stride_KV = nb11 / sizeof(half2);
|
||||
const int stride_mask = nb31 / sizeof(half);
|
||||
|
||||
mma_B Q_B[D/(2*mma_B::K)];
|
||||
mma_C_VKQ VKQ_C[D/mma_C_VKQ::I];
|
||||
|
||||
float2 KQ_rowsum = {0.0f, 0.0f};
|
||||
float2 KQ_max = {-FLT_MAX/2.0f, -FLT_MAX/2.0f};
|
||||
float2 KQ_max_scale = {0.0f, 0.0f};
|
||||
|
||||
// Temporarily load Q data into tile_KV, will be loaded into registers afterwards.
|
||||
// The loading is done with decreasing granularity for D for better memory bandwidth.
|
||||
const half2 scale_h2 = make_half2(scale, scale);
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps*stride_j) {
|
||||
const int j = j0 + threadIdx.y*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
if (jt*ncols + j < ne01) {
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
const float2 tmp = Q_f2[(jt*ncols + j)*stride_Q + k];
|
||||
tile_KV[j*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[j*D2_padded + k] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
{
|
||||
const int j0 = (threadIdx.y / np) * mma_B::J;
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
Q_B[k0/mma_B::K].load_ldmatrix(tile_KV + j0*D2_padded + k0, D2_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop; ++kb0) {
|
||||
const int k_VKQ_0 = kb0*KQ_stride;
|
||||
mma_C_KQ KQ_C[KQ_stride/(np*mma_C_KQ::I)];
|
||||
|
||||
// Load K data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_i = WARP_SIZE / stride_k;
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < KQ_stride; i_KQ_0 += nwarps*stride_i) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += stride_k) {
|
||||
const int k_KQ = k_KQ_0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[i_KQ*D2_padded + k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV + k_KQ];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_00 = 0; i_KQ_00 < KQ_stride; i_KQ_00 += np*mma_A::I) {
|
||||
const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*mma_A::I;
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += mma_A::K) {
|
||||
mma_A K_A;
|
||||
K_A.load_ldmatrix(tile_KV + i_KQ_0*D2_padded + k_KQ_0, D2_padded);
|
||||
KQ_C[i_KQ_00/(np*mma_A::I)].mma(K_A, Q_B[k_KQ_0/mma_A::K]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (use_logit_softcap) {
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i = 0; i < KQ_stride/(np*mma_C_KQ::I); ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maskh) {
|
||||
static_assert(KQ_stride % (np *mma_C_KQ::I) == 0, "bad loop size");
|
||||
static_assert(ncols % (nwarps/np*mma_C_KQ::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < KQ_stride; i00 += np*mma_C_KQ::I) {
|
||||
const int i0 = i00 + (threadIdx.y % np)*mma_C_KQ::I;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const int i = i0 + mma_C_KQ::get_i(l);
|
||||
const int j = (threadIdx.y / np)*mma_C_KQ::J + mma_C_KQ::get_j(l);
|
||||
|
||||
KQ_C[i00/(np*mma_C_KQ::I)].x[l] += slope*__half2float(maskh[j*stride_mask + k_VKQ_0 + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
float2 KQ_max_new = KQ_max;
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < mma_C_KQ::ne; l0 += 2) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, KQ_C[k].x[l0 + 0]);
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, KQ_C[k].x[l0 + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Values per KQ column are spread across 8 threads, does not need full warp reduce:
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.x, offset, WARP_SIZE));
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.y, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
{
|
||||
const float2 diff = make_float2(KQ_max.x - KQ_max_new.x, KQ_max.y - KQ_max_new.y);
|
||||
KQ_max_scale = make_float2(expf(diff.x), expf(diff.y));
|
||||
if (diff.x <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.x = 0.0f;
|
||||
}
|
||||
if (diff.y <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.y = 0.0f;
|
||||
}
|
||||
KQ_max = KQ_max_new;
|
||||
}
|
||||
|
||||
float2 KQ_rowsum_add = make_float2(0.0f, 0.0f);
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const float KQ_max_l = l % 2 == 0 ? KQ_max.x : KQ_max.y;
|
||||
const float diff = KQ_C[k].x[l] - KQ_max_l;
|
||||
