ggml : reduce hash table reset cost (llama/8698)

* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
This commit is contained in:
slaren 2024-07-27 04:41:55 +02:00 committed by Georgi Gerganov
parent 0620fe00ec
commit dd916a2852
33 changed files with 784 additions and 683 deletions

View File

@ -254,18 +254,8 @@
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fflush(stdout); \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_print_backtrace(); \
abort(); \
} \
} while (0)
#ifndef NDEBUG #ifndef NDEBUG
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached") #define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
#elif defined(__GNUC__) #elif defined(__GNUC__)
#define GGML_UNREACHABLE() __builtin_unreachable() #define GGML_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER) #elif defined(_MSC_VER)
@ -274,6 +264,17 @@
#define GGML_UNREACHABLE() ((void) 0) #define GGML_UNREACHABLE() ((void) 0)
#endif #endif
#ifdef __cplusplus
#define GGML_NORETURN [[noreturn]]
#elif defined(_MSC_VER)
#define GGML_NORETURN __declspec(noreturn)
#else
#define GGML_NORETURN _Noreturn
#endif
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
// used to copy the number of elements and stride in bytes of tensors into local variables. // used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability. // main purpose is to reduce code duplication and improve readability.
// //
@ -322,6 +323,9 @@
extern "C" { extern "C" {
#endif #endif
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
enum ggml_status { enum ggml_status {
GGML_STATUS_ALLOC_FAILED = -2, GGML_STATUS_ALLOC_FAILED = -2,
GGML_STATUS_FAILED = -1, GGML_STATUS_FAILED = -1,
@ -636,8 +640,11 @@ extern "C" {
GGML_CGRAPH_EVAL_ORDER_COUNT GGML_CGRAPH_EVAL_ORDER_COUNT
}; };
typedef uint32_t ggml_bitset_t;
struct ggml_hash_set { struct ggml_hash_set {
size_t size; size_t size;
ggml_bitset_t * used;
struct ggml_tensor ** keys; struct ggml_tensor ** keys;
}; };
@ -651,7 +658,7 @@ extern "C" {
struct ggml_tensor ** grads; struct ggml_tensor ** grads;
struct ggml_tensor ** leafs; struct ggml_tensor ** leafs;
struct ggml_hash_set visited_hash_table; struct ggml_hash_set visited_hash_set;
enum ggml_cgraph_eval_order order; enum ggml_cgraph_eval_order order;
}; };
@ -698,8 +705,6 @@ extern "C" {
GGML_API int64_t ggml_cycles(void); GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void); GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_print_backtrace(void);
// accepts a UTF-8 path, even on Windows // accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode); GGML_API FILE * ggml_fopen(const char * fname, const char * mode);

View File

@ -91,8 +91,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
GGML_ASSERT(!"not enough space in the buffer"); GGML_ABORT("not enough space in the buffer");
return;
} }
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
@ -133,7 +132,7 @@ static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset,
return; return;
} }
} }
GGML_ASSERT(!"out of allocated_tensors"); GGML_ABORT("out of allocated_tensors");
} }
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) { for (int i = 0; i < 1024; i++) {
@ -142,8 +141,7 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
return; return;
} }
} }
fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
} }
#endif #endif
@ -176,8 +174,7 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
// this should never happen // this should never happen
fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail); __func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer"); GGML_ABORT("not enough space in the buffer");
GGML_UNREACHABLE();
} }
} }
@ -443,7 +440,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
} }
} }
free(galloc->hash_set.keys); ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values); free(galloc->hash_values);
free(galloc->bufts); free(galloc->bufts);
free(galloc->buffers); free(galloc->buffers);
@ -456,7 +453,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
typedef struct ggml_gallocr * ggml_gallocr_t; typedef struct ggml_gallocr * ggml_gallocr_t;
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); size_t i = ggml_hash_find_or_insert(&galloc->hash_set, t);
return &galloc->hash_values[i]; return &galloc->hash_values[i];
} }
@ -565,8 +562,8 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
// clear hash tables // clear hash tables
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); ggml_hash_set_reset(&galloc->hash_set);
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
// allocate leafs // allocate leafs
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
@ -671,21 +668,19 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
} }
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
size_t hash_size = graph->visited_hash_table.size; size_t min_hash_size = graph->n_nodes + graph->n_leafs;
// add 25% margin to avoid hash collisions
min_hash_size += min_hash_size / 4;
// initialize hash table // initialize hash table
if (galloc->hash_set.size < hash_size) { if (galloc->hash_set.size < min_hash_size) {
free(galloc->hash_set.keys); ggml_hash_set_free(&galloc->hash_set);
free(galloc->hash_values); galloc->hash_set = ggml_hash_set_new(min_hash_size);
galloc->hash_set.size = hash_size;
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
GGML_ASSERT(galloc->hash_set.keys != NULL); GGML_ASSERT(galloc->hash_set.keys != NULL);
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
GGML_ASSERT(galloc->hash_values != NULL); GGML_ASSERT(galloc->hash_values != NULL);
} else {
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
} }
// reset allocators // reset allocators
@ -817,8 +812,7 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
} }
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) { static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL; size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
return talloc->size_max >= node_size; return talloc->size_max >= node_size;
} }

