mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-26 05:49:49 +00:00
whisper : calculate mel spectrogram directly into a ggml_tensor (#2208)
* whisper : calculate mel spectrogram directly into a ggml_tensor * whisper : remove unused temp buffer from state * whisper : fix not initializing wstate.embd_enc
This commit is contained in:
parent
ffef323c4c
commit
f842d31171
@ -8,6 +8,7 @@
|
|||||||
#include <cublas_v2.h>
|
#include <cublas_v2.h>
|
||||||
#include <cuComplex.h>
|
#include <cuComplex.h>
|
||||||
#include <cub/device/device_reduce.cuh>
|
#include <cub/device/device_reduce.cuh>
|
||||||
|
#include <device_launch_parameters.h>
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
|
||||||
@ -301,27 +302,23 @@ public:
|
|||||||
&fzero,
|
&fzero,
|
||||||
mel_data, int(n_mag_frames)));
|
mel_data, int(n_mag_frames)));
|
||||||
|
|
||||||
float * log_mels = nullptr;
|
whisper_mel ret;
|
||||||
CUDA_CHECK(cudaMallocAsync(&log_mels, m_n_mel * n_mag_frames * sizeof(float), m_stream));
|
// Calculate semi-padded sample length to ensure compatibility
|
||||||
|
int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||||
|
ret.init(m_backend, int(n_mag_frames), n_len_org, m_n_mel);
|
||||||
|
assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float));
|
||||||
|
|
||||||
|
float* log_mels = reinterpret_cast<float*>(ret.tensor->data);
|
||||||
|
|
||||||
calc_log_mel(
|
calc_log_mel(
|
||||||
mel_data, int(m_n_mel * n_mag_frames),
|
mel_data, int(m_n_mel * n_mag_frames),
|
||||||
m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
|
m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
|
||||||
log_mels, m_stream);
|
log_mels, m_stream);
|
||||||
|
|
||||||
whisper_mel ret;
|
|
||||||
ret.n_mel = m_n_mel;
|
|
||||||
ret.n_len = int(n_mag_frames);
|
|
||||||
// Calculate semi-padded sample length to ensure compatibility
|
|
||||||
ret.n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
|
||||||
ret.data.resize(m_n_mel * n_mag_frames);
|
|
||||||
CUDA_CHECK(cudaMemcpyAsync(ret.data.data(), log_mels, ret.data.size() * sizeof(float), cudaMemcpyDeviceToHost, m_stream));
|
|
||||||
|
|
||||||
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
||||||
|
|
||||||
// cleanup
|
// cleanup
|
||||||
CUFFT_CHECK(cufftDestroy(plan));
|
CUFFT_CHECK(cufftDestroy(plan));
|
||||||
CUDA_CHECK(cudaFreeAsync(log_mels, m_stream));
|
|
||||||
CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
|
CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
|
||||||
CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
|
CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
|
||||||
CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
|
CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
|
||||||
|
@ -3,11 +3,23 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
struct whisper_mel {
|
struct whisper_mel {
|
||||||
int n_len;
|
int n_len_org = 0;
|
||||||
int n_len_org;
|
|
||||||
int n_mel;
|
|
||||||
|
|
||||||
std::vector<float> data;
|
ggml_tensor * tensor = nullptr;
|
||||||
|
ggml_context * ctx = nullptr;
|
||||||
|
ggml_backend_buffer_t buffer = nullptr;
|
||||||
|
|
||||||
|
whisper_mel() = default;
|
||||||
|
~whisper_mel();
|
||||||
|
|
||||||
|
whisper_mel(const whisper_mel &) = delete;
|
||||||
|
whisper_mel & operator=(const whisper_mel &) = delete;
|
||||||
|
whisper_mel(whisper_mel &&) noexcept;
|
||||||
|
whisper_mel & operator=(whisper_mel &&) noexcept;
|
||||||
|
|
||||||
|
void init(ggml_backend_t backend, int n_len, int n_len_org, int n_mel);
|
||||||
|
void reset();
|
||||||
|
void take(whisper_mel & other) noexcept;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct whisper_filters {
|
struct whisper_filters {
|
||||||
|
168
whisper.cpp
168
whisper.cpp
@ -821,7 +821,6 @@ struct whisper_state {
|
|||||||
struct ggml_tensor * embd_enc = nullptr;
