ggml/examples: add backend support for numerical optimization (ggml/949)

* CUDA eval works

* stochastic gradient descent op

* Adam except decay

* CUDA CROSS_ENTROPY_LOSS_BACK

* CUDA mnist-fc training works

* backend CLI arg

* refactor gguf load

* remove sched from opt_step_adam

* implement l1 regularization (weight decay)

* extra call to add optimizer

* initialize gradients with ggml_graph_reset

* gradient accumulation

* increment iter per eval instead of epoch

* adjust backend interfaces

* fix ggml_graph_reset without backend

* fix ggml graph export/import

* fixup

* rename

* revert ggml_opt changes

* more general CUDA repeat_back

* update documentation, fix CNN

* validation split

* add clarifying comment

* optimize PyTorch training

* adjust buffer size, thread count

* fix 0.0f validation split

* Update examples/mnist/mnist-common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix gradient accumulation

* tensor flag for accumulators -> tensor hash set

* Update include/ggml.h

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* fix test prints

* Update src/ggml-backend.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* better CUDA support for noncontiguous out_prod

* add comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Johannes Gäßler
2024-09-20 14:36:38 +02:00
committed by Georgi Gerganov
parent 253ce30004
commit c7515b0995
22 changed files with 756 additions and 106 deletions

View File

@ -1,6 +1,7 @@
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "ggml.h"
@ -2977,9 +2978,10 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -3070,9 +3072,10 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4079,7 +4082,11 @@ static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, floa
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor));
if (tensor->buffer) {
ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
} else {
memset(tensor->data, 0, ggml_nbytes(tensor));
}
return tensor;
}
@ -8305,11 +8312,46 @@ struct ggml_tensor * ggml_cross_entropy_loss_back(
return result;
}
// opt_step_adamw
struct ggml_tensor * ggml_opt_step_adamw(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha,
float beta1,
float beta2,
float eps,
float wd) {
GGML_ASSERT(a->grad);
GGML_ASSERT(alpha > 0.0f);
GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
GGML_ASSERT(eps >= 0.0f);
GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
result->op = GGML_OP_OPT_STEP_ADAMW;
result->grad = NULL;
result->src[0] = a;
result->src[1] = a->grad;
result->src[2] = ggml_dup_tensor(ctx, a->grad);
result->src[3] = ggml_dup_tensor(ctx, a->grad);
const int64_t iter = 1;
memcpy(&result->op_params[0], &iter, sizeof(int64_t));
ggml_set_op_params_f32(result, 2, alpha);
ggml_set_op_params_f32(result, 3, beta1);
ggml_set_op_params_f32(result, 4, beta2);
ggml_set_op_params_f32(result, 5, eps);
ggml_set_op_params_f32(result, 6, wd);
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor) {
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
GGML_ASSERT(tensor->grad == NULL);
@ -8317,6 +8359,13 @@ void ggml_set_param(
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
}
void ggml_set_loss(struct ggml_tensor * tensor) {
GGML_ASSERT(ggml_is_scalar(tensor));
GGML_ASSERT(tensor->type == GGML_TYPE_F32);
GGML_ASSERT(tensor->grad);
tensor->flags |= GGML_TENSOR_FLAG_LOSS;
}
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
@ -17391,7 +17440,7 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
float * d = (float *) opt0->data;
const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
@ -17415,7 +17464,7 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
ggml_vec_scale_f32(nc, ds0, d_by_nr);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
@ -17444,6 +17493,94 @@ static void ggml_compute_forward_cross_entropy_loss_back(
}
}
static void ggml_compute_forward_opt_step_adamw_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src0_grad = dst->src[1];
const struct ggml_tensor * src0_grad_m = dst->src[2];
const struct ggml_tensor * src0_grad_v = dst->src[3];
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
/* const float gnorm = 1.0f; */
int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
const float alpha = ggml_get_op_params_f32(dst, 2);
const float beta1 = ggml_get_op_params_f32(dst, 3);
const float beta2 = ggml_get_op_params_f32(dst, 4);
const float eps = ggml_get_op_params_f32(dst, 5);
const float wd = ggml_get_op_params_f32(dst, 6);
const float beta1h = alpha/(1.0f - powf(beta1, iter));
const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
for (int ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
float * w = (float *) ((char *) src0->data + offset); // weight
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
float * m = (float *) ((char *) src0_grad_m->data + offset);
float * v = (float *) ((char *) src0_grad_v->data + offset);
for (int i00 = 0; i00 < ne00; ++i00) {
m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