View File

@ -1055,11 +1055,10 @@ struct ggml_backend_sched {
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS]; ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc; ggml_gallocr_t galloc;
// hash keys of the nodes in the graph // hash map of the nodes in the graph
struct ggml_hash_set hash_set; struct ggml_hash_set hash_set;
// hash values int * hv_tensor_backend_ids; // [hash_set.size]
int * tensor_backend_id; struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
int * node_backend_ids; // [graph_size] int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size] int * leaf_backend_ids; // [graph_size]
@ -1068,7 +1067,7 @@ struct ggml_backend_sched {
int * prev_leaf_backend_ids; // [graph_size] int * prev_leaf_backend_ids; // [graph_size]
// copy of the graph with modified inputs // copy of the graph with modified inputs
struct ggml_cgraph * graph; struct ggml_cgraph graph;
// graph splits // graph splits
struct ggml_backend_sched_split * splits; struct ggml_backend_sched_split * splits;
@ -1087,19 +1086,16 @@ struct ggml_backend_sched {
ggml_backend_sched_eval_callback callback_eval; ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data; void * callback_eval_user_data;
bool debug; char * context_buffer;
size_t context_buffer_size;
// align context_buffer to GGML_MEM_ALIGN bool debug;
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
}; };
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor) #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)] #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
// returns the priority of the backend, lower id is higher priority // returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
@ -1169,7 +1165,6 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
return cur_backend_id; return cur_backend_id;
} }
// assign nodes that use weights to the backend of the weights
// operations with weights are preferably run on the same backend as the weights // operations with weights are preferably run on the same backend as the weights
for (int i = 0; i < GGML_MAX_SRC; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i]; const struct ggml_tensor * src = tensor->src[i];
@ -1275,7 +1270,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->is_reset = false; sched->is_reset = false;
struct ggml_init_params params = { struct ggml_init_params params = {
/* .mem_size = */ sizeof(sched->context_buffer), /* .mem_size = */ sched->context_buffer_size,
/* .mem_buffer = */ sched->context_buffer, /* .mem_buffer = */ sched->context_buffer,
/* .no_alloc = */ true /* .no_alloc = */ true
}; };
@ -1284,30 +1279,32 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->ctx = ggml_init(params); sched->ctx = ggml_init(params);
if (sched->ctx == NULL) { if (sched->ctx == NULL) {
fprintf(stderr, "%s: failed to initialize context\n", __func__); GGML_ABORT("%s: failed to initialize context\n", __func__);
GGML_ASSERT(false);
} }
// pass 1: assign backends to ops with pre-allocated inputs // pass 1: assign backends to ops with pre-allocated inputs
for (int i = 0; i < graph->n_leafs; i++) { for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i]; struct ggml_tensor * leaf = graph->leafs[i];
int * leaf_backend_id = &tensor_backend_id(leaf); int * leaf_backend_id = &tensor_backend_id(leaf);
if (*leaf_backend_id != -1) {
// do not overwrite user assignments // do not overwrite user assignments
continue; if (*leaf_backend_id == -1) {
}
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf); *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
} }
}
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
int * node_backend_id = &tensor_backend_id(node); int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
// do not overwrite user assignments // do not overwrite user assignments
if (*node_backend_id == -1) {
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
#if 0
// src
if (node->op == GGML_OP_NONE) {
continue; continue;
} }
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
// src
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
@ -1318,6 +1315,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src); *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
} }
} }
#endif
}
} }
// pass 2: expand current backend assignments // pass 2: expand current backend assignments
@ -1488,12 +1487,13 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
} }
} }
// pass 4: split graph, find tensors that need to be copied // pass 5: split graph, find tensors that need to be copied
{ {
int i_split = 0; int i_split = 0;
struct ggml_backend_sched_split * split = &sched->splits[0]; struct ggml_backend_sched_split * split = &sched->splits[0];
// find the backend of the first split, skipping view ops // find the backend of the first split, skipping view ops
for (int i = 0; i < graph->n_nodes; i++) { int i = 0;
for (; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
if (!ggml_is_view_op(node->op)) { if (!ggml_is_view_op(node->op)) {
split->backend_id = tensor_backend_id(node); split->backend_id = tensor_backend_id(node);
@ -1502,9 +1502,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
} }
split->i_start = 0; split->i_start = 0;
split->n_inputs = 0; split->n_inputs = 0;
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
int cur_backend_id = split->backend_id; int cur_backend_id = split->backend_id;
for (int i = 0; i < graph->n_nodes; i++) { for (; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) { if (ggml_is_view_op(node->op)) {
@ -1513,7 +1512,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
const int node_backend_id = tensor_backend_id(node); const int node_backend_id = tensor_backend_id(node);
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now assert(node_backend_id != -1); // all nodes should be assigned by now
// check if we should start a new split based on the sources of the current node // check if we should start a new split based on the sources of the current node
bool need_new_split = false; bool need_new_split = false;
@ -1527,7 +1526,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// by starting a new split, the memory of the previously offloaded weights can be reused // by starting a new split, the memory of the previously offloaded weights can be reused
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = tensor_backend_id(src); int src_backend_id = tensor_backend_id(src);
if (src_backend_id != -1 && src_backend_id != cur_backend_id) { if (src_backend_id != cur_backend_id) {
need_new_split = true; need_new_split = true;
break; break;
} }
@ -1536,9 +1535,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// FIXME: count the number of inputs instead of only checking when full // FIXME: count the number of inputs instead of only checking when full
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) { if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
const size_t id = hash_id(src); const size_t id = hash_id(src);
int src_backend_id = sched->tensor_backend_id[id]; int src_backend_id = sched->hv_tensor_backend_ids[id];
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id); bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) { if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name); //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
need_new_split = true; need_new_split = true;
break; break;
@ -1570,12 +1569,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
continue; continue;
} }
const int src_backend_id = tensor_backend_id(src); size_t src_id = hash_id(src);
const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
assert(src_backend_id != -1); // all inputs should be assigned by now assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
size_t id = hash_id(src); if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id]; ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy; struct ggml_tensor * tensor_copy;
@ -1589,7 +1588,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_input(tensor_copy); ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
} }
sched->tensor_copies[id][src_backend_id][c] = tensor_copy; tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy"); SET_CAUSE(tensor_copy, "4.cpy");
} }
int n_graph_inputs = sched->n_graph_inputs++; int n_graph_inputs = sched->n_graph_inputs++;
@ -1598,11 +1597,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
} }
} }
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id); if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
if (src_backend_id != cur_backend_id && !supported) {
// create a copy of the input in the split's backend // create a copy of the input in the split's backend
const size_t id = hash_id(src); if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id]; ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
@ -1611,14 +1608,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_set_input(tensor_copy); ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
} }
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy; tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy"); SET_CAUSE(tensor_copy, "4.cpy");
} }
int n_inputs = split->n_inputs++; int n_inputs = split->n_inputs++;
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
split->inputs[n_inputs] = src; split->inputs[n_inputs] = src;
} }
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy]; node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
} }
} }
} }
@ -1630,7 +1627,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
ggml_backend_sched_print_assignments(sched, graph); ggml_backend_sched_print_assignments(sched, graph);
} }
// swap node_backend_ids and leaf_backend_ids and prevs // swap node_backend_ids and leaf _backend_ids with prevs
{ {
int * tmp = sched->node_backend_ids; int * tmp = sched->node_backend_ids;
sched->node_backend_ids = sched->prev_node_backend_ids; sched->node_backend_ids = sched->prev_node_backend_ids;
@ -1641,9 +1638,19 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp; sched->prev_leaf_backend_ids = tmp;
} }
// create copies of the graph for each split int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
// TODO: avoid this copy if (sched->graph.size < graph_size) {
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false); sched->graph.size = graph_size;
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
GGML_ASSERT(sched->graph.nodes != NULL);
