mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-13 04:28:07 +00:00
@ -4,14 +4,13 @@
|
||||
#include "llama-mmap.h"
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
@ -19,7 +18,7 @@ struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * llama_adapter_cvec::apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
@ -40,7 +39,7 @@ bool llama_adapter_cvec::init(const llama_model & model) {
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
ggml_init_params params = {
|
||||
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
@ -91,7 +90,7 @@ bool llama_adapter_cvec::init(const llama_model & model) {
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_adapter_cvec::apply(
|
||||
bool llama_adapter_cvec::apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
@ -104,17 +103,17 @@ int32_t llama_adapter_cvec::apply(
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
layer_start = -1;
|
||||
layer_end = -1;
|
||||
return 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (n_embd != (int) hparams.n_embd) {
|
||||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||||
return 1;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensors.empty()) {
|
||||
if (!init(model)) {
|
||||
return 1;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
@ -130,12 +129,12 @@ int32_t llama_adapter_cvec::apply(
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
// lora
|
||||
|
||||
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
|
||||
llama_adapter_lora_weight * llama_adapter_lora::get_weight(ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
@ -146,11 +145,11 @@ llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor *
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
|
||||
static void llama_adapter_lora_init_impl(llama_model & model, const char * path_lora, llama_adapter_lora & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
/* .ctx = */ &ctx_init,
|
||||
};
|
||||
@ -201,7 +200,7 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
// add a new context
|
||||
struct ggml_init_params params = {
|
||||
ggml_init_params params = {
|
||||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
@ -248,6 +247,26 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
}
|
||||
}
|
||||
|
||||
// get extra buffer types of the CPU
|
||||
// TODO: a more general solution for non-CPU extra buft should be imlpemented in the future
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/12593#pullrequestreview-2718659948
|
||||
std::vector<ggml_backend_buffer_type_t> buft_extra;
|
||||
{
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
||||
|
||||
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
||||
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
|
||||
|
||||
if (ggml_backend_dev_get_extra_bufts_fn) {
|
||||
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
|
||||
while (extra_bufts && *extra_bufts) {
|
||||
buft_extra.emplace_back(*extra_bufts);
|
||||
++extra_bufts;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
@ -264,7 +283,23 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
auto * buft = ggml_backend_buffer_get_type(model_tensor->buffer);
|
||||
|
||||
// do not load loras to extra buffer types (i.e. bufts for repacking) -> use the CPU in that case
|
||||
for (auto & ex : buft_extra) {
|
||||
if (ex == buft) {
|
||||
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
|
||||
|
||||
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: lora for '%s' -> '%s'\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
|
||||
|
||||
ggml_context * dev_ctx = ctx_for_buft(buft);
|
||||
// validate tensor shape
|
||||
if (is_token_embd) {
|
||||
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
|
||||
@ -281,8 +316,8 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
|
||||
@ -308,7 +343,7 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
{
|
||||
llama_file gguf_file(path_lora, "rb");
|
||||
std::vector<uint8_t> read_buf;
|
||||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||||
auto set_tensor = [&](ggml_tensor * orig, ggml_tensor * dev) {
|
||||
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
||||
size_t size = ggml_nbytes(orig);
|
||||
read_buf.resize(size);
|
||||
@ -327,8 +362,8 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
||||
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * path_lora) {
|
||||
llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
|
||||
try {
|
||||
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
|
||||
@ -342,6 +377,6 @@ struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model,
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
|
||||
void llama_adapter_lora_free(llama_adapter_lora * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
Reference in New Issue
Block a user