const float mh = m[i00]*beta1h;
const float vh = sqrtf(v[i00]*beta2h) + eps;
// The weight decay is applied independently of the Adam momenta m and v.
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
// See: https://arxiv.org/pdf/1711.05101v3.pdf
w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
}
}
ggml_barrier(params->threadpool);
if (ith != 0) {
return;
}
iter++;
memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
}
static void ggml_compute_forward_opt_step_adamw(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_opt_step_adamw_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
@ -17789,6 +17926,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
ggml_compute_forward_cross_entropy_loss_back(params, tensor);
}
break;
case GGML_OP_OPT_STEP_ADAMW:
{
ggml_compute_forward_opt_step_adamw(params, tensor);
}
break;
case GGML_OP_NONE:
{
// nop
@ -17943,7 +18085,7 @@ void ggml_build_backward_gradient_checkpointing(
struct ggml_tensor * * checkpoints,
int n_checkpoints) {
ggml_graph_cpy(gf, gb_tmp);
ggml_build_backward_expand(ctx, gf, gb_tmp, true);
ggml_build_backward_expand(ctx, gf, gb_tmp, false, true);
if (n_checkpoints <= 0) {
ggml_graph_cpy(gb_tmp, gb);
@ -17981,42 +18123,93 @@ void ggml_build_backward_gradient_checkpointing(
ggml_hash_map_free(replacements);
}
// functions to change gradients considering the case that input a might be initial gradient with zero value
// utility functions to change gradients
// if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
// else if a is in zero_table, replace a
// else, just add/subtract/etc. the gradients
static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
static struct ggml_tensor * ggml_add_or_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_hash_set * zero_table,
struct ggml_hash_set * acc_table) {
if (ggml_hash_contains(acc_table, a)) {
struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
const size_t insert_result = ggml_hash_insert(acc_table, ret);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
return ret;
}
if (ggml_hash_contains(zero_table, a)) {
return b;
} else {
return ggml_add_impl(ctx, a, b, false);
}
return ggml_add_impl(ctx, a, b, false);
}
static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
static struct ggml_tensor * ggml_acc_or_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const size_t nb1,
const size_t nb2,
const size_t nb3,
const size_t offset,
struct ggml_hash_set * zero_table,
struct ggml_hash_set * acc_table) {
if (ggml_hash_contains(acc_table, a)) {
struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
const size_t insert_result = ggml_hash_insert(acc_table, ret);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
return ret;
}
if (ggml_hash_contains(zero_table, a)) {
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
} else {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
static struct ggml_tensor * ggml_add1_or_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_hash_set * zero_table,
struct ggml_hash_set * acc_table) {
if (ggml_hash_contains(acc_table, a)) {
struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
const size_t insert_result = ggml_hash_insert(acc_table, ret);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
return ret;
}
if (ggml_hash_contains(zero_table, a)) {
return ggml_repeat(ctx, b, a);
} else {
return ggml_add1_impl(ctx, a, b, false);
}
return ggml_add1_impl(ctx, a, b, false);
}
static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
static struct ggml_tensor * ggml_sub_or_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_hash_set * zero_table,
struct ggml_hash_set * acc_table) {
if (ggml_hash_contains(acc_table, a)) {
struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
const size_t insert_result = ggml_hash_insert(acc_table, ret);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
return ret;
}
if (ggml_hash_contains(zero_table, a)) {
return ggml_neg(ctx, b);
} else {
return ggml_sub_impl(ctx, a, b, false);
}
return ggml_sub_impl(ctx, a, b, false);
}
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
struct ggml_tensor * src2 = tensor->src[2];
@ -18025,38 +18218,38 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
case GGML_OP_DUP:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_ADD:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
if (ggml_are_same_shape(src0, src1)) {
src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
} else {
src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table);
src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
}
}
} break;
case GGML_OP_ADD1:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_ACC:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
@ -18078,16 +18271,16 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SUB:
{
if (src0->grad) {
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_MUL:
@ -18097,14 +18290,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx, src1, tensor->grad),
