mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-19 20:57:52 +00:00
talk-llama : sync llama.cpp
This commit is contained in:
parent
fbe66da0e5
commit
f2c680f893
@ -179,7 +179,7 @@ enum llm_arch {
|
||||
LLM_ARCH_COMMAND_R,
|
||||
LLM_ARCH_DBRX,
|
||||
LLM_ARCH_OLMO,
|
||||
LLM_ARCH_OLMO_1124,
|
||||
LLM_ARCH_OLMO2,
|
||||
LLM_ARCH_OLMOE,
|
||||
LLM_ARCH_OPENELM,
|
||||
LLM_ARCH_ARCTIC,
|
||||
@ -233,7 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||
{ LLM_ARCH_DBRX, "dbrx" },
|
||||
{ LLM_ARCH_OLMO, "olmo" },
|
||||
{ LLM_ARCH_OLMO_1124, "olmo_1124" },
|
||||
{ LLM_ARCH_OLMO2, "olmo2" },
|
||||
{ LLM_ARCH_OLMOE, "olmoe" },
|
||||
{ LLM_ARCH_OPENELM, "openelm" },
|
||||
{ LLM_ARCH_ARCTIC, "arctic" },
|
||||
@ -1036,6 +1036,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
@ -1210,7 +1212,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_OLMO_1124,
|
||||
LLM_ARCH_OLMO2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
@ -1549,6 +1551,67 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
},
|
||||
};
|
||||
|
||||
enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_CHATML,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V1,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||
LLM_CHAT_TEMPLATE_MONARCH,
|
||||
LLM_CHAT_TEMPLATE_GEMMA,
|
||||
LLM_CHAT_TEMPLATE_ORION,
|
||||
LLM_CHAT_TEMPLATE_OPENCHAT,
|
||||
LLM_CHAT_TEMPLATE_VICUNA,
|
||||
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
|
||||
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||
LLM_CHAT_TEMPLATE_GRANITE,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
|
||||
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
|
||||
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
|
||||
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
|
||||
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
|
||||
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
|
||||
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||
{ "orion", LLM_CHAT_TEMPLATE_ORION },
|
||||
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
|
||||
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
|
||||
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
|
||||
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
|
||||
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
|
||||
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||
};
|
||||
|
||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
|
||||
if (kv.second == name) {
|
||||
@ -1625,6 +1688,7 @@ static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_
|
||||
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
|
||||
};
|
||||
|
||||
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
||||
@ -2341,6 +2405,7 @@ enum e_model {
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
MODEL_40B,
|
||||
@ -4866,7 +4931,9 @@ struct llama_model_loader {
|
||||
mappings.reserve(files.size());
|
||||
mmaps_used.reserve(files.size());
|
||||
for (const auto & file : files) {
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
|
||||
mmaps_used.emplace_back(mapping->size, 0);
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
@ -5328,6 +5395,7 @@ static const char * llama_model_type_name(e_model type) {
|
||||
case MODEL_16B: return "16B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_32B: return "32B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_35B: return "35B";
|
||||
case MODEL_40B: return "40B";
|
||||
@ -5515,8 +5583,12 @@ static void llm_load_hparams(
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
||||
ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
||||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 52: model.type = e_model::MODEL_1B; break;
|
||||
case 40: model.type = e_model::MODEL_2B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
@ -5688,7 +5760,10 @@ static void llm_load_hparams(
|
||||
case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
|
||||
case 28: model.type = hparams.n_embd == 1536 ? e_model::MODEL_1_5B : e_model::MODEL_7B; break;
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 36: model.type = e_model::MODEL_3B; break;
|
||||
case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
|
||||
case 48: model.type = e_model::MODEL_14B; break;
|
||||
case 64: model.type = e_model::MODEL_32B; break;
|
||||
case 80: model.type = e_model::MODEL_70B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
@ -5898,7 +5973,7 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
@ -6997,7 +7072,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||
}
|
||||
|
||||
if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||
if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
@ -7181,12 +7256,12 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512);
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
|
||||
op_tensor = ggml_add(ctx, a, w);
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512);
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
|
||||
op_tensor = ggml_mul(ctx, a, w);
|
||||
} break;
|
||||
case GGML_OP_DIV:
|
||||
@ -7622,7 +7697,13 @@ static bool llm_load_tensors(