GGML_ASSERT(sched->graph.leafs != NULL);
}
sched->graph.n_nodes = 0;
sched->graph.n_leafs = 0;
struct ggml_cgraph * graph_copy = &sched->graph;
for (int i = 0; i < sched->n_splits; i++) { for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i]; struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end); split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
@ -1654,12 +1661,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input = split->inputs[j];
const size_t input_id = hash_id(input); const size_t input_id = hash_id(input);
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy]; struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
// add a dependency to the input source so that it is not freed before the copy is done // add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input; input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id]; sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
graph_copy->nodes[graph_copy->n_nodes++] = input_dep; graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
// add a dependency to the input copy so that it is allocated at the start of the split // add a dependency to the input copy so that it is allocated at the start of the split
@ -1681,7 +1688,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
size_t id = hash_id(input); size_t id = hash_id(input);
int backend_id = tensor_backend_id(input); int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
} }
@ -1694,7 +1701,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input); size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
} }
@ -1708,13 +1715,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf; graph_copy->leafs[graph_copy->n_leafs++] = leaf;
} }
sched->graph = graph_copy;
} }
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
bool backend_ids_changed = false; bool backend_ids_changed = false;
for (int i = 0; i < sched->graph->n_nodes; i++) { for (int i = 0; i < sched->graph.n_nodes; i++) {
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] && if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) { sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
backend_ids_changed = true; backend_ids_changed = true;
@ -1722,7 +1727,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
} }
} }
if (!backend_ids_changed) { if (!backend_ids_changed) {
for (int i = 0; i < sched->graph->n_leafs; i++) { for (int i = 0; i < sched->graph.n_leafs; i++) {
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] && if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) { sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
backend_ids_changed = true; backend_ids_changed = true;
@ -1732,14 +1737,14 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
} }
// allocate graph // allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address // the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched); ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG #ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__); fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif #endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids); ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
fprintf(stderr, "%s: failed to allocate graph\n", __func__); fprintf(stderr, "%s: failed to allocate graph\n", __func__);
return false; return false;
} }
@ -1760,7 +1765,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
for (int j = 0; j < split->n_inputs; j++) { for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]); ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j]; struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy]; struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
if (input->flags & GGML_TENSOR_FLAG_INPUT) { if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
@ -1846,11 +1851,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched)); struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL; sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
// initialize hash table // initialize hash table
// FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
sched->hash_set = ggml_hash_set_new(graph_size); sched->hash_set = ggml_hash_set_new(graph_size);
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0])); sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0])); sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
@ -1858,9 +1866,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
sched->n_backends = n_backends; sched->context_buffer_size = GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
sched->context_buffer = malloc(sched->context_buffer_size);
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
const int initial_splits_capacity = 16; const int initial_splits_capacity = 16;
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0])); sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
@ -1895,37 +1902,37 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
} }
ggml_gallocr_free(sched->galloc); ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx); ggml_free(sched->ctx);
ggml_hash_set_free(&sched->hash_set);
free(sched->splits); free(sched->splits);
free(sched->hash_set.keys); free(sched->hv_tensor_backend_ids);
free(sched->tensor_backend_id); free(sched->hv_tensor_copies);
free(sched->tensor_copies);
free(sched->node_backend_ids); free(sched->node_backend_ids);
free(sched->leaf_backend_ids); free(sched->leaf_backend_ids);
free(sched->prev_node_backend_ids); free(sched->prev_node_backend_ids);
free(sched->prev_leaf_backend_ids); free(sched->prev_leaf_backend_ids);
free(sched->context_buffer);
free(sched->graph.nodes);
free(sched->graph.leafs);
free(sched); free(sched);
} }
void ggml_backend_sched_reset(ggml_backend_sched_t sched) { void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
// reset state for the next run // reset state for the next run
if (!sched->is_reset) { if (!sched->is_reset) {
size_t hash_size = sched->hash_set.size; ggml_hash_set_reset(&sched->hash_set);
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true; sched->is_reset = true;
} }
sched->is_alloc = false; sched->is_alloc = false;
} }
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes); GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
ggml_backend_sched_split_graph(sched, measure_graph); ggml_backend_sched_split_graph(sched, measure_graph);
// TODO: extract this to a separate function if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false; return false;
} }
@ -1936,10 +1943,11 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
} }
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes); GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
ggml_backend_sched_split_graph(sched, graph); ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) { if (!ggml_backend_sched_alloc_splits(sched)) {
return false; return false;
} }
@ -2009,6 +2017,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index; tensor_backend_id(node) = backend_index;
SET_CAUSE(node, "usr"); SET_CAUSE(node, "usr");
sched->is_reset = false;
} }
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
@ -2051,9 +2060,9 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
GGML_ASSERT(src != NULL); GGML_ASSERT(src != NULL);
GGML_ASSERT(src->data && "graph must be allocated"); GGML_ASSERT(src->data && "graph must be allocated");
size_t id = ggml_hash_insert(hash_set, src); size_t id = ggml_hash_insert(&hash_set, src);
if (id == GGML_HASHTABLE_ALREADY_EXISTS) { if (id == GGML_HASHSET_ALREADY_EXISTS) {
return node_copies[ggml_hash_find(hash_set, src)]; return node_copies[ggml_hash_find(&hash_set, src)];
} }
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
@ -2078,7 +2087,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
return dst; return dst;
} }
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
size_t id = ggml_hash_find(hash_set, src); size_t id = ggml_hash_find(hash_set, src);
if (node_init[id]) { if (node_init[id]) {
return; return;
@ -2105,10 +2114,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
} }
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
struct ggml_hash_set hash_set = { struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
/* .size = */ graph->visited_hash_table.size,
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
};
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = calloc(hash_set.size, sizeof(node_init[0])); bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
@ -2123,7 +2129,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
if (ctx_allocated == NULL || ctx_unallocated == NULL) { if (ctx_allocated == NULL || ctx_unallocated == NULL) {
fprintf(stderr, "failed to allocate context for graph copy\n"); fprintf(stderr, "failed to allocate context for graph copy\n");
free(hash_set.keys); ggml_hash_set_free(&hash_set);
free(node_copies); free(node_copies);
free(node_init); free(node_init);
ggml_free(ctx_allocated); ggml_free(ctx_allocated);
@ -2146,7 +2152,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
if (buffer == NULL) { if (buffer == NULL) {
fprintf(stderr, "failed to allocate buffer for graph copy\n"); fprintf(stderr, "failed to allocate buffer for graph copy\n");
free(hash_set.keys); ggml_hash_set_free(&hash_set);
free(node_copies); free(node_copies);
free(node_init); free(node_init);
ggml_free(ctx_allocated); ggml_free(ctx_allocated);
@ -2164,19 +2170,19 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
// copy data and init views // copy data and init views
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
graph_copy_init_tensor(hash_set, node_copies, node_init, node); graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
} }
// build graph copy // build graph copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false); struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
for (int i = 0; i < graph->n_nodes; i++) { for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i]; struct ggml_tensor * node = graph->nodes[i];
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)]; struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
graph_copy->nodes[i] = node_copy; graph_copy->nodes[i] = node_copy;
} }
graph_copy->n_nodes = graph->n_nodes; graph_copy->n_nodes = graph->n_nodes;
free(hash_set.keys); ggml_hash_set_free(&hash_set);
free(node_copies); free(node_copies);
free(node_init); free(node_init);