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_mul(ctx, src0, tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_DIV:
@ -18114,7 +18307,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_add_or_set(ctx,
src0->grad,
ggml_div(ctx, tensor->grad, src1),
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
@ -18123,7 +18316,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_mul(ctx,
tensor->grad,
ggml_div(ctx, tensor, src1)),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SQR:
@ -18135,7 +18328,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_scale(ctx,
ggml_mul(ctx, src0, tensor->grad),
2.0f),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SQRT:
@ -18149,7 +18342,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
tensor->grad,
tensor),
0.5f),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_LOG:
@ -18161,7 +18354,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_div(ctx,
tensor->grad,
src0),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SIN:
@ -18173,7 +18366,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_mul(ctx,
tensor->grad,
ggml_cos(ctx, src0)),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_COS:
@ -18185,7 +18378,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_mul(ctx,
tensor->grad,
ggml_sin(ctx, src0)),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SUM:
@ -18195,7 +18388,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_add1_or_set(ctx,
src0->grad,
tensor->grad,
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SUM_ROWS:
@ -18207,7 +18400,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_repeat(ctx,
tensor->grad,
src0->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_MEAN:
@ -18222,7 +18415,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_repeat_back(ctx, tensor->grad, src0->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_REPEAT_BACK:
@ -18232,7 +18425,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_repeat(ctx, tensor->grad, src0->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_CONCAT:
@ -18257,7 +18450,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_RMS_NORM_BACK:
@ -18305,7 +18498,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_add_or_set(ctx,
src0->grad, // [n,m,q1,r1]
s1_tg, // [n,m,q1,r1]
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
@ -18323,7 +18516,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0, // [n,m,q1,r1]
ggml_transpose(ctx, // [p,m,qq,rr]
tensor->grad)), // [m,p,qq,rr]
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_MUL_MAT_ID:
@ -18345,7 +18538,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_add_or_set(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, s, false),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SET:
@ -18374,7 +18567,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
tensor->grad,
ggml_neg(ctx, tensor_grad_view),
nb1, nb2, nb3, offset, false),
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
@ -18384,7 +18577,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_CPY:
@ -18395,7 +18588,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
// tensor = src0 * 1 + src1 * 0
if (src0->grad) {
// dsrc0 = dtensor * 1
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
// dsrc1 = dtensor * 0 -> noop
@ -18407,7 +18600,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
if (src0->grad) {
GGML_ASSERT(ggml_is_contiguous(src0->grad));
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_RESHAPE:
@ -18421,7 +18614,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
? tensor->grad
: ggml_cont(ctx, tensor->grad),
src0->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_VIEW:
@ -18450,7 +18643,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
nb3 = (nb3 / n0) * ng;
}
src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
}
} break;
case GGML_OP_PERMUTE:
@ -18475,7 +18668,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
axes_backward[1],
axes_backward[2],
axes_backward[3]),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_TRANSPOSE:
@ -18485,7 +18678,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_transpose(ctx, tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_GET_ROWS:
@ -18497,7 +18690,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
// last ggml_get_rows_back argument src0->grad is only
// necessary to setup correct output shape
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
// noop
@ -18521,7 +18714,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_DIAG_MASK_ZERO:
@ -18532,7 +18725,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_SOFT_MAX:
@ -18542,7 +18735,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_soft_max_back(ctx, tensor->grad, tensor),
zero_table);
zero_table, acc_table);
}
} break;
@ -18583,7 +18776,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
attn_factor,
beta_fast,
beta_slow),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_ROPE_BACK:
@ -18619,7 +18812,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
beta_fast,
beta_slow,