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
else {
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
|
||||
if (n_expert == 0) {
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
@ -8591,7 +8672,7 @@ static bool llm_load_tensors(
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
@ -9190,7 +9271,7 @@ static bool llm_load_tensors(
|
||||
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
||||
if (!dev) {
|
||||
// FIXME: workaround for CPU backend buft having a NULL device
|
||||
dev = ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0);
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
ggml_backend_dev_props props;
|
||||
ggml_backend_dev_get_props(dev, &props);
|
||||
@ -13429,153 +13510,6 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
// ref: https://arxiv.org/abs/2203.03466
|
||||
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
|
||||
// based on the original build_llama() function
|
||||
struct ggml_cgraph * build_minicpm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
//TODO: if the model varies, these parameters need to be read from the model
|
||||
const int64_t n_embd_base = 256;
|
||||
const float scale_embd = 12.0f;
|
||||
const float scale_depth = 1.4f;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
||||
|
||||
// scale the input embeddings
|
||||
inpL = ggml_scale(ctx0, inpL, scale_embd);
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// scale_res - scale the hidden states for residual connection
|
||||
const float scale_res = scale_depth/sqrtf(float(n_layer));
|
||||
cur = ggml_scale(ctx0, cur, scale_res);
|
||||
cb(cur, "hidden_scaled", -1);
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
// scale the hidden states for residual connection
|
||||
cur = ggml_scale(ctx0, cur, scale_res);
|
||||
cb(cur, "hidden_scaled_ffn", -1);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head scaling
|
||||
const float scale_lmhead = float(n_embd_base)/float(n_embd);
|
||||
cur = ggml_scale(ctx0, cur, scale_lmhead);
|
||||
cb(cur, "lmhead_scaling", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_minicpm3() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
@ -14481,7 +14415,7 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_olmo_1124() {
|
||||
struct ggml_cgraph * build_olmo2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
@ -16674,6 +16608,7 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
@ -16757,10 +16692,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_internlm2();
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
result = llm.build_minicpm();
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM3:
|
||||
{
|
||||
result = llm.build_minicpm3();
|
||||
@ -16797,9 +16728,9 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_olmo();
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
result = llm.build_olmo_1124();
|
||||
result = llm.build_olmo2();
|
||||
} break;
|
||||
case LLM_ARCH_OLMOE:
|
||||
{
|
||||
@ -17443,8 +17374,9 @@ static enum ggml_status llama_graph_compute(
|
||||
int n_threads,
|
||||
ggml_threadpool * threadpool) {
|
||||
if (lctx.backend_cpu != nullptr) {
|
||||
ggml_backend_cpu_set_threadpool(lctx.backend_cpu, threadpool);
|
||||
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(lctx.backend_cpu));
|
||||
auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool");
|
||||
set_threadpool_fn(lctx.backend_cpu, threadpool);
|
||||
}
|
||||
|
||||
// set the number of threads for all the backends
|
||||
@ -18211,13 +18143,13 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
bool need_reserve = false;
|
||||
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
||||
if (lctx.kv_self.has_shift) {
|
||||
if (!llama_kv_cache_can_shift(&lctx)) {
|
||||
GGML_ABORT("Deepseek2 does not support K-shift");
|
||||
GGML_ABORT("The current context does not support K-shift");
|
||||
}
|
||||
|
||||
{
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
||||
ggml_backend_sched_reset(lctx.sched.get());
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
|
||||
@ -19361,6 +19293,7 @@ void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
//
|
||||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.devices =*/ nullptr,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
@ -19478,7 +19411,11 @@ void llama_backend_init(void) {
|
||||
|
||||
void llama_numa_init(enum ggml_numa_strategy numa) {
|
||||
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
|
||||
ggml_numa_init(numa);
|
||||
auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
GGML_ASSERT(dev && "CPU backend is not loaded");
|
||||
auto * reg = ggml_backend_dev_backend_reg(dev);
|
||||
auto * numa_init_fn = (decltype(ggml_numa_init) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_numa_init");
|
||||
numa_init_fn(numa);
|
||||
}
|
||||
}
|
||||
|
||||
@ -19569,8 +19506,12 @@ struct llama_model * llama_load_model_from_file(
|
||||
}
|
||||
|
||||
// create list of devices to use with this model
|
||||
// currently, we use all available devices
|
||||
// TODO: rework API to give user more control over device selection
|
||||
if (params.devices) {
