whisper : calculate mel spectrogram directly into a ggml_tensor (#2208)

* whisper : calculate mel spectrogram directly into a ggml_tensor

* whisper : remove unused temp buffer from state

* whisper : fix not initializing wstate.embd_enc
This commit is contained in:
Borislav Stanimirov 2024-06-06 16:20:46 +03:00 committed by GitHub
parent ffef323c4c
commit f842d31171
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 144 additions and 67 deletions

View File

@ -8,6 +8,7 @@
#include <cublas_v2.h>
#include <cuComplex.h>
#include <cub/device/device_reduce.cuh>
#include <device_launch_parameters.h>
#include <algorithm>
@ -301,27 +302,23 @@ public:
&fzero,
mel_data, int(n_mag_frames)));
float * log_mels = nullptr;
CUDA_CHECK(cudaMallocAsync(&log_mels, m_n_mel * n_mag_frames * sizeof(float), m_stream));
whisper_mel ret;
// Calculate semi-padded sample length to ensure compatibility
int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
ret.init(m_backend, int(n_mag_frames), n_len_org, m_n_mel);
assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float));
float* log_mels = reinterpret_cast<float*>(ret.tensor->data);
calc_log_mel(
mel_data, int(m_n_mel * n_mag_frames),
m_log_mel_temp_storage, int(m_log_mel_temp_storage_size),
m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
log_mels, m_stream);
whisper_mel ret;
ret.n_mel = m_n_mel;
ret.n_len = int(n_mag_frames);
// Calculate semi-padded sample length to ensure compatibility
ret.n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
ret.data.resize(m_n_mel * n_mag_frames);
CUDA_CHECK(cudaMemcpyAsync(ret.data.data(), log_mels, ret.data.size() * sizeof(float), cudaMemcpyDeviceToHost, m_stream));
CUDA_CHECK(cudaStreamSynchronize(m_stream));
// cleanup
CUFFT_CHECK(cufftDestroy(plan));
CUDA_CHECK(cudaFreeAsync(log_mels, m_stream));
CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));

View File

@ -3,11 +3,23 @@
#include <vector>
struct whisper_mel {
int n_len;
int n_len_org;
int n_mel;
int n_len_org = 0;
std::vector<float> data;
ggml_tensor * tensor = nullptr;
ggml_context * ctx = nullptr;
ggml_backend_buffer_t buffer = nullptr;
whisper_mel() = default;
~whisper_mel();
whisper_mel(const whisper_mel &) = delete;
whisper_mel & operator=(const whisper_mel &) = delete;
whisper_mel(whisper_mel &&) noexcept;
whisper_mel & operator=(whisper_mel &&) noexcept;
void init(ggml_backend_t backend, int n_len, int n_len_org, int n_mel);
void reset();
void take(whisper_mel & other) noexcept;
};
struct whisper_filters {

