mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-26 05:49:49 +00:00
ggml : Depthwise 2D convolution (ggml/1152)
* ggml-cpu : kernels for faster depthwise 2D convolution * fix compile: remove static after moving to ops.cpp * add dilation for depthwise_conv_2d * review: rename to ggml_conv_2d_dw_direct, remove redundant struct keywords, pass by ref, whitespace * review: rename depthwise_conv_2d -> conv_2d_dw everywhere
This commit is contained in:
parent
915c14ef10
commit
d87dfcf7c0
@ -481,6 +481,7 @@ extern "C" {
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
@ -677,6 +678,9 @@ extern "C" {
|
||||
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
@ -1660,7 +1664,7 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// depthwise
|
||||
// depthwise (via im2col and mul_mat)
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_dw(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // convolution kernel
|
||||
@ -1672,6 +1676,22 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
// Depthwise 2D convolution
|
||||
// may be faster than ggml_conv_2d_dw, but not available in all backends
|
||||
// a: KW KH 1 C convolution kernel
|
||||
// b: W H C N input data
|
||||
// res: W_out H_out C N
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int stride0,
|
||||
int stride1,
|
||||
int pad0,
|
||||
int pad1,
|
||||
int dilation0,
|
||||
int dilation1);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -1932,6 +1932,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
ggml_compute_forward_conv_2d_dw(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_transpose_2d(params, tensor);
|
||||
@ -2268,6 +2272,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
|
@ -6064,6 +6064,178 @@ void ggml_compute_forward_conv_transpose_2d(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_conv_2d_dw
|
||||
|
||||
struct ggml_conv_2d_dw_params {
|
||||
int64_t channels;
|
||||
int64_t batch;
|
||||
int64_t src_w;
|
||||
int64_t src_h;
|
||||
int64_t dst_w;
|
||||
int64_t dst_h;
|
||||
int64_t knl_w;
|
||||
int64_t knl_h;
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
int pad_x;
|
||||
int pad_y;
|
||||
int dilation_x;
|
||||
int dilation_y;
|
||||
};
|
||||
|
||||
static void ggml_compute_forward_conv_2d_dw_cwhn(
|
||||
const ggml_compute_params * params,
|
||||
const ggml_tensor * src,
|
||||
const ggml_tensor * kernel,
|
||||
ggml_tensor * dst,
|
||||
const ggml_conv_2d_dw_params & p) {
|
||||
|
||||
const int64_t c = p.channels;
|
||||
const float * knl_data = (const float *)kernel->data;
|
||||
|
||||
const int64_t rows_total = p.dst_h * p.batch;
|
||||
const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
|
||||
const int64_t row_start = params->ith * rows_per_thread;
|
||||
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
|
||||
|
||||
#ifdef GGML_SIMD
|
||||
const int64_t pkg_size = GGML_F32_EPR;
|
||||
const int64_t pkg_count = c / pkg_size;
|
||||
const int64_t c_pkg_end = pkg_count * pkg_size;
|
||||
#else
|
||||
const int64_t c_pkg_end = 0;
|
||||
#endif
|
||||
|
||||
for (int64_t row = row_start; row < row_end; ++row) {
|
||||
const int64_t dst_y = row % p.dst_h;
|
||||
const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
|
||||
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
||||
float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
|
||||
const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
|
||||
const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
|
||||
|
||||
#ifdef GGML_SIMD
|
||||
// Vectorized loop
|
||||
for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
|
||||
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
|
||||
GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
|
||||
sum = GGML_F32_VEC_FMA(sum, k, s);
|
||||
}
|
||||
}
|
||||
GGML_F32_VEC_STORE(dst_data + c_i, sum);
|
||||
}
|
||||
#endif
|
||||
// Scalar loop
|
||||
for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
|
||||
float sum = 0.0f;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
|
||||
* src_data[(src_y * p.src_w + src_x) * c + c_i];
|
||||
}
|
||||
}
|
||||
dst_data[c_i] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_conv_2d_dw_whcn(
|
||||
const ggml_compute_params * params,
|
||||
const ggml_tensor * src,
|
||||
const ggml_tensor * kernel,
|
||||
ggml_tensor * dst,
|
||||
const ggml_conv_2d_dw_params & p) {
|
||||
|
||||
const int64_t n = p.channels * p.batch;
|
||||
const int64_t per_thread = (n + params->nth - 1) / params->nth;
|
||||
const int64_t start = params->ith * per_thread;
|
||||
const int64_t end = MIN(start + per_thread, n);
|
||||
|
||||
for (int64_t i = start; i < end; ++i) {
|
||||
const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
|
||||