|
||||
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
|
||||
model->devices.push_back(*dev);
|
||||
}
|
||||
} else {
|
||||
// use all available devices
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
switch (ggml_backend_dev_type(dev)) {
|
||||
@ -19584,6 +19525,7 @@ struct llama_model * llama_load_model_from_file(
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if using single GPU mode, remove all except the main GPU
|
||||
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
|
||||
@ -19752,9 +19694,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
||||
}
|
||||
|
||||
ctx->abort_callback = params.abort_callback;
|
||||
ctx->abort_callback_data = params.abort_callback_data;
|
||||
|
||||
ctx->logits_all = params.logits_all;
|
||||
|
||||
// build worst-case graph for encoder if a model contains encoder
|
||||
@ -19803,7 +19742,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
// add CPU backend
|
||||
ctx->backend_cpu = ggml_backend_cpu_init();
|
||||
ctx->backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
|
||||
if (ctx->backend_cpu == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
|
||||
llama_free(ctx);
|
||||
@ -19823,6 +19762,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
}
|
||||
|
||||
llama_set_abort_callback(ctx, params.abort_callback, params.abort_callback_data);
|
||||
|
||||
if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
||||
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
llama_free(ctx);
|
||||
@ -19868,7 +19809,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
std::vector<ggml_backend_t> backend_ptrs;
|
||||
for (auto & backend : ctx->backends) {
|
||||
auto * buft = ggml_backend_get_default_buffer_type(backend.get());
|
||||
if (ggml_backend_is_cpu(backend.get()) && !model->devices.empty()) {
|
||||
auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
|
||||
if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model->devices.empty()) {
|
||||
// use the host buffer of the first device CPU for faster transfer of the intermediate state
|
||||
auto * dev = model->devices[0];
|
||||
auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
|
||||
@ -19896,7 +19838,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
// pipeline parallelism requires support for async compute and events in all devices
|
||||
if (pipeline_parallel) {
|
||||
for (auto & backend : ctx->backends) {
|
||||
if (ggml_backend_is_cpu(backend.get())) {
|
||||
auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
|
||||
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) {
|
||||
// ignore CPU backend
|
||||
continue;
|
||||
}
|
||||
@ -20070,7 +20013,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
case LLM_ARCH_OLMOE:
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
@ -20463,7 +20406,7 @@ void llama_kv_cache_update(struct llama_context * ctx) {
|
||||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
return !ctx->kv_self.recurrent && ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
}
|
||||
|
||||
// deprecated
|
||||
@ -21450,6 +21393,14 @@ int32_t llama_n_threads_batch(struct llama_context * ctx) {
|
||||
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
|
||||
ctx->abort_callback = abort_callback;
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
|
||||
for (auto & backend : ctx->backends) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
|
||||
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
|
||||
if (set_abort_callback_fn) {
|
||||
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
|
||||
@ -21816,18 +21767,109 @@ int32_t llama_detokenize(
|
||||
// chat templates
|
||||
//
|
||||
|
||||
static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
|
||||
if (LLM_CHAT_TEMPLATES.find(tmpl) != LLM_CHAT_TEMPLATES.end()) {
|
||||
return LLM_CHAT_TEMPLATES.at(tmpl);
|
||||
}
|
||||
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
} else if (
|
||||
// catches official 'v1' template
|
||||
tmpl_contains("' [INST] ' + system_message")
|
||||
// catches official 'v3' and 'v3-tekken' templates
|
||||
|| tmpl_contains("[AVAILABLE_TOOLS]")
|
||||
) {
|
||||
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
if (tmpl_contains(" [INST]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
|
||||
} else if (tmpl_contains("\"[INST]\"")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
} else {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl_contains("<<SYS>>");
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
if (strip_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
} else if (add_bos_inside_history) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
} else if (support_system_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
|
||||
} else {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
}
|
||||
}
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
return LLM_CHAT_TEMPLATE_MONARCH;
|
||||
} else if (tmpl_contains("<start_of_turn>")) {
|
||||
return LLM_CHAT_TEMPLATE_GEMMA;
|
||||
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
return LLM_CHAT_TEMPLATE_ORION;
|
||||