View File

@ -275,8 +275,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
break; break;
default: default:
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node)); GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
GGML_ASSERT(false);
} }
} }

View File

@ -98,7 +98,7 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line); GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_CUDA_LOG_ERROR(" %s\n", stmt); GGML_CUDA_LOG_ERROR(" %s\n", stmt);
// abort with GGML_ASSERT to get a stack trace // abort with GGML_ASSERT to get a stack trace
GGML_ASSERT(!"CUDA error"); GGML_ABORT("CUDA error");
} }
// this is faster on Windows // this is faster on Windows
@ -1596,7 +1596,7 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_cpy_tensor_2d( CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (quantize_src1 && !src1_is_contiguous) { if (quantize_src1 && !src1_is_contiguous) {
@ -2945,7 +2945,7 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif #endif
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -81,7 +81,7 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
} else if (order == GGML_SORT_ORDER_DESC) { } else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad); k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -259,7 +259,7 @@ static void ggml_cuda_op_bin_bcast(
} else { } else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -348,7 +348,7 @@ static __device__ void no_device_code(
#ifdef __CUDA_ARCH__ #ifdef __CUDA_ARCH__
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__)) #define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
#else #else
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.") #define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__ #endif // __CUDA_ARCH__
static __device__ __forceinline__ float warp_reduce_sum(float x) { static __device__ __forceinline__ float warp_reduce_sum(float x) {

View File

@ -451,7 +451,7 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -484,6 +484,6 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -662,7 +662,7 @@ void ggml_cuda_op_dequantize_mul_mat_vec(
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }

View File

@ -564,7 +564,7 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n"); fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
fprintf(stderr, "By default only f16 KV cache is supported.\n"); fprintf(stderr, "By default only f16 KV cache is supported.\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n"); fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} else if (D == 128) { } else if (D == 128) {
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n"); fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
fprintf(stderr, "Supported combinations:\n"); fprintf(stderr, "Supported combinations:\n");
@ -572,11 +572,11 @@ static void on_no_fattn_vec_case(const int D) {
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n"); fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n"); fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n"); fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} else { } else {
fprintf(stderr, "Unsupported KV type combination for head_size 256.\n"); fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
fprintf(stderr, "Only f16 is supported.\n"); fprintf(stderr, "Only f16 is supported.\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -287,7 +287,7 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
default: { default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break; } break;
} }
} }

View File

@ -284,7 +284,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
default: { default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break; } break;
} }
} }

View File

@ -38,7 +38,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst); ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} else { } else {
@ -63,7 +63,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst); // ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
// break; // break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }
@ -86,7 +86,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
return; return;
@ -114,7 +114,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
return; return;
@ -141,7 +141,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }

View File

@ -171,8 +171,7 @@ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
break; break;
default: default:
// TODO: k-quants // TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false);
break; break;
} }
} }

View File

@ -84,7 +84,7 @@ void ggml_cuda_op_mul_mat_q(
mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream); mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }

View File

@ -75,7 +75,7 @@ static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_NL:
return MMQ_Q8_1_DS_LAYOUT_D4; return MMQ_Q8_1_DS_LAYOUT_D4;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }
@ -2898,7 +2898,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
break; break;
default: default:
fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best); fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }

View File

@ -162,7 +162,7 @@ static void mul_mat_vec_q_cuda(
rows_per_cuda_block = 2; rows_per_cuda_block = 2;
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }
@ -196,7 +196,7 @@ static void mul_mat_vec_q_cuda(
mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }
@ -413,7 +413,7 @@ void ggml_cuda_op_mul_mat_vec_q(
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }

View File

@ -163,7 +163,7 @@ void quantize_mmq_q8_1_cuda(
<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded); <<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }

View File

@ -251,7 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
attn_factor, corr_dims, freq_factors, stream attn_factor, corr_dims, freq_factors, stream
); );
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else { } else {
if (src0->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32) {
@ -265,7 +265,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
attn_factor, corr_dims, freq_factors, stream attn_factor, corr_dims, freq_factors, stream
); );
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
} }

View File

@ -634,21 +634,121 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif #endif
#define GGML_HASHTABLE_FULL ((size_t)-1) // bitset
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
static size_t ggml_bitset_size(size_t n) {
return (n + BITSET_MASK) >> BITSET_SHR;
}
static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
}
static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
}
static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
}
// hash set
#define GGML_HASHSET_FULL ((size_t)-1)
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
struct ggml_hash_set ggml_hash_set_new(size_t size); struct ggml_hash_set ggml_hash_set_new(size_t size);
void ggml_hash_set_free(struct ggml_hash_set * hash_set);
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key); // returns the minimum size for a hash set that can hold min_sz elements
size_t ggml_hash_size(size_t min_sz);
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted // remove all elements from the hash set
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key); void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full // returns true if key is in the hash set
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key); static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// return index, asserts if table is full // return index, asserts if table is full
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key); static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
// hash function for ggml_tensor
static inline size_t ggml_hash(const struct ggml_tensor * p) {
// the last 4 bits are always zero due to alignment
return (size_t)(uintptr_t)p >> 4;
}
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
i = (i + 1) % hash_set->size;
if (i == h) {
// visited all hash table entries -> not found
return GGML_HASHSET_FULL;
}
}
return i;
}
static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t i = ggml_hash_find(hash_set, key);
return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
}
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
do {
if (!ggml_bitset_get(hash_set->used, i)) {
ggml_bitset_set(hash_set->used, i);
hash_set->keys[i] = key;
return i;
}
if (hash_set->keys[i] == key) {
return GGML_HASHSET_ALREADY_EXISTS;
}
i = (i + 1) % hash_set->size;
} while (i != h);
// visited all hash table entries -> not found
GGML_ABORT("fatal error");
}
static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
size_t h = ggml_hash(key) % hash_set->size;
// linear probing
size_t i = h;
do {
if (!ggml_bitset_get(hash_set->used, i)) {
ggml_bitset_set(hash_set->used, i);
hash_set->keys[i] = key;
return i;
}
if (hash_set->keys[i] == key) {
return i;
}
i = (i + 1) % hash_set->size;
} while (i != h);
// visited all hash table entries -> not found
GGML_ABORT("fatal error");
}
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -566,7 +566,7 @@ uint32_t safe_divide(uint32_t a, uint32_t b) {
} }
if ((a % b) != 0) { if ((a % b) != 0) {
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b); fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
GGML_ASSERT(!"safe_divide result would've had remainder"); GGML_ABORT("safe_divide result would've had remainder");
} }
return a / b; return a / b;
} }
@ -1460,7 +1460,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
if (!ggml_vk_supports_op(dst)) { if (!ggml_vk_supports_op(dst)) {
fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op"); GGML_ABORT("unsupported op");
} }
const int32_t ne00 = src0 ? src0->ne[0] : 0; const int32_t ne00 = src0 ? src0->ne[0] : 0;
@ -1562,7 +1562,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
default: default:
{ {
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
} break; } break;
@ -1745,7 +1745,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
continue; continue;
not_implemented: {} not_implemented: {}
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
//GGML_ASSERT(false); //GGML_ABORT("fatal error");
} }
// Evaluate sequence // Evaluate sequence