false),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_CLAMP:
@ -18644,7 +18837,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_IM2COL_BACK:
@ -18673,7 +18866,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_POOL_2D_BACK:
@ -18738,7 +18931,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
grad_q,
zero_table);
zero_table, acc_table);
}
if (src1->grad) {
struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
@ -18746,7 +18939,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src1->grad = ggml_add_or_set(ctx,
src1->grad,
grad_k,
zero_table);
zero_table, acc_table);
}
if (src2->grad) {
struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
@ -18754,7 +18947,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src2->grad = ggml_add_or_set(ctx,
src2->grad,
grad_v,
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_FLASH_ATTN_BACK:
@ -18780,7 +18973,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_mul(ctx,
ggml_sgn(ctx, src0),
tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_SGN:
@ -18792,7 +18985,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
case GGML_UNARY_OP_NEG:
{
if (src0->grad) {
src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_STEP:
@ -18817,7 +19010,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_mul(ctx,
ggml_step(ctx, src0),
tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_SIGMOID:
@ -18839,7 +19032,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_silu_back(ctx, src0, tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_EXP:
@ -18848,7 +19041,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx, tensor, tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
default:
@ -18878,13 +19071,17 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0,
src1,
tensor->grad),
zero_table);
zero_table, acc_table);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
GGML_ABORT("fatal error"); // not supported
}
case GGML_OP_OPT_STEP_ADAMW:
{
GGML_ABORT("fatal error"); // not supported
}
case GGML_OP_NONE:
{
// nop
@ -18974,7 +19171,7 @@ void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor *
ggml_build_forward_impl(cgraph, tensor, true);
}
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate, bool keep) {
GGML_ASSERT(gf->n_nodes > 0);
GGML_ASSERT(gf->grads);
@ -18990,21 +19187,35 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph *
}
}
// remember original gradients which start with zero values
// keep tables of original gradients for replacement/accumulation logic
struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->grads[i]) {
ggml_hash_insert(&zero_table, gf->grads[i]);
struct ggml_tensor * node = gf->nodes[i];
if (node->grad) {
{
const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
}
// only gradients of trainable parameters should be accumulated
if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
}
}
}
for (int i = gf->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = gf->nodes[i];
// inplace operations to add gradients are not created by ggml_compute_backward
// inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
// use allocator to automatically make inplace operations
if (node->grad) {
ggml_compute_backward(ctx, node, &zero_table);
ggml_compute_backward(ctx, node, &zero_table, &acc_table);
}
}
@ -19018,8 +19229,30 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph *
}
ggml_hash_set_free(&zero_table);
ggml_hash_set_free(&acc_table);
}
void ggml_build_opt_adamw(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
float alpha,
float beta1,
float beta2,
float eps,
float wd) {
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, alpha, beta1, beta2, eps, wd);
ggml_build_forward_expand(gb, opt_step);
}
}
}
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
void * ptr = *p;
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
@ -19147,10 +19380,28 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * grad = cgraph->grads[i];
struct ggml_tensor * node = cgraph->nodes[i];
if (grad) {
ggml_set_zero(grad);
// initial gradients of loss should be 1, 0 otherwise
if (node->grad) {
if (node->flags & GGML_TENSOR_FLAG_LOSS) {
GGML_ASSERT(node->grad->buffer);
GGML_ASSERT(node->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_scalar(node));
const float onef = 1.0f;
ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
} else {
ggml_set_zero(node->grad);
}
}
GGML_ASSERT(node);
if (node->op == GGML_OP_OPT_STEP_ADAMW) {
// set iteration to 1 and clear momenta
ggml_set_op_params_i32(node, 0, 1);
ggml_set_zero(node->src[2]);
ggml_set_zero(node->src[3]);
}
}
}
@ -19415,6 +19666,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
{
n_tasks = n_threads;
} break;
@ -21777,7 +22029,7 @@ enum ggml_opt_result ggml_opt_resume(
ggml_build_forward_expand(gf, f);
struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
ggml_build_backward_expand(ctx, gf, gb, true);
ggml_build_backward_expand(ctx, gf, gb, false, true);
return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
}