KQ_C[k].x[l] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_C[k].x[l] = 0.0f;
|
||||
}
|
||||
|
||||
if (l % 2 == 0) {
|
||||
KQ_rowsum_add.x += KQ_C[k].x[l];
|
||||
} else {
|
||||
KQ_rowsum_add.y += KQ_C[k].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum.x = KQ_max_scale.x*KQ_rowsum.x + KQ_rowsum_add.x;
|
||||
KQ_rowsum.y = KQ_max_scale.y*KQ_rowsum.y + KQ_rowsum_add.y;
|
||||
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale.x, KQ_max_scale.y);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < D/mma_C_VKQ::I; ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_VKQ::ne; ++l) {
|
||||
VKQ_C[i].x[l] *= KQ_max_scale_h2;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert KQ C tiles into B tiles for VKQ calculation:
|
||||
mma_B B[KQ_stride/(np*2*mma_B::K)];
|
||||
static_assert(KQ_stride % (np*2*mma_B::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*2*mma_B::K); ++k) {
|
||||
B[k] = KQ_C[k].to_mma_B();
|
||||
}
|
||||
|
||||
// Load V data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_i : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int i0_start = stride_i == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_i);
|
||||
const int i0_stop = D/2 - (D/2) % (1*stride_i);
|
||||
const int stride_k = WARP_SIZE / stride_i;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_V_0 = 0; k_V_0 < KQ_stride; k_V_0 += nwarps*stride_k) {
|
||||
const int k_V = k_V_0 + threadIdx.y*stride_k + (stride_i == WARP_SIZE ? 0 : threadIdx.x / stride_i);
|
||||
|
||||
#pragma unroll
|
||||
for (int i_V_0 = i0_start; i_V_0 < i0_stop; i_V_0 += stride_i) {
|
||||
const int i_V = i_V_0 + (stride_i == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_i);
|
||||
|
||||
tile_KV[k_V*D2_padded + i_V] = V_h2[(k_VKQ_0 + k_V)*stride_KV + i_V];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate VKQ tile:
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += mma_C_VKQ::I) {
|
||||
static_assert((KQ_stride/2) % (np*mma_A::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k00 = 0; k00 < KQ_stride/2; k00 += np*mma_A::K) {
|
||||
const int k0 = k00 + (threadIdx.y % np)*mma_A::K;
|
||||
|
||||
mma_A A;
|
||||
A.load_ldmatrix_trans(tile_KV + 2*k0*D2_padded + i_VKQ_0/2, D2_padded);
|
||||
VKQ_C[i_VKQ_0/mma_C_VKQ::I].mma(A, B[k00/(np*mma_A::K)]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Finally, sum up partial KQ rowsums.
|
||||
// The partial sums are spread across 8 threads each, does not need full reduce.
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_rowsum.x += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.x, offset, WARP_SIZE);
|
||||
KQ_rowsum.y += __shfl_xor_sync(0xFFFFFFFF, KQ_rowsum.y, offset, WARP_SIZE);
|
||||
}
|
||||
|
||||
// Write VKQ accumulators to shared memory in column-major format.
|
||||
// It's faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
|
||||
// Also for np > 1 the combination is done via these values in shared memory.
|
||||
const int j_cwd = threadIdx.y*mma_B::J + mma_B::get_j(-1); // j combine write data
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
const mma_B B = VKQ_C[k0/mma_B::K].to_mma_B(); // Conversion of C to B matrix puts it in column-major format.
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_B::ne; ++l) {
|
||||
const int k = k0 + mma_B::get_k(l);
|
||||
|
||||
tile_KV[j_cwd*D2_padded + k] = B.x[l];
|
||||
}
|
||||
}
|
||||
|
||||
const int j_cwmo = (threadIdx.x % (2*mma_C_VKQ::J)) / mma_C_VKQ::J; // j combine write meta offset
|
||||
const int j_cwm = threadIdx.y*(2*mma_C_VKQ::J) + 2*mma_C_VKQ::get_j(-1) + j_cwmo; // j combine write meta
|
||||
const float2 KQ_cmr = make_float2(((const float *) &KQ_max)[j_cwmo], ((const float *) &KQ_rowsum)[j_cwmo]); // KQ combine max rowsum
|
||||
|
||||
if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*mma_C_VKQ::J) {
|
||||
// Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale.
|
||||
((float2 *) tile_KV)[j_cwm*(D2_padded/2) + D/4] = KQ_cmr;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
static_assert(np == 1 || np == 2 || np == 4, "bad np");
|
||||
if (np == 1) {
|
||||
// No combination is needed, the meta data can be directly written from registers to VRAM.