View File

@ -869,7 +869,7 @@ static enum ggml_status ggml_metal_graph_compute(
NSError * error = nil; NSError * error = nil;
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) { if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]); GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
GGML_ASSERT(!"capture failed"); GGML_ABORT("capture failed");
} }
} }
@ -931,7 +931,7 @@ static enum ggml_status ggml_metal_graph_compute(
if (!ggml_metal_supports_op(ctx, dst)) { if (!ggml_metal_supports_op(ctx, dst)) {
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ASSERT(!"unsupported op"); GGML_ABORT("unsupported op");
} }
if (should_capture) { if (should_capture) {
@ -1068,7 +1068,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
} }
bcast_row = true; bcast_row = true;
@ -1077,7 +1077,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
} }
} }
@ -1131,7 +1131,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break; case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break; case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
} }
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -1387,7 +1387,7 @@ static enum ggml_status ggml_metal_graph_compute(
default: default:
{ {
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} break; } break;
case GGML_OP_SQR: case GGML_OP_SQR:
@ -1609,7 +1609,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); default: GGML_ABORT("MUL MAT-MAT not implemented");
} }
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -1782,7 +1782,7 @@ static enum ggml_status ggml_metal_graph_compute(
default: default:
{ {
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
GGML_ASSERT(false && "not implemented"); GGML_ABORT("not implemented");
} }
}; };
@ -1911,7 +1911,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented"); default: GGML_ABORT("MUL_MAT_ID not implemented");
} }
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -2078,7 +2078,7 @@ static enum ggml_status ggml_metal_graph_compute(
default: default:
{ {
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
GGML_ASSERT(false && "not implemented"); GGML_ABORT("not implemented");
} }
}; };
@ -2178,7 +2178,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
default: GGML_ASSERT(false && "not implemented"); default: GGML_ABORT("not implemented");
} }
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -2316,13 +2316,13 @@ static enum ggml_status ggml_metal_graph_compute(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
}; };
} else { } else {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
}; };
} }
@ -2399,7 +2399,7 @@ static enum ggml_status ggml_metal_graph_compute(
switch (dst->type) { switch (dst->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
}; };
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -2556,7 +2556,7 @@ static enum ggml_status ggml_metal_graph_compute(
switch (order) { switch (order) {
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
default: GGML_ASSERT(false); default: GGML_ABORT("fatal error");
}; };
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -2645,7 +2645,7 @@ static enum ggml_status ggml_metal_graph_compute(
{ {
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n"); GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size"); GGML_ABORT("add template specialization for this size");
} }
} }
} else { } else {
@ -2658,7 +2658,7 @@ static enum ggml_status ggml_metal_graph_compute(
{ {
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_METAL_LOG_ERROR("add template specialization for this size\n"); GGML_METAL_LOG_ERROR("add template specialization for this size\n");
GGML_ASSERT(false && "add template specialization for this size"); GGML_ABORT("add template specialization for this size");
} }
} }
} }
@ -2779,7 +2779,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
default: GGML_ASSERT(false && "not implemented"); default: GGML_ABORT("not implemented");
}; };
} break; } break;
case GGML_TYPE_F16: case GGML_TYPE_F16:
@ -2787,10 +2787,10 @@ static enum ggml_status ggml_metal_graph_compute(
switch (dstt) { switch (dstt) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
default: GGML_ASSERT(false && "not implemented"); default: GGML_ABORT("not implemented");
}; };
} break; } break;
default: GGML_ASSERT(false && "not implemented"); default: GGML_ABORT("not implemented");
} }
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
@ -2818,7 +2818,7 @@ static enum ggml_status ggml_metal_graph_compute(
default: default:
{ {
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -12718,7 +12718,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
printf("Oops: found point %u not on grid:", u); printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
q2[2*ib+0] |= ((uint32_t) grid_index << 8*k); q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
q2[2*ib+1] |= (block_signs[k] << 7*k); q2[2*ib+1] |= (block_signs[k] << 7*k);
@ -12897,7 +12897,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v
printf("Oops: found point %u not on grid:", u); printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
q2[2*ib+k] = grid_index | (block_signs[k] << 9); q2[2*ib+k] = grid_index | (block_signs[k] << 9);
} }
@ -13340,7 +13340,7 @@ static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, v
printf("Oops: found point %u not on grid:", u); printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (grid_size == 256) { if (grid_size == 256) {
q3[8*ib+k] = grid_index; q3[8*ib+k] = grid_index;
@ -13553,7 +13553,7 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo
printf("Oops: found point %u not on grid:", u); printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
qs[k] = grid_index & 255; qs[k] = grid_index & 255;
qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8)); qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
@ -14529,7 +14529,7 @@ static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy
printf("Oops: found point %u not on grid:", u); printf("Oops: found point %u not on grid:", u);
for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int i8 = 2*ib + k; const int i8 = 2*ib + k;
y[ibl].qs[i8] = grid_index & 255; y[ibl].qs[i8] = grid_index & 255;
@ -14649,7 +14649,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
} }
if (nbytes % ggml_type_size(type) != 0) { if (nbytes % ggml_type_size(type) != 0) {
fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type); fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type));
return false; return false;
} }