View File

@ -821,7 +821,6 @@ struct whisper_state {
struct ggml_tensor * embd_enc = nullptr;
// helpers for GPU offloading
std::vector<float> inp_mel;
std::vector<float> inp_mask;
// decode output (2-dimensional array: [n_tokens][n_vocab])
@ -1815,7 +1814,8 @@ static bool whisper_encode_external(const whisper_state & wstate) {
static struct ggml_cgraph * whisper_build_graph_conv(
whisper_context & wctx,
whisper_state & wstate) {
whisper_state & wstate,
const int mel_offset) {
const auto & model = wctx.model;
const auto & hparams = model.hparams;
@ -1834,9 +1834,32 @@ static struct ggml_cgraph * whisper_build_graph_conv(
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
ggml_set_name(mel, "mel");
ggml_set_input(mel);
ggml_tensor * mel_inp = wstate.mel.tensor;
ggml_tensor * mel;
if (mel_inp) {
const int n_len = int(mel_inp->ne[0]);
const int out_s = 2 * n_ctx;
const int i0 = std::min(mel_offset, n_len);
const int i1 = std::min(mel_offset + out_s, n_len);
const int mel_s = i1 - i0;
assert(mel_inp->type == GGML_TYPE_F32);
assert(mel_inp->ne[1] == n_mels);
ggml_tensor * cur = ggml_view_2d(ctx0, mel_inp, out_s, n_mels, mel_inp->nb[1], ggml_row_size(mel_inp->type, i0));
if (mel_s < out_s) {
mel = ggml_pad(ctx0, cur, out_s - mel_s, 0, 0, 0);
}
else {
mel = ggml_cont(ctx0, cur);
}
}
else {
// just create some tensor so that the graph/buffer size estimation is correct
mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2 * n_ctx, n_mels);
}
ggml_set_name(mel, "mel"); // used with external encoding
struct ggml_tensor * cur = nullptr;
@ -2218,45 +2241,21 @@ static bool whisper_encode_internal(
{
auto & alloc = wstate.alloc_conv.alloc;
ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate);
ggml_cgraph * gf = whisper_build_graph_conv(wctx, wstate, mel_offset);
if (!ggml_gallocr_alloc_graph(alloc, gf)) {
// should never happen as we pre-allocate the memory
return false;
}
struct ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
// set the input
{
const auto & mel_inp = wstate.mel;
const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : wctx.model.hparams.n_audio_ctx;
assert(mel->type == GGML_TYPE_F32);
assert(mel_inp.n_mel == wctx.model.hparams.n_mels);
wstate.inp_mel.resize(ggml_nelements(mel));
float * dst = wstate.inp_mel.data();
memset(dst, 0, ggml_nbytes(mel));
const int i0 = std::min(mel_offset, mel_inp.n_len);
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
for (int j = 0; j < mel_inp.n_mel; ++j) {
for (int i = i0; i < i1; ++i) {
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
}
}
ggml_backend_tensor_set(mel, wstate.inp_mel.data(), 0, ggml_nelements(mel)*sizeof(float));
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
return false;
}
if (!whisper_encode_external(wstate)) {
if (!ggml_graph_compute_helper(wstate.backend, gf, n_threads)) {
return false;
}
} else {
if (whisper_encode_external(wstate)) {
ggml_tensor * mel = ggml_graph_get_tensor(gf, "mel");
assert(mel->ne[1] == wctx.model.hparams.n_mels);
GGML_UNUSED(mel);
#if defined(WHISPER_USE_COREML)
whisper_coreml_encode(wstate.ctx_coreml, mel->ne[0], mel->ne[1], (float *) mel->data, (float *) wstate.embd_enc->data);
#elif defined(WHISPER_USE_OPENVINO)
@ -2886,6 +2885,54 @@ struct whisper_global_cache {
// Mel spectrogram
whisper_mel::~whisper_mel() {
reset();
}
whisper_mel::whisper_mel(whisper_mel && other) noexcept {
take(other);
}
whisper_mel & whisper_mel::operator=(whisper_mel && other) noexcept {
if (this != &other) {
reset();
take(other);
}
return *this;
}
void whisper_mel::init(ggml_backend_t backend, int n_len, int n_len_org, int n_mel) {
this->n_len_org = n_len_org;
assert(!ctx);
ctx = ggml_init({ggml_tensor_overhead(), nullptr, true});
tensor = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_len, n_mel);
buffer = ggml_backend_alloc_buffer(backend, ggml_nbytes(tensor) + ggml_backend_get_alignment(backend));
auto alloc = ggml_tallocr_new(buffer);