const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
|
||||
float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
|
||||
|
||||
for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
|
||||
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
|
||||
const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
|
||||
if (src_y < 0 || src_y >= p.src_h) {
|
||||
continue;
|
||||
}
|
||||
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
|
||||
const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
|
||||
if (src_x < 0 || src_x >= p.src_w) {
|
||||
continue;
|
||||
}
|
||||
sum += knl_data[knl_y * p.knl_w + knl_x]
|
||||
* src_data[src_y * p.src_w + src_x];
|
||||
}
|
||||
}
|
||||
dst_data[dst_y * p.dst_w + dst_x] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_conv_2d_dw(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * kernel = dst->src[0];
|
||||
const ggml_tensor * src = dst->src[1];
|
||||
ggml_conv_2d_dw_params p;
|
||||
p.channels = src->ne[2];
|
||||
p.batch = src->ne[3];
|
||||
p.src_w = src->ne[0];
|
||||
p.src_h = src->ne[1];
|
||||
p.dst_w = dst->ne[0];
|
||||
p.dst_h = dst->ne[1];
|
||||
p.knl_w = kernel->ne[0];
|
||||
p.knl_h = kernel->ne[1];
|
||||
p.stride_x = dst->op_params[0];
|
||||
p.stride_y = dst->op_params[1];
|
||||
p.pad_x = dst->op_params[2];
|
||||
p.pad_y = dst->op_params[3];
|
||||
p.dilation_x = dst->op_params[4];
|
||||
p.dilation_y = dst->op_params[5];
|
||||
|
||||
GGML_ASSERT(kernel->ne[3] == p.channels);
|
||||
GGML_ASSERT(dst->ne[3] == p.batch);
|
||||
|
||||
if (ggml_is_contiguous(src)) {
|
||||
ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
|
||||
} else if (ggml_is_contiguous_channels(src)) {
|
||||
// kernel should also have channels most contiguous in memory
|
||||
GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
|
||||
ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
|
||||
} else {
|
||||
GGML_ABORT("non-contiguous memory layout not supported");
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_pool_1d_sk_p0
|
||||
|
||||
static void ggml_compute_forward_pool_1d_sk_p0(
|
||||
|
@ -65,6 +65,7 @@ void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * p
|
||||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d_dw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
@ -956,6 +956,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"CONV_TRANSPOSE_1D",
|
||||
"IM2COL",
|
||||
"IM2COL_BACK",
|
||||
"CONV_2D_DW",
|
||||
"CONV_TRANSPOSE_2D",
|
||||
"POOL_1D",
|
||||
"POOL_2D",
|
||||
@ -993,7 +994,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -1050,6 +1051,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"conv_transpose_1d(x)",
|
||||
"im2col(x)",
|
||||
"im2col_back(x)",
|
||||
"conv_2d_dw(x)",
|
||||
"conv_transpose_2d(x)",
|
||||
"pool_1d(x)",
|
||||
"pool_2d(x)",
|
||||
@ -1087,7 +1089,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -1344,6 +1346,13 @@ bool ggml_is_permuted(const struct ggml_tensor * tensor) {
|
||||
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
|
||||
}
|
||||
|
||||
bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor) {
|
||||
return
|
||||
tensor->nb[0] > tensor->nb[2] &&
|
||||
tensor->nb[1] > tensor->nb[0] &&
|
||||
tensor->nb[2] == ggml_type_size(tensor->type);
|
||||
}
|
||||
|
||||
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
@ -4050,6 +4059,46 @@ struct ggml_tensor * ggml_conv_2d_dw(
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_conv_2d_dw_direct
|
||||
|
||||
struct ggml_tensor * ggml_conv_2d_dw_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int stride0,
|
||||
int stride1,
|
||||
int pad0,
|
||||
int pad1,
|
||||
int dilation0,
|
||||
int dilation1) {
|
||||
GGML_ASSERT(a->ne[2] == 1);
|
||||
GGML_ASSERT(a->ne[3] == b->ne[2]);
|
||||
int64_t ne[4];
|
||||
ne[0] = ggml_calc_conv_output_size(b->ne[0], a->ne[0], stride0, pad0, dilation0);
|
||||
ne[1] = ggml_calc_conv_output_size(b->ne[1], a->ne[1], stride1, pad1, dilation1);
|
||||
ne[2] = b->ne[2];
|
||||
ne[3] = b->ne[3];
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, b->type, 4, ne);
|
||||
|
||||
if (ggml_is_contiguous_channels(b)) {
|
||||
// Result will be permuted the same way as input (CWHN order)
|
||||
const int64_t type_size = ggml_type_size(result->type);
|
||||
GGML_ASSERT(ggml_blck_size(result->type) == 1);
|
||||
result->nb[0] = result->ne[2] * type_size;
|
||||
result->nb[1] = result->ne[0] * result->nb[0];
|
||||
result->nb[2] = type_size;
|
||||
}
|
||||
|
||||
int32_t params[] = { stride0, stride1, pad0, pad1, dilation0, dilation1 };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_CONV_2D_DW;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_conv_transpose_2d_p0
|
||||
|
||||
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user