|
struct ggml_tensor * embd_enc = nullptr;
|
||||||
|
|
||||||
// helpers for GPU offloading
|
// helpers for GPU offloading
|
||||||
std::vector<float> inp_mel;
|
|
||||||
std::vector<float> inp_mask;
|
std::vector<float> inp_mask;
|
||||||
|
|
||||||
// decode output (2-dimensional array: [n_tokens][n_vocab])
|
// decode output (2-dimensional array: [n_tokens][n_vocab])
|
||||||
@ -1815,7 +1814,8 @@ static bool whisper_encode_external(const whisper_state & wstate) {
|
|||||||
|
|
||||||
static struct ggml_cgraph * whisper_build_graph_conv(
|
static struct ggml_cgraph * whisper_build_graph_conv(
|
||||||
whisper_context & wctx,
|
whisper_context & wctx,
|
||||||
whisper_state & wstate) {
|
whisper_state & wstate,
|
||||||
|
const int mel_offset) {
|
||||||
const auto & model = wctx.model;
|
const auto & model = wctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
@ -1834,9 +1834,32 @@ static struct ggml_cgraph * whisper_build_graph_conv(
|
|||||||
|
|
||||||
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
|
ggml_tensor * mel_inp = wstate.mel.tensor;
|
||||||
ggml_set_name(mel, "mel");
|
ggml_tensor * mel;
|
||||||
ggml_set_input(mel);
|
if (mel_inp) {
|
||||||
|
const int n_len = int(mel_inp->ne[0]);
|
||||||
|
const int out_s = 2 * n_ctx;
|
||||||
|
const int i0 = std::min(mel_offset, n_len);
|
||||||
|
const int i1 = std::min(mel_offset + out_s, n_len);
|
||||||
|
const int mel_s = i1 - i0;
|
||||||
|
|
||||||
|
assert(mel_inp->type == GGML_TYPE_F32);
|
||||||
|
assert(mel_inp->ne[1] == n_mels);
|
||||||
|
|
||||||
|
ggml_tensor * cur = ggml_view_2d(ctx0, mel_inp, out_s, n_mels, mel_inp->nb[1], ggml_row_size(mel_inp->type, i0));
|
||||||
|
|
||||||
|
if (mel_s < out_s) {
|
||||||
|
mel = ggml_pad(ctx0, cur, out_s - mel_s, 0, 0, 0);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
mel = ggml_cont(ctx0, cur);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// just create some tensor so that the graph/buffer size estimation is correct
|
||||||
|
mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2 * n_ctx, n_mels);
|
||||||
|
}
|
||||||
|
ggml_set_name(mel, "mel"); // used with external encoding
|
||||||
|
|
||||||
struct ggml_tensor * cur = nullptr;
|
struct ggml_tensor * cur = nullptr;
|
||||||
|
|
||||||
@ -2218,45 +2241,21 @@ static bool whisper_encode_internal(
|
|||||||
{
|
{
|
||||||
auto & alloc = wstate.alloc_conv.alloc;
|
auto & alloc = wstate.alloc_conv.alloc;
|
||||||
|
|
||||||
ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate);
|
ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate, mel_offset);
|
||||||
|
|
||||||
if (!ggml_gallocr_alloc_graph(alloc, gf)) {
|
if (!ggml_gallocr_alloc_graph(alloc, gf)) {
|
||||||
// should never happen as we pre-allocate the memory
|
// should never happen as we pre-allocate the memory
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
|
|
||||||
|
|
||||||
// set the input
|
|
||||||
{
|
|
||||||
const auto & mel_inp = wstate.mel;
|
|
||||||
const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : wctx.model.hparams.n_audio_ctx;
|
|
||||||
|
|
||||||
assert(mel->type == GGML_TYPE_F32);
|
|
||||||
assert(mel_inp.n_mel == wctx.model.hparams.n_mels);
|
|
||||||
|
|
||||||
wstate.inp_mel.resize(ggml_nelements(mel));
|
|
||||||
|
|
||||||
float * dst = wstate.inp_mel.data();
|
|
||||||
memset(dst, 0, ggml_nbytes(mel));
|
|
||||||
|
|
||||||
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
|
||||||
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
|
|
||||||
|
|
||||||
for (int j = 0; j < mel_inp.n_mel; ++j) {
|
|
||||||
for (int i = i0; i < i1; ++i) {
|
|
||||||
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_backend_tensor_set(mel, wstate.inp_mel.data(), 0, ggml_nelements(mel)*sizeof(float));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!whisper_encode_external(wstate)) {