View File

@ -1723,7 +1723,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
}); });
}); });
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -2075,8 +2075,8 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
// GGML_SYCL_DEBUG("current device index %d\n", id); // GGML_SYCL_DEBUG("current device index %d\n", id);
src_ptr = (char *) extra->data_device[id]; src_ptr = (char *) extra->data_device[id];
} else { } else {
// GGML_SYCL_DEBUG("GGML_ASSERT(false)\n"); // GGML_SYCL_DEBUG("GGML_ABORT("fatal error")\n");
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
char * dst_ptr = (char *) dst; char * dst_ptr = (char *) dst;
@ -2163,7 +2163,7 @@ static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_te
default: default:
// TODO: k-quants // TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type)); fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }
@ -2192,7 +2192,7 @@ inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_t
} else { } else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -2476,7 +2476,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYC
case GGML_TYPE_Q6_K: case GGML_TYPE_Q6_K:
return 64; return 64;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -3101,7 +3101,7 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
SYCL_CHECK(ggml_sycl_cpy_tensor_2d( SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (convert_src1_to_q8_1 && !src1_is_contiguous) { if (convert_src1_to_q8_1 && !src1_is_contiguous) {
@ -3896,7 +3896,7 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
(void) dst; (void) dst;

View File

@ -100,7 +100,7 @@ static void crash() {
const char* msg) { const char* msg) {
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg); fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
fprintf(stderr, " in function %s at %s:%d\n", func, file, line); fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
GGML_ASSERT(!"SYCL error"); GGML_ABORT("SYCL error");
} }
#define SYCL_CHECK(err) \ #define SYCL_CHECK(err) \

View File

@ -1011,7 +1011,7 @@ void ggml_sycl_op_dequantize_mul_mat_vec(
break; break;
default: default:
printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type); printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }

View File

@ -975,7 +975,7 @@ namespace dpct
if (backend == "opencl:cpu") return 4; if (backend == "opencl:cpu") return 4;
if (backend == "opencl:acc") return 5; if (backend == "opencl:acc") return 5;
printf("convert_backend_index: can't handle backend=%s\n", backend.c_str()); printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
static bool compare_backend(std::string &backend1, std::string &backend2) { static bool compare_backend(std::string &backend1, std::string &backend2) {
return convert_backend_index(backend1) < convert_backend_index(backend2); return convert_backend_index(backend1) < convert_backend_index(backend2);

View File

@ -1799,7 +1799,7 @@ static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q4_0_PASCAL; mmq_y = MMQ_Y_Q4_0_PASCAL;
nwarps = NWARPS_Q4_0_PASCAL; nwarps = NWARPS_Q4_0_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -1914,7 +1914,7 @@ static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q4_1_PASCAL; mmq_y = MMQ_Y_Q4_1_PASCAL;
nwarps = NWARPS_Q4_1_PASCAL; nwarps = NWARPS_Q4_1_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2029,7 +2029,7 @@ static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q5_0_PASCAL; mmq_y = MMQ_Y_Q5_0_PASCAL;
nwarps = NWARPS_Q5_0_PASCAL; nwarps = NWARPS_Q5_0_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2144,7 +2144,7 @@ static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q5_1_PASCAL; mmq_y = MMQ_Y_Q5_1_PASCAL;
nwarps = NWARPS_Q5_1_PASCAL; nwarps = NWARPS_Q5_1_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2259,7 +2259,7 @@ static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q8_0_PASCAL; mmq_y = MMQ_Y_Q8_0_PASCAL;
nwarps = NWARPS_Q8_0_PASCAL; nwarps = NWARPS_Q8_0_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2374,7 +2374,7 @@ static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q2_K_PASCAL; mmq_y = MMQ_Y_Q2_K_PASCAL;
nwarps = NWARPS_Q2_K_PASCAL; nwarps = NWARPS_Q2_K_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2497,7 +2497,7 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q3_K_PASCAL; mmq_y = MMQ_Y_Q3_K_PASCAL;
nwarps = NWARPS_Q3_K_PASCAL; nwarps = NWARPS_Q3_K_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2625,7 +2625,7 @@ static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q4_K_PASCAL; mmq_y = MMQ_Y_Q4_K_PASCAL;
nwarps = NWARPS_Q4_K_PASCAL; nwarps = NWARPS_Q4_K_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2746,7 +2746,7 @@ static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q5_K_PASCAL; mmq_y = MMQ_Y_Q5_K_PASCAL;
nwarps = NWARPS_Q5_K_PASCAL; nwarps = NWARPS_Q5_K_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -2867,7 +2867,7 @@ static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
mmq_y = MMQ_Y_Q6_K_PASCAL; mmq_y = MMQ_Y_Q6_K_PASCAL;
nwarps = NWARPS_Q6_K_PASCAL; nwarps = NWARPS_Q6_K_PASCAL;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
@ -3016,7 +3016,7 @@ void ggml_sycl_op_mul_mat_q(
ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }

View File

@ -1017,7 +1017,7 @@ void ggml_sycl_op_mul_mat_vec_q(
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break; break;
default: default:
GGML_ASSERT(false); GGML_ABORT("fatal error");
break; break;
} }
} }

View File

@ -251,7 +251,7 @@ void ggml_sycl_op_rope(
attn_factor, corr_dims, freq_factors, main_stream attn_factor, corr_dims, freq_factors, main_stream
); );
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else { } else {
if (src0->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32) {
@ -265,7 +265,7 @@ void ggml_sycl_op_rope(
attn_factor, corr_dims, freq_factors, main_stream attn_factor, corr_dims, freq_factors, main_stream
); );
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }

View File

@ -1961,7 +1961,7 @@ void ggml_vk_instance_init() {
// Make sure at least one device exists // Make sure at least one device exists
if (devices.empty()) { if (devices.empty()) {
std::cerr << "ggml_vulkan: Error: No devices found." << std::endl; std::cerr << "ggml_vulkan: Error: No devices found." << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
// Default to using all dedicated GPUs // Default to using all dedicated GPUs
@ -2459,7 +2459,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
// Buffer is already mapped // Buffer is already mapped
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl; std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
// Check if src is pinned memory // Check if src is pinned memory
vk_buffer buf; vk_buffer buf;
@ -2527,7 +2527,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
staging = ctx->device->sync_staging; staging = ctx->device->sync_staging;
staging_offset = 0; staging_offset = 0;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -2563,7 +2563,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, s
// Buffer is already mapped // Buffer is already mapped
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) { if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl; std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
// Check if src is pinned memory // Check if src is pinned memory
vk_buffer buf = nullptr; vk_buffer buf = nullptr;
@ -2602,7 +2602,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * subctx, vk_buffer& dst, s
staging_buffer = dst->device->sync_staging; staging_buffer = dst->device->sync_staging;
staging_offset = 0; staging_offset = 0;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -2704,7 +2704,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context * subctx, vk_buffer& src, si
staging_buffer = src->device->sync_staging; staging_buffer = src->device->sync_staging;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -2913,7 +2913,7 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_
} }
std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl; std::cerr << "Missing CPY op for types: " << ggml_type_name(from) << " " << ggml_type_name(to) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) { static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) {
@ -3499,7 +3499,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context *
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig; const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
if (mmp == nullptr) { if (mmp == nullptr) {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
// Not implemented // Not implemented
@ -4078,7 +4078,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
std::cerr << " and " << ggml_type_name(src1->type); std::cerr << " and " << ggml_type_name(src1->type);
} }
std::cerr << " to " << ggml_type_name(dst->type) << std::endl; std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
op_func(ctx, subctx, src0, src1, dst); op_func(ctx, subctx, src0, src1, dst);
@ -4521,7 +4521,7 @@ static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0
} else if (type == GGML_TYPE_F16) { } else if (type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0)); val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
fprintf(stderr, "% 7.2f ", val); fprintf(stderr, "% 7.2f ", val);
} else { } else {
@ -4555,7 +4555,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
p = ctx->device->pipeline_matmul_f16->a_s; p = ctx->device->pipeline_matmul_f16->a_s;
shname = "F16_ALIGNED_S"; shname = "F16_ALIGNED_S";
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else if (shader_size == 1) { } else if (shader_size == 1) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
@ -4571,7 +4571,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
p = ctx->device->pipeline_matmul_f16->a_m; p = ctx->device->pipeline_matmul_f16->a_m;
shname = "F16_ALIGNED_M"; shname = "F16_ALIGNED_M";
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else if (shader_size == 2) { } else if (shader_size == 2) {
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) { if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
@ -4587,7 +4587,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
p = ctx->device->pipeline_matmul_f16->a_l; p = ctx->device->pipeline_matmul_f16->a_l;
shname = "F16_ALIGNED_L"; shname = "F16_ALIGNED_L";
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else { } else {
GGML_ASSERT(0); GGML_ASSERT(0);
@ -4668,7 +4668,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) { } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
for (size_t i = 0; i < y_ne; i++) { for (size_t i = 0; i < y_ne; i++) {
@ -4679,7 +4679,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
// y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f); // y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f); y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} }
@ -4727,14 +4727,14 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) { } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
src0_type = GGML_TYPE_F16; src0_type = GGML_TYPE_F16;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (std::is_same<float, Y_TYPE>()) { if (std::is_same<float, Y_TYPE>()) {
src1_type = GGML_TYPE_F32; src1_type = GGML_TYPE_F32;
} else if (std::is_same<ggml_fp16_t, Y_TYPE>()) { } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
src1_type = GGML_TYPE_F16; src1_type = GGML_TYPE_F16;
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch); ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
@ -4841,7 +4841,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1
} else if (tensor->type == GGML_TYPE_F16) { } else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
fprintf(stderr, "% 7.2f ", val); fprintf(stderr, "% 7.2f ", val);
} else { } else {
@ -5391,7 +5391,7 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
std::cerr << std::endl; std::cerr << std::endl;
} }
GGML_ASSERT(false); GGML_ABORT("fatal error");
#endif #endif
if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) { if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) {
@ -5486,7 +5486,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break; break;
default: default:
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl; std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
return; return;
} }
@ -6498,7 +6498,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
} else if (tensor->type == GGML_TYPE_I32) { } else if (tensor->type == GGML_TYPE_I32) {
val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
fprintf(stderr, "% 7.2f ", val); fprintf(stderr, "% 7.2f ", val);
} else { } else {
@ -6620,7 +6620,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS); memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
} }
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
@ -6662,7 +6662,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS); memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
} }
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
@ -6720,7 +6720,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
} }
} else { } else {
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
@ -6797,7 +6797,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
break; break;
default: default:
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) { } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
if (src1 == nullptr) { if (src1 == nullptr) {
@ -6825,7 +6825,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_tensor *
tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone); tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone);
} else { } else {
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl; std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx); ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
@ -6912,7 +6912,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor *
} }
} else { } else {
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl; std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) { if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
@ -6935,7 +6935,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor *
std::cerr << std::endl; std::cerr << std::endl;
std::vector<const ggml_tensor *> done; std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done); ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false); GGML_ABORT("fatal error");
} }
if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) { if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
first_error[0] = i0; first_error[0] = i0;
@ -7006,7 +7006,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_tensor *
std::cerr << std::endl; std::cerr << std::endl;
std::vector<const ggml_tensor *> done; std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done); ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false); GGML_ABORT("fatal error");
} else { } else {
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl; std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
} }

File diff suppressed because it is too large Load Diff