diff --git a/models/convert-whisper-to-openvino.py b/models/convert-whisper-to-openvino.py index 1a4ad304..5df0be78 100644 --- a/models/convert-whisper-to-openvino.py +++ b/models/convert-whisper-to-openvino.py @@ -3,6 +3,7 @@ import torch from whisper import load_model import os from openvino.tools import mo +from openvino.frontend import FrontEndManager from openvino.runtime import serialize import shutil @@ -11,7 +12,7 @@ def convert_encoder(hparams, encoder, mname): mel = torch.zeros((1, hparams.n_mels, 3000)) - onnx_folder=os.path.join(os.path.dirname(__file__),"onnx_encoder") + onnx_folder = os.path.join(os.path.dirname(__file__), "onnx_encoder") #create a directory to store the onnx model, and other collateral that is saved during onnx export procedure if not os.path.isdir(onnx_folder): @@ -19,6 +20,7 @@ def convert_encoder(hparams, encoder, mname): onnx_path = os.path.join(onnx_folder, "whisper_encoder.onnx") + # Export the PyTorch model to ONNX torch.onnx.export( encoder, mel, @@ -27,11 +29,16 @@ def convert_encoder(hparams, encoder, mname): output_names=["output_features"] ) - # use model optimizer to convert onnx to OpenVINO IR format - encoder_model = mo.convert_model(onnx_path, compress_to_fp16=True) - serialize(encoder_model, xml_path=os.path.join(os.path.dirname(__file__),"ggml-" + mname + "-encoder-openvino.xml")) + # Convert ONNX to OpenVINO IR format using the frontend + fem = FrontEndManager() + onnx_fe = fem.load_by_framework("onnx") + onnx_model = onnx_fe.load(onnx_path) + ov_model = onnx_fe.convert(onnx_model) - #cleanup + # Serialize the OpenVINO model to XML and BIN files + serialize(ov_model, xml_path=os.path.join(os.path.dirname(__file__), "ggml-" + mname + "-encoder-openvino.xml")) + + # Cleanup if os.path.isdir(onnx_folder): shutil.rmtree(onnx_folder)