ggml_tallocr_alloc(&alloc, tensor);
}
void whisper_mel::reset() {
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
n_len_org = 0;
tensor = nullptr;
ctx = nullptr;
buffer = nullptr;
}
void whisper_mel::take(whisper_mel & other) noexcept {
n_len_org = other.n_len_org;
tensor = other.tensor;
ctx = other.ctx;
buffer = other.buffer;
other.n_len_org = 0;
other.tensor = nullptr;
other.ctx = nullptr;
other.buffer = nullptr;
}
whisper_mel_calc::~whisper_mel_calc() = default; // export vtable
whisper_span<const float> whisper_mel_calc::hann_window() {
@ -2973,9 +3020,18 @@ static void fft(const std::vector<float> & in, std::vector<float> & out) {
}
}
static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
namespace {
struct whisper_mel_data {
int n_len;
int n_len_org;
int n_mel;
float* data;
};
void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
int n_samples, int n_threads,
const whisper_filters & filters, whisper_mel & mel) {
const whisper_filters & filters, whisper_mel_data & mel) {
const auto frame_size = WHISPER_N_FFT;
const auto frame_step = WHISPER_HOP_LENGTH;
std::vector<float> fft_in(frame_size, 0.0);
@ -3041,10 +3097,11 @@ static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const
}
}
}
namespace {
struct mel_calc_cpu : public whisper_mel_calc {
ggml_backend_t m_backend;
const whisper_filters& m_filters;
mel_calc_cpu(const whisper_filters & filters) : m_filters(filters) {}
mel_calc_cpu(ggml_backend_t backend, const whisper_filters & filters) : m_backend(backend), m_filters(filters) {}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
whisper_mel calculate(whisper_span<const float> ssamples, int n_threads) const override {
@ -3069,15 +3126,24 @@ struct mel_calc_cpu : public whisper_mel_calc {
// reflective pad 200 samples at the beginning of audio
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
whisper_mel mel;
whisper_mel_data mel;
mel.n_mel = m_filters.n_mel;
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
// Calculate number of frames + remove the last frame
mel.n_len = (samples_padded.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
// Calculate semi-padded sample length to ensure compatibility
mel.n_len_org = 1 + (n_samples + stage_2_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
mel.data.resize(mel.n_mel * mel.n_len);
std::vector<float> host_mel_data;
whisper_mel ret;
ret.init(m_backend, mel.n_len, mel.n_len_org, mel.n_mel);
if (ggml_backend_buffer_is_host(ret.buffer)) {
mel.data = reinterpret_cast<float*>(ret.tensor->data);
} else {
host_mel_data.resize(mel.n_len * mel.n_mel);
mel.data = host_mel_data.data();
}
{
std::vector<std::thread> workers(n_threads - 1);
@ -3114,7 +3180,12 @@ struct mel_calc_cpu : public whisper_mel_calc {
mel.data[i] = (mel.data[i] + 4.0)/4.0;
}
return mel;
if (!host_mel_data.empty()) {
// the ret buffer is not host-accessible so we used this temporary buffer and now we need to upload it
ggml_backend_tensor_set(ret.tensor, host_mel_data.data(), 0, ggml_nbytes(ret.tensor));
}
return ret;
}
};
}
@ -3129,7 +3200,7 @@ whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper
return ret;
} else
#endif
return new mel_calc_cpu(filters);
return new mel_calc_cpu(backend, filters);
}
// split text into tokens
@ -3347,7 +3418,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
{
bool ok = whisper_allocr_graph_init(state->alloc_conv, ctx->backend,
[&]() {
return whisper_build_graph_conv(*ctx, *state);
return whisper_build_graph_conv(*ctx, *state, 0);
});
if (!ok) {
@ -3763,12 +3834,9 @@ int whisper_set_mel_with_state(
return -1;
}
state->mel.n_len = n_len;
state->mel.n_len_org = n_len;
state->mel.n_mel = n_mel;
state->mel.data.resize(n_len*n_mel);
memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float));
state->mel.reset();
state->mel.init(ctx->backend, n_len, n_len, n_mel);
ggml_backend_tensor_set(state->mel.tensor, data, 0, ggml_nbytes(state->mel.tensor));
return 0;
}