} else if (tmpl_contains("GPT4 Correct ")) {
|
||||
// openchat/openchat-3.5-0106
|
||||
return LLM_CHAT_TEMPLATE_OPENCHAT;
|
||||
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
if (tmpl_contains("SYSTEM: ")) {
|
||||
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_VICUNA;
|
||||
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK;
|
||||
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
return LLM_CHAT_TEMPLATE_COMMAND_R;
|
||||
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||
} else if (tmpl_contains("[gMASK]sop")) {
|
||||
// chatglm3-6b
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||
} else if (tmpl_contains("rwkv-world")) {
|
||||
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
|
||||
} else if (tmpl_contains("<|start_of_role|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
||||
// Simple version of "llama_apply_chat_template" that only works with strings
|
||||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||||
static int32_t llama_chat_apply_template_internal(
|
||||
const std::string & tmpl,
|
||||
const llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass) {
|
||||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||||
std::stringstream ss;
|
||||
auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||||
@ -21835,16 +21877,59 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant\n";
|
||||
}
|
||||
} else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||
// Official mistral 'v7' template
|
||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
|
||||
} else if (role == "user") {
|
||||
ss << "[INST] " << content << "[/INST]";
|
||||
}
|
||||
else {
|
||||
ss << " " << content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
|
||||
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
|
||||
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
bool is_inside_turn = false;
|
||||
for (auto message : chat) {
|
||||
if (!is_inside_turn) {
|
||||
ss << leading_space << "[INST]" << trailing_space;
|
||||
is_inside_turn = true;
|
||||
}
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << content << leading_space << "[/INST]";
|
||||
} else {
|
||||
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (
|
||||
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
|
||||
// [variant] space before + after response
|
||||
bool space_around_response = tmpl_contains("' ' + eos_token");
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
// [variant] add BOS inside history
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
// [variant] trim spaces from the input message
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
// construct the prompt
|
||||
bool is_inside_turn = true; // skip BOS at the beginning
|
||||
ss << "[INST] ";
|
||||
@ -21865,12 +21950,11 @@ static int32_t llama_chat_apply_template_internal(
|
||||
} else if (role == "user") {
|
||||
ss << content << " [/INST]";
|
||||
} else {
|
||||
ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
|
||||
ss << content << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
// llama2 templates seem to not care about "add_generation_prompt"
|
||||
} else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
|
||||
// Phi 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21879,7 +21963,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||
// zephyr template
|
||||
for (auto message : chat) {
|
||||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||||
@ -21887,7 +21971,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
|
||||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||
for (auto message : chat) {
|
||||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||
@ -21896,7 +21980,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
} else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
@ -21918,7 +22002,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<start_of_turn>model\n";
|
||||
}
|
||||
} else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
@ -21938,7 +22022,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << message->content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
|
||||
// openchat/openchat-3.5-0106,
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21952,13 +22036,13 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "GPT4 Correct Assistant:";
|
||||
}
|
||||
} else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// Orca-Vicuna variant uses a system prefix
|
||||
if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
ss << "SYSTEM: " << message->content << "\n";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
@ -21972,7 +22056,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "ASSISTANT:";
|
||||
}
|
||||
} else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21987,7 +22071,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "### Response:\n";
|
||||
}
|
||||
} else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22002,7 +22086,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||||
}
|
||||
} else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
|
||||
