mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-27 14:49:55 +00:00
whisper : quantize encoder only
This commit is contained in:
parent
bebf0da983
commit
ec96d68402
@ -162,6 +162,7 @@ bool whisper_model_quantize(const std::string & fname_inp, const std::string & f
|
||||
"encoder.conv2.bias",
|
||||
"encoder.positional_embedding",
|
||||
"decoder.positional_embedding",
|
||||
"decoder.*",
|
||||
};
|
||||
|
||||
if (!ggml_common_quantize_0(finp, fout, ftype, { ".*" }, to_skip)) {
|
||||
|
48
whisper.cpp
48
whisper.cpp
@ -850,8 +850,9 @@ struct whisper_context {
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
ggml_type wtype = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX)
|
||||
ggml_type itype = ggml_type::GGML_TYPE_F16; // intermediate type (FP32 or FP16)
|
||||
ggml_type wtype_e = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX) Encoder
|
||||
ggml_type wtype_d = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX) Decoder
|
||||
ggml_type itype = ggml_type::GGML_TYPE_F16; // intermediate type (FP32 or FP16)
|
||||
|
||||
whisper_context_params params;
|
||||
|
||||
@ -1168,8 +1169,8 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// in order to save memory and also to speed up the computation
|
||||
wctx.wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
if (wctx.wtype == GGML_TYPE_COUNT) {
|
||||
wctx.wtype_e = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
if (wctx.wtype_e == GGML_TYPE_COUNT) {
|
||||
WHISPER_LOG_ERROR("%s: invalid model (bad ftype value %d)\n", __func__, model.hparams.ftype);
|
||||
return false;
|
||||
}
|
||||
@ -1290,8 +1291,9 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
WHISPER_LOG_INFO("%s: n_langs = %d\n", __func__, vocab.num_languages());
|
||||
}
|
||||
|
||||
const ggml_type wtype = wctx.wtype;
|
||||
const ggml_type vtype = wctx.wtype == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; // conv type
|
||||
const ggml_type wtype_e = wctx.wtype_e;
|
||||
const ggml_type wtype_d = wctx.wtype_d;
|
||||
const ggml_type vtype = wctx.wtype_e == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; // conv type
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
@ -1367,24 +1369,24 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
|
||||
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype_e, n_audio_state, 4*n_audio_state);
|
||||
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
|
||||
|
||||
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
|
||||
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype_e, 4*n_audio_state, n_audio_state);
|
||||
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
||||
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype_e, n_audio_state, n_audio_state);
|
||||
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
||||
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype_e, n_audio_state, n_audio_state);
|
||||
|
||||
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
||||
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype_e, n_audio_state, n_audio_state);
|
||||
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
||||
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype_e, n_audio_state, n_audio_state);
|
||||
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
// map by name
|
||||
@ -1417,7 +1419,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
{
|
||||
model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
|
||||
|
||||
model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
|
||||
model.d_te = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_vocab);
|
||||
|
||||
model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
@ -1436,38 +1438,38 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
|
||||
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, 4*n_text_state);
|
||||
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
|
||||
|
||||
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
|
||||
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype_d, 4*n_text_state, n_text_state);
|
||||
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
|
||||
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
|
||||
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
||||
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype_d, n_text_state, n_text_state);
|
||||
layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
||||
|
||||
// map by name
|
||||
|
Loading…
x
Reference in New Issue
Block a user