|
|
||||||
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
|
if (whisper_encode_external(wstate)) {
|
||||||
|
ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
|
||||||
|
assert(mel->ne[1] == wctx.model.hparams.n_mels);
|
||||||
|
GGML_UNUSED(mel);
|
||||||
#if defined(WHISPER_USE_COREML)
|
#if defined(WHISPER_USE_COREML)
|
||||||
whisper_coreml_encode(wstate.ctx_coreml, mel->ne[0], mel->ne[1], (float *) mel->data, (float *) wstate.embd_enc->data);
|
whisper_coreml_encode(wstate.ctx_coreml, mel->ne[0], mel->ne[1], (float *) mel->data, (float *) wstate.embd_enc->data);
|
||||||
#elif defined(WHISPER_USE_OPENVINO)
|
#elif defined(WHISPER_USE_OPENVINO)
|
||||||
@ -2886,6 +2885,54 @@ struct whisper_global_cache {
|
|||||||
|
|
||||||
// Mel spectrogram
|
// Mel spectrogram
|
||||||
|
|
||||||
|
whisper_mel::~whisper_mel() {
|
||||||
|
reset();
|
||||||
|
}
|
||||||
|
|
||||||
|
whisper_mel::whisper_mel(whisper_mel && other) noexcept {
|
||||||
|
take(other);
|
||||||
|
}
|
||||||
|
|
||||||
|
whisper_mel & whisper_mel::operator=(whisper_mel && other) noexcept {
|
||||||
|
if (this != &other) {
|
||||||
|
reset();
|
||||||
|
take(other);
|
||||||
|
}
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
void whisper_mel::init(ggml_backend_t backend, int n_len, int n_len_org, int n_mel) {
|
||||||
|
this->n_len_org = n_len_org;
|
||||||
|
assert(!ctx);
|
||||||
|
ctx = ggml_init({ggml_tensor_overhead(), nullptr, true});
|
||||||
|
tensor = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_len, n_mel);
|
||||||
|
buffer = ggml_backend_alloc_buffer(backend, ggml_nbytes(tensor) + ggml_backend_get_alignment(backend));
|
||||||
|
auto alloc = ggml_tallocr_new(buffer);
|
||||||
|
ggml_tallocr_alloc(&alloc, tensor);
|
||||||
|
}
|
||||||
|
|
||||||
|
void whisper_mel::reset() {
|
||||||
|
ggml_free(ctx);
|
||||||
|
ggml_backend_buffer_free(buffer);
|
||||||
|
|
||||||
|
n_len_org = 0;
|
||||||
|
tensor = nullptr;
|
||||||
|
ctx = nullptr;
|
||||||
|
buffer = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
void whisper_mel::take(whisper_mel & other) noexcept {
|
||||||
|
n_len_org = other.n_len_org;
|
||||||
|
tensor = other.tensor;
|
||||||
|
ctx = other.ctx;
|
||||||
|
buffer = other.buffer;
|
||||||
|
|
||||||
|
other.n_len_org = 0;
|
||||||
|
other.tensor = nullptr;
|
||||||
|
other.ctx = nullptr;
|
||||||
|
other.buffer = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
whisper_mel_calc::~whisper_mel_calc() = default; // export vtable
|
whisper_mel_calc::~whisper_mel_calc() = default; // export vtable
|
||||||
|
|
||||||
whisper_span<const float> whisper_mel_calc::hann_window() {
|
whisper_span<const float> whisper_mel_calc::hann_window() {
|
||||||
@ -2973,9 +3020,18 @@ static void fft(const std::vector<float> & in, std::vector<float> & out) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
namespace {
|
||||||
|
|
||||||
|
struct whisper_mel_data {
|
||||||
|
int n_len;
|
||||||
|
int n_len_org;
|
||||||
|
int n_mel;
|
||||||
|
float* data;
|
||||||
|
};
|
||||||
|
|
||||||
|
void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
||||||
int n_samples, int n_threads,
|
int n_samples, int n_threads,
|
||||||
const whisper_filters & filters, whisper_mel & mel) {
|
const whisper_filters & filters, whisper_mel_data & mel) {
|
||||||
const auto frame_size = WHISPER_N_FFT;
|
const auto frame_size = WHISPER_N_FFT;
|
||||||
const auto frame_step = WHISPER_HOP_LENGTH;
|
const auto frame_step = WHISPER_HOP_LENGTH;
|
||||||
std::vector<float> fft_in(frame_size, 0.0);
|
std::vector<float> fft_in(frame_size, 0.0);
|
||||||
@ -3041,10 +3097,11 @@ static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
namespace {
|
|
||||||
struct mel_calc_cpu : public whisper_mel_calc {
|
struct mel_calc_cpu : public whisper_mel_calc {
|
||||||
|