// Llama 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22011,7 +22095,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||
}
|
||||
} else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||
// chatglm3-6b
|
||||
ss << "[gMASK]" << "sop";
|
||||
for (auto message : chat) {
|
||||
@ -22021,7 +22105,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22030,7 +22114,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22042,7 +22126,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << trim(message->content);
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
|
||||
// DeepSeek-V2
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22057,7 +22141,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
for (auto message : chat) {
|
||||
@ -22073,7 +22157,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "[|assistant|]";
|
||||
}
|
||||
} else if (tmpl == "rwkv-world" || tmpl_contains("rwkv-world")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||
// this template requires the model to have "\n\n" as EOT token
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22083,7 +22167,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "granite" || tmpl_contains("<|start_of_role|>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
|
||||
// IBM Granite template
|
||||
for (const auto & message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22135,7 +22219,11 @@ int32_t llama_chat_apply_template(
|
||||
}
|
||||
|
||||
std::string formatted_chat;
|
||||
int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
|
||||
llm_chat_template detected_tmpl = llama_chat_detect_template(curr_tmpl);
|
||||
if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) {
|
||||
return -1;
|
||||
}
|
||||
int32_t res = llama_chat_apply_template_internal(detected_tmpl, chat_vec, formatted_chat, add_ass);
|
||||
if (res < 0) {
|
||||
return res;
|
||||
}
|
||||
@ -22145,6 +22233,15 @@ int32_t llama_chat_apply_template(
|
||||
return res;
|
||||
}
|
||||
|
||||
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
|
||||
auto it = LLM_CHAT_TEMPLATES.begin();
|
||||
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
|
||||
output[i] = it->first.c_str();
|
||||
std::advance(it, 1);
|
||||
}
|
||||
return (int32_t) LLM_CHAT_TEMPLATES.size();
|
||||
}
|
||||
|
||||
//
|
||||
// sampling
|
||||
//
|
||||
@ -22191,32 +22288,23 @@ int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int
|
||||
}
|
||||
|
||||
const char * llama_print_system_info(void) {
|
||||
ggml_cpu_init(); // some ARM features are detected at runtime
|
||||
|
||||
static std::string s;
|
||||
|
||||
s = "";
|
||||
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
||||
s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
|
||||
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
||||
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
||||
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
|
||||
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
|
||||
s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
|
||||
s += "AMX_INT8 = " + std::to_string(ggml_cpu_has_amx_int8()) + " | ";
|
||||
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
||||
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
||||
s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
|
||||
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||||
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||||
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||||
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
||||
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
||||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
|
||||
s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
auto * reg = ggml_backend_reg_get(i);
|
||||
auto * get_features_fn = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features");
|
||||
if (get_features_fn) {
|
||||
ggml_backend_feature * features = get_features_fn(reg);
|
||||
s += ggml_backend_reg_name(reg);
|
||||
s += " : ";
|
||||
for (; features->name; features++) {
|
||||
s += features->name;
|
||||
s += " = ";
|
||||
s += features->value;
|
||||
s += " | ";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return s.c_str();
|
||||
}
|
||||
|
@ -185,7 +185,8 @@ extern "C" {
|
||||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||||
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
|
||||
};
|
||||
|
||||
enum llama_pooling_type {
|
||||
@ -272,6 +273,9 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
// NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
|
||||
ggml_backend_dev_t * devices;
|
||||
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||||
|
||||
@ -987,6 +991,9 @@ extern "C" {
|
||||
char * buf,
|
||||
int32_t length);
|
||||
|
||||
// Get list of built-in chat templates
|
||||
LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
|
||||
|
||||
//
|
||||
// Sampling API
|
||||
//
|
||||
|
@ -201,7 +201,18 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#if defined(__clang__)
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
return conv.from_bytes(s);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user