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
} else if (threadIdx.y % np == 0) {
|
||||
// Combine the meta data for parallel warps via shared memory.
|
||||
// Warps with threadIdx.y % np != 0 must NOT return early.
|
||||
// All threads must return simultaneously to avoid race conditions with work on the next tile.
|
||||
|
||||
float * meta_j = (float *) tile_KV + (threadIdx.y*mma_B::J + threadIdx.x)*D2_padded + D/2;
|
||||
|
||||
float KQ_cm = -FLT_MAX/2; // KQ combine max per parallel warp.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
KQ_cm = meta_j[0];
|
||||
}
|
||||
|
||||
float KQ_cmn = KQ_cm; // KQ combine max new, max between all parallel warps.
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
const float KQ_cms = expf(KQ_cm - KQ_cmn); // KQ combine max scale per warp.
|
||||
float KQ_crs = 0.0f; // KQ combine rowsum, scaled sum of all parallel warps.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
KQ_crs = KQ_cms*meta_j[1];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
|
||||
}
|
||||
|
||||
// Write back combined meta data:
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
meta_j[0] = KQ_cmn; // Combined max. KQ values.
|
||||
meta_j[1] = KQ_crs; // Combined KQ rowsums.
|
||||
meta_j[2] = KQ_cms; // KQ max scales per parallel warp.
|
||||
}
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
}
|
||||
|
||||
if (np > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (np == 1 || threadIdx.y % np == 0) {
|
||||
// The first 2*2*gridDim.x*ncols floats in dstk_fixup are for storing max. values and row sums.
|
||||
// The values after that are for the partial results of the individual blocks.
|
||||
float2 * dstk_fixup_data = dstk_fixup + gridDim.x*(2*ncols) + blockIdx.x*(ncols*(D/2));
|
||||
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0_dst = 0; j0_dst < ncols; j0_dst += (nwarps/np)*stride_j) {
|
||||
const int j_dst = j0_dst + (threadIdx.y/np)*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
const int j_tile_KV = (j_dst/mma_B::J)*(np*mma_B::J) + j_dst % mma_B::J;
|
||||
|
||||
if (!is_fixup && jt*ncols + j_dst >= ne01) {
|
||||
continue;
|
||||
}
|
||||
const float * meta_j = (const float *) tile_KV + j_tile_KV*D2_padded + D/2;
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
float2 dstk_val = make_float2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int ip = 0; ip < np; ++ip) {
|
||||
const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*mma_B::J*D2_padded + 2];
|
||||
const float2 dstk_val_add = __half22float2(tile_KV[(j_tile_KV + ip*mma_B::J)*D2_padded + k]);
|
||||
dstk_val.x += dstk_val_add.x*KQ_crs;
|
||||
dstk_val.y += dstk_val_add.y*KQ_crs;
|
||||
}
|
||||
|
||||
if (!needs_fixup && !is_fixup) {
|
||||
const float KQ_rowsum_j = meta_j[1];
|
||||
dstk_val.x /= KQ_rowsum_j;
|
||||
dstk_val.y /= KQ_rowsum_j;
|
||||
}
|
||||
|
||||
if (is_fixup) {
|
||||
dstk_fixup_data[j_dst*(D/2) + k] = dstk_val;
|
||||
} else {
|
||||
dstk[(jt*ncols + j_dst)*ne02*(D/2) + k] = dstk_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (np > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
static_assert(FATTN_KQ_STRIDE % KQ_stride == 0, "bad KQ_stride");
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
|
||||
const int iter_k = ne11 / KQ_stride;
|
||||
const int iter_j = (ne01 + (ncols - 1)) / ncols;
|
||||
|
||||
// kbc == k block continuous, current index in continuous ijk space.
|
||||
int kbc = (blockIdx.x + 0)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
const int kbc_stop = (blockIdx.x + 1)*iter_k*iter_j*ne02 / gridDim.x;
|
||||
|
||||
// If the seams of 2 CUDA blocks fall within an output tile their results need to be combined.
|
||||
// For this we need to track both the block that starts the tile (needs_fixup) and the block that finishes the tile (is_fixup).
|
||||
// In the most general case >2 seams can fall into the same tile.
|
||||
|
||||
// kb0 == k start index when in the output tile.