ggml_backend_t m_backend;
|
||||||
const whisper_filters& m_filters;
|
const whisper_filters& m_filters;
|
||||||
mel_calc_cpu(const whisper_filters & filters) : m_filters(filters) {}
|
mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {}
|
||||||
|
|
||||||
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
||||||
whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) const override {
|
whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) const override {
|
||||||
@ -3069,15 +3126,24 @@ struct mel_calc_cpu : public whisper_mel_calc {
|
|||||||
// reflective pad 200 samples at the beginning of audio
|
// reflective pad 200 samples at the beginning of audio
|
||||||
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
|
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
|
||||||
|
|
||||||
whisper_mel mel;
|
whisper_mel_data mel;
|
||||||
mel.n_mel = m_filters.n_mel;
|
mel.n_mel = m_filters.n_mel;
|
||||||
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
|
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
|
||||||
// Calculate number of frames + remove the last frame
|
// Calculate number of frames + remove the last frame
|
||||||
mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||||
// Calculate semi-padded sample length to ensure compatibility
|
// Calculate semi-padded sample length to ensure compatibility
|
||||||
mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||||
mel.data.resize(mel.n_mel * mel.n_len);
|
|
||||||
|
|
||||||
|
std::vector<float> host_mel_data;
|
||||||
|
|
||||||
|
whisper_mel ret;
|
||||||
|
ret.init(m_backend, mel.n_len, mel.n_len_org, mel.n_mel);
|
||||||
|
if (ggml_backend_buffer_is_host(ret.buffer)) {
|
||||||
|
mel.data = reinterpret_cast<float*>(ret.tensor->data);
|
||||||
|
} else {
|
||||||
|
host_mel_data.resize(mel.n_len * mel.n_mel);
|
||||||
|
mel.data = host_mel_data.data();
|
||||||
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
std::vector<std::thread> workers(n_threads - 1);
|
std::vector<std::thread> workers(n_threads - 1);
|
||||||
@ -3114,7 +3180,12 @@ struct mel_calc_cpu : public whisper_mel_calc {
|
|||||||
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
return mel;
|
if (!host_mel_data.empty()) {
|
||||||
|
// the ret buffer is not host-accessible so we used this temporary buffer and now we need to upload it
|
||||||
|
ggml_backend_tensor_set(ret.tensor, host_mel_data.data(), 0, ggml_nbytes(ret.tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
@ -3129,7 +3200,7 @@ whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper
|
|||||||
return ret;
|
return ret;
|
||||||
} else
|
} else
|
||||||
#endif
|
#endif
|
||||||
return new mel_calc_cpu(filters);
|
return new mel_calc_cpu(backend, filters);
|
||||||
}
|
}
|
||||||
|
|
||||||
// split text into tokens
|
// split text into tokens
|
||||||
@ -3347,7 +3418,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
|||||||
{
|
{
|
||||||
bool ok = whisper_allocr_graph_init(state->alloc_conv, ctx->backend,
|
bool ok = whisper_allocr_graph_init(state->alloc_conv, ctx->backend,
|
||||||
[&]() {
|
[&]() {
|
||||||
return whisper_build_graph_conv(*ctx, *state);
|
return whisper_build_graph_conv(*ctx, *state, 0);
|
||||||
});
|
});
|
||||||
|
|
||||||
if (!ok) {
|
if (!ok) {
|
||||||
@ -3763,12 +3834,9 @@ int whisper_set_mel_with_state(
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
state->mel.n_len = n_len;
|
state->mel.reset();
|
||||||
state->mel.n_len_org = n_len;
|
state->mel.init(ctx->backend, n_len, n_len, n_mel);
|
||||||
state->mel.n_mel = n_mel;
|
ggml_backend_tensor_set(state->mel.tensor, data, 0, ggml_nbytes(state->mel.tensor));
|
||||||
|
|
||||||
state->mel.data.resize(n_len*n_mel);
|
|
||||||
memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float));
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user