|
||||
int kb0_start = kbc % iter_k;
|
||||
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
|
||||
while (kbc < kbc_stop && kb0_stop == iter_k) {
|
||||
const int channel = kbc / (iter_k*iter_j);
|
||||
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = mask ? (const half *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(D/2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);
|
||||
|
||||
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
|
||||
if (kb0_start == 0) {
|
||||
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
} else {
|
||||
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
kbc += iter_k;
|
||||
kbc -= kbc % iter_k;
|
||||
|
||||
kb0_start = 0;
|
||||
kb0_stop = min(iter_k, kbc_stop - kbc);
|
||||
}
|
||||
|
||||
if (kbc >= kbc_stop) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int channel = kbc / (iter_k*iter_j);
|
||||
const int jt = (kbc - channel*iter_k*iter_j) / iter_k; // j index of current tile.
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(channel / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(channel / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = mask ? (const half *) mask + (nb31/sizeof(half))*jt*ncols : nullptr;
|
||||
float2 * dstk = ((float2 *) dst) + channel*(D/2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, channel, n_head_log2, m0, m1);
|
||||
|
||||
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
|
||||
constexpr bool needs_fixup = false;
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block>
|
||||
void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
|
||||
static_assert(D % mma_B::K == 0, "bad D");
|
||||
static_assert(cols_per_block % mma_B::J == 0, "bad cols_per_block");
|
||||
|
||||
const ggml_tensor * KQV = dst;
|
||||
|
||||
constexpr int KQ_stride = D <= 128 ? 64 : 32;
|
||||
constexpr int nwarps = (KQ_stride == 32 && cols_per_block <= 16) ?
|
||||
cols_per_block/mma_B::J * KQ_stride/mma_A::I : (cols_per_block <= 8 ? 4 : 8);
|
||||
constexpr size_t nbytes_shared = std::max(KQ_stride, nwarps*mma_B::J) * (D + 8) * sizeof(half);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, KQ_stride, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, 0, KQ_stride>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
}
|
||||
|
||||
#define DECL_FATTN_MMA_F16_CASE(D, cols_per_block) \
|
||||
template void ggml_cuda_flash_attn_ext_mma_f16_case \
|
||||
<D, cols_per_block>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 8);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 8);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 16);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 16);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 32);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 32);
|
||||
|
||||
extern DECL_FATTN_MMA_F16_CASE( 64, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 80, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE( 96, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(112, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(128, 64);
|
||||
extern DECL_FATTN_MMA_F16_CASE(256, 64);
|
@ -45,7 +45,17 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
@ -288,16 +298,18 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
@ -48,7 +48,12 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
@ -287,16 +292,18 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
@ -42,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
@ -303,7 +309,8 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, need_f16_K, need_f16_V);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
@ -41,6 +41,11 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
@ -284,7 +289,8 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, need_f16_K, need_f16_V);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
|
648
ggml/src/ggml-cuda/fattn-wmma-f16.cu
Normal file
648
ggml/src/ggml-cuda/fattn-wmma-f16.cu
Normal file
@ -0,0 +1,648 @@
|
||||
// Old and deprecated WMMA FlashAttention implementation.
|
||||
// It is still needed for Volta since the memory layout of NVIDIA tensor cores changed with Turing.
|
||||
// Long-term the WMMA code should be replaced with a dedicated Volta implementation.
|
||||
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#include <mma.h>
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||
|
||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||
|
||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||
constexpr int D_padded = D + 8;
|
||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||
float * KQ_f = (float *) KQ;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||
float KQ_max_f[ncols/nwarps];
|
||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
half2 KQ_max_h2[ncols/nwarps];
|
||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||
}
|
||||
|
||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||
half2 * VKQ2 = (half2 *) VKQ;
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
frag_c_KQ KQ_c[ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||
frag_a_K K_a;
|
||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
|
||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||
}
|
||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||
|
||||
float KQ_rowsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||
}
|
||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||
} else {
|
||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
// There is no dedicated tangens hyperbolicus function for half2.
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
|
||||
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
|
||||
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
|
||||
}
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||
|
||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
nvcuda::wmma::load_matrix_sync(
|
||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||
KQ + j0*(kqar*kqs_padded) + k,
|
||||
kqar*kqs_padded);
|
||||
}
|
||||
}
|
||||
|
||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
|
||||
frag_a_V v_a;
|
||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync(
|
||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||
D_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
half2 VKQ_scale;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||
} else {
|
||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
|
||||
float KQ_rowsum_j;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||
} else {
|
||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= KQ_rowsum_j;
|
||||
}
|
||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float2 dst_meta_val;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||
} else {
|
||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||
}
|
||||
dst_meta_val.y = KQ_rowsum_j;
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
|
||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||
|
||||
// Number of VKQ rows calculated in parallel:
|
||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||
}
|
||||
|
||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
constexpr int nwarps = 4;
|
||||
|
||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
return;
|
||||
}
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, 0, true, true);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
||||
|
||||
if (prec != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
// case 256:
|
||||
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
// break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
@ -1,543 +1,3 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#include <mma.h>
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
||||
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
||||
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
||||
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
||||
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
||||
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
||||
|
||||
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
||||
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
||||
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
||||
|
||||
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
||||
constexpr int D_padded = D + 8;
|
||||
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
||||
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
||||
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
||||
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
||||
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
||||
float * KQ_f = (float *) KQ;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
||||
float KQ_max_f[ncols/nwarps];
|
||||
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_f[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
half2 KQ_max_h2[ncols/nwarps];
|
||||
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
||||
}
|
||||
|
||||
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
||||
half2 * VKQ2 = (half2 *) VKQ;
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Q to half and apply scale, temporarily store in KQ:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Load Q into tensor core fragments/registers since it will be used frequently:
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 16) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
||||
frag_c_KQ KQ_c[ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
||||
frag_a_K K_a;
|
||||
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
|
||||
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
||||
}
|
||||
KQ_max_f[j0/nwarps] = KQ_max_new;
|
||||
|
||||
float KQ_rowsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
||||
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
||||
}
|
||||
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
||||
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
||||
} else {
|
||||
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
// There is no dedicated tangens hyperbolicus function for half2.
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
|
||||
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
|
||||
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
|
||||
}
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
||||
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
||||
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
||||
|
||||
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
||||
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
||||
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
||||
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
||||
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
||||
}
|
||||
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
nvcuda::wmma::load_matrix_sync(
|
||||
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
||||
KQ + j0*(kqar*kqs_padded) + k,
|
||||
kqar*kqs_padded);
|
||||
}
|
||||
}
|
||||
|
||||
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
||||
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
||||
|
||||
frag_a_V v_a;
|
||||
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/frag_n; ++j) {
|
||||
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
||||
nvcuda::wmma::store_matrix_sync(
|
||||
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
||||
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
||||
D_padded, nvcuda::wmma::mem_col_major);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
half2 VKQ_scale;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
||||
} else {
|
||||
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < VKQ_ratio; ++l) {
|
||||
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
||||
}
|
||||
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
|
||||
float KQ_rowsum_j;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
||||
} else {
|
||||
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D && i >= D) {
|
||||
break;
|
||||
}
|
||||
float dst_val = VKQ[j_VKQ*D_padded + i];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= KQ_rowsum_j;
|
||||
}
|
||||
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float2 dst_meta_val;
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
||||
} else {
|
||||
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
||||
}
|
||||
dst_meta_val.y = KQ_rowsum_j;
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
|
||||
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
||||
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
||||
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
||||
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
||||
|
||||
// Number of VKQ rows calculated in parallel:
|
||||
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
||||
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
||||
}
|
||||
|
||||
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
constexpr int nwarps = 4;
|
||||
|
||||
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
}
|
||||
|
||||
#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
|
||||
template void ggml_cuda_flash_attn_ext_wmma_f16_case \
|
||||
<D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
||||
// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||
extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-mma-f16.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
@ -7,144 +8,56 @@
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
template <int cols_per_block>
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16_switch_hs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
||||
|
||||
if (prec != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
break;
|
||||
// case 256:
|
||||
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
||||
// break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
||||
constexpr int cols_per_block = 8;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 16;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 64, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 80, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 96:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case< 96, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 112:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<112, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 128:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<128, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
case 256:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
||||
ggml_cuda_flash_attn_ext_mma_f16_case<256, cols_per_block>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<8>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<16>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<32>(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16_switch_hs<64>(ctx, dst);
|
||||
}
|
||||
|
||||
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
||||
@ -322,11 +235,19 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
if (!new_mma_available(cc)) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
@ -341,5 +262,10 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
}
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
|
||||
if (cc == GGML_CUDA_CC_VOLTA) {
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16(ctx, dst);
|
||||
}
|
||||
|
@ -1,11 +1,67 @@
|
||||
// This file contains primitives that expose the tensor core PTX instructions for CUDA code.
|
||||
// The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout.
|
||||
// The documentation for the PTX instructions can be found under:
|
||||
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-multiply-accumulate-operation-using-mma-instruction
|
||||
//
|
||||
// Like with nvcuda::wmma there are three types of matrix tiles: A, B, and C with A @ B = C.
|
||||
// A is a row-major matrix with shape I x K.
|
||||
// B is a column-major matrix with shape K x J.
|
||||
// C is a column-major matrix with shape I x J.
|
||||
// Note that along their lowest dimension I, J, and K are measured in physical 32 bit elements instead of logical elements.
|
||||
// The functions get_i, get_j, and get_k can be used to get the physical 32 bit index of the lth element of a thread within a tile.
|
||||
// All matrix tiles have ne physical 32 bit elements per warp.
|
||||
//
|
||||
// As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
struct mma_int_A_I16K4 {
|
||||
|
||||
#if CUDART_VERSION >= 11800
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
||||
int ret = 0;
|
||||
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;"
|
||||
: "+r"(ret) : "r"(x));
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(NEW_MMA_AVAILABLE)
|
||||
return ret;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
||||
// Imagine transposing row-major matrix to column-major matrix.
|
||||
const int src_i_low = 2 * (threadIdx.x % 4);
|
||||
const int src_i_high = src_i_low + 1;
|
||||
const int src_j = threadIdx.x / 4;
|
||||
|
||||
const int src_laneid_low = src_i_low * 4 + src_j / 2;
|
||||
const int src_laneid_high = src_i_high * 4 + src_j / 2;
|
||||
|
||||
const int shift_low = ((src_j + 0) % 2) * 16;
|
||||
const int shift_high = ((src_j + 1) % 2) * 16;
|
||||
|
||||
const int ret_low = (__shfl_sync(0xFFFFFFFF, x, src_laneid_low, WARP_SIZE) >> shift_low) & 0x0000FFFF;
|
||||
const int ret_high = (__shfl_sync(0xFFFFFFFF, x, src_laneid_high, WARP_SIZE) << shift_high) & 0xFFFF0000;
|
||||
|
||||
return ret_low | ret_high;
|
||||
}
|
||||
|
||||
#endif // CUDART_VERSION >= 11800
|
||||
|
||||
|
||||
template <typename T>
|
||||
struct mma_A_I16K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / K;
|
||||
@ -21,27 +77,35 @@ struct mma_int_A_I16K4 {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE)
|
||||
const int * xs = xs0 + (threadIdx.x%I)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_A_I16K8 {
|
||||
template <typename T>
|
||||
struct mma_A_I16K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
|
||||
@ -57,31 +121,62 @@ struct mma_int_A_I16K8 {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE)
|
||||
const int * xs = xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_low(const int * __restrict__ xs0, const int & stride) {
|
||||
((mma_int_A_I16K4 *) x)[0].load(xs0, stride);
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix_trans(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[2]), "+r"(xi[1]), "+r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void transpose() {
|
||||
int * xi = (int *) x;
|
||||
xi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
|
||||
const int tmp = ggml_cuda_movmatrix(xi[1]);
|
||||
xi[1] = ggml_cuda_movmatrix(xi[2]);
|
||||
xi[2] = tmp;
|
||||
|
||||
xi[3] = ggml_cuda_movmatrix(xi[3]);
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_B_J8K4 {
|
||||
template <typename T>
|
||||
struct mma_B_J8K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 1;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / K;
|
||||
@ -97,27 +192,34 @@ struct mma_int_B_J8K4 {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
|
||||
const int * xs = xs0 + (threadIdx.x%J)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
|
||||
: "+r"(x[0])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
|
||||
: "+r"(xi[0]) : "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_B_J8K8 {
|
||||
template <typename T>
|
||||
struct mma_B_J8K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
int x[ne] = {0};
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / (K/2);
|
||||
@ -133,22 +235,31 @@ struct mma_int_B_J8K8 {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load(const int * __restrict__ xs0, const int & stride) {
|
||||
#if defined(INT8_MMA_AVAILABLE) && false // Loading as 4 byte values is faster
|
||||
const int * xs = xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
#endif // defined(INT8_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
struct mma_int_C_I16J8 {
|
||||
template <typename T>
|
||||
struct mma_C_I16J8 {};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<int> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
@ -169,8 +280,8 @@ struct mma_int_C_I16J8 {
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma_K4(const mma_int_A_I16K4 & mma_A, const mma_int_B_J8K4 & mma_B) {
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K4<int> & mma_A, const mma_B_J8K4<int> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
@ -188,11 +299,11 @@ struct mma_int_C_I16J8 {
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma_K8(const mma_int_A_I16K8 & mma_A, const mma_int_B_J8K8 & mma_B) {
|
||||
#ifdef INT8_MMA_AVAILABLE
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<int> & mma_A, const mma_B_J8K8<int> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
@ -216,6 +327,132 @@ struct mma_int_C_I16J8 {
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // INT8_MMA_AVAILABLE
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<half2> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 4;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
half2 x[ne] = {{0.0f, 0.0f}, {0.0f, 0.0f}};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = l * (I/2) + threadIdx.x / J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x % J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
|
||||
int * xi = (int *) x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(xi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<float> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
float x[ne] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
mma_B.x[0] = make_half2(x[0], x[1]);
|
||||
mma_B.x[1] = make_half2(x[2], x[3]);
|
||||
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(Bxi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(Bxi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const float * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_i(l)];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -132,7 +132,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (int8_mma_available(cc)) {
|
||||
if (new_mma_available(cc)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,10 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 16);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 16);
|
@ -0,0 +1,10 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 32);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 32);
|
@ -0,0 +1,10 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 64);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 64);
|
@ -0,0 +1,10 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
DECL_FATTN_MMA_F16_CASE(64, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(80, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(96, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(112, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(128, 8);
|
||||
DECL_FATTN_MMA_F16_CASE(256, 8);
|
@ -1,10 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
@ -1,9 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
@ -1,10 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
@ -1,10 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(80, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 32, half);
|
@ -1,8 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
|
||||
DECL_FATTN_WMMA_F16_CASE(64, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(96, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
||||
DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
@ -12,13 +12,13 @@ SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.p
|
||||
DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
|
||||
"""
|
||||
|
||||
SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
SOURCE_FATTN_MMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-wmma-f16.cuh"
|
||||
#include "../fattn-mma-f16.cuh"
|
||||
|
||||
"""
|
||||
|
||||
SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
|
||||
SOURCE_FATTN_MMA_CASE = "DECL_FATTN_MMA_F16_CASE({head_size}, {cols_per_block});\n"
|
||||
|
||||
TYPES_MMQ = [
|
||||
"GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0",
|
||||
@ -57,20 +57,12 @@ for vkq_size in [16, 32]:
|
||||
with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
|
||||
|
||||
for kq_acc_t in ["half", "float"]:
|
||||
for cols_per_block in [8, 16, 32]:
|
||||
if kq_acc_t == "float" and cols_per_block == 8:
|
||||
continue
|
||||
for cols_per_block in [8, 16, 32, 64]:
|
||||
with open(f"fattn-mma-f16-instance-cpb{cols_per_block}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_MMA_START)
|
||||
|
||||
with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
|
||||
f.write(SOURCE_FATTN_WMMA_START)
|
||||
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
|
||||
continue
|
||||
if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
|
||||
continue
|
||||
f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
|
||||
for head_size in [64, 80, 96, 112, 128, 256]:
|
||||
f.write(SOURCE_FATTN_MMA_CASE.format(cols_per_block=cols_per_block, head_size=head_size))
|
||||
|
||||
for type in TYPES_MMQ:
|
||||
with open(f"mmq-instance-{get_short_name(type)}.cu", "w") as f:
|
||||
|
1
ggml/src/ggml-cuda/vendors/hip.h
vendored
1
ggml/src/ggml-cuda/vendors/hip.h
vendored
@ -25,6 +25,7 @@
|
||||
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
|
||||
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
|
||||
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
|
||||
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
|
||||
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||
#define cublasCreate hipblasCreate
|
||||
|
@ -50,7 +50,7 @@ file(GLOB GGML_HEADERS_ROCM "../ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_ROCM "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_ROCM "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
|
@ -29,7 +29,7 @@ if (MUSAToolkit_FOUND)
|
||||
list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-wmma*.cu")
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_MUSA ${SRCS})
|
||||
|
Loading…
x
Reference in New Issue
Block a user