mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-24 06:46:37 +00:00
llama podcast
This commit is contained in:
parent
0a2d1210bc
commit
c456ca476b
@ -12,6 +12,19 @@
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <Windows.h>
|
||||
#else
|
||||
#include <sys/types.h>
|
||||
#include <sys/mman.h>
|
||||
#include <unistd.h>
|
||||
#include <fcntl.h>
|
||||
#endif
|
||||
|
||||
#define Min(X, Y) ((Y) > (X) ? (X) : (Y))
|
||||
#define Max(X, Y) ((Y) < (X) ? (X) : (Y))
|
||||
|
||||
#define LLAMA_USE_SCRATCH
|
||||
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
||||
|
||||
@ -142,6 +155,10 @@ struct llama_model {
|
||||
// the model memory buffer
|
||||
std::vector<uint8_t> buf;
|
||||
|
||||
// model memory mapped file
|
||||
void * mm_addr = NULL;
|
||||
uint64_t mm_length = 0;
|
||||
|
||||
// tensors
|
||||
int n_loaded;
|
||||
std::unordered_map<std::string, struct ggml_tensor *> tensors;
|
||||
@ -165,6 +182,7 @@ struct llama_context {
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
int64_t t_sample_us = 0;
|
||||
int64_t t_eval_us = 0;
|
||||
@ -206,7 +224,7 @@ struct llama_context {
|
||||
}
|
||||
|
||||
if (buf_last >= 0) {
|
||||
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
|
||||
buf_max_size[buf_last] = Max(buf_max_size[buf_last], last_size);
|
||||
}
|
||||
|
||||
buf_last = i;
|
||||
@ -246,6 +264,7 @@ static bool kv_cache_init(
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size();
|
||||
params.mem_buffer = cache.buf.data();
|
||||
params.no_alloc = false;
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
@ -288,6 +307,58 @@ struct llama_context_params llama_context_default_params() {
|
||||
// model loading
|
||||
//
|
||||
|
||||
static void *mmap_file(const char *fname, uint64_t *mm_length) {
|
||||
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||
HANDLE hFile = CreateFileA(fname,
|
||||
GENERIC_READ,
|
||||
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
|
||||
NULL,
|
||||
OPEN_EXISTING,
|
||||
FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
|
||||
NULL);
|
||||
if (hFile == INVALID_HANDLE_VALUE) return 0;
|
||||
LARGE_INTEGER fileSize;
|
||||
fileSize.QuadPart = -1;
|
||||
GetFileSizeEx(hFile, &fileSize);
|
||||
int64_t length = fileSize.QuadPart;
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
CloseHandle(hFile);
|
||||
if (!hMapping) return 0;
|
||||
void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
CloseHandle(hMapping);
|
||||
if (!addr) return 0;
|
||||
#else
|
||||
int fd = open(fname, O_RDONLY);
|
||||
if (fd == -1) return 0;
|
||||
int64_t length = lseek(fd, 0, SEEK_END);
|
||||
void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
|
||||
close(fd);
|
||||
if (addr == MAP_FAILED) return 0;
|
||||
#endif
|
||||
*mm_length = length;
|
||||
return addr;
|
||||
}
|
||||
|
||||
static void munmap_file(void * addr, size_t length) {
|
||||
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||
UnmapViewOfFile(addr);
|
||||
#else
|
||||
munmap(addr, length);
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool report_bad_magic(const char *path, uint32_t got, uint32_t want) {
|
||||
fprintf(stderr,
|
||||
"%s: invalid model file (bad magic [got %#x want %#x])\n"
|
||||
"\tyou most likely need to regenerate your ggml files\n"
|
||||
"\tthe benefit is you'll get 10-100x faster load times\n"
|
||||
"\tsee https://github.com/ggerganov/llama.cpp/issues/91\n"
|
||||
"\tuse convert-pth-to-ggml.py to regenerate from original pth\n"
|
||||
"\tuse migrate-ggml-2023-03-30-pr613.py if you deleted originals\n",
|
||||
path, got, want);
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool llama_model_load(
|
||||
const std::string & fname,
|
||||
llama_context & lctx,
|
||||
@ -299,34 +370,35 @@ static bool llama_model_load(
|
||||
void *progress_callback_user_data) {
|
||||
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
||||
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
lctx.t_start_us = t_start_us;
|
||||
|
||||
std::vector<char> f_buf(1024*1024);
|
||||
lctx.t_start_us = ggml_time_us();
|
||||
|
||||
auto & model = lctx.model;
|
||||
auto & vocab = lctx.vocab;
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<char> f_buf(1024*1024);
|
||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
||||
|
||||
fin.seekg(0, fin.end);
|
||||
const size_t file_size = fin.tellg();
|
||||
fin.seekg(0);
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
|
||||
fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!)\n",
|
||||
__func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
if (magic != LLAMA_FILE_MAGIC) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
return report_bad_magic(fname.c_str(), magic, LLAMA_FILE_MAGIC);
|
||||
}
|
||||
|
||||
uint32_t format_version;
|
||||
@ -449,43 +521,24 @@ static bool llama_model_load(
|
||||
}
|
||||
}
|
||||
|
||||
// map model into memory
|
||||
char *mm_addr = NULL;
|
||||
model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);
|
||||
if (model.mm_addr == NULL) {
|
||||
fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
mm_addr = (char *)model.mm_addr;
|
||||
fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto &hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
|
||||
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
||||
|
||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
|
||||
|
||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
|
||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||
}
|
||||
|
||||
// print memory requirements
|
||||
@ -495,6 +548,7 @@ static bool llama_model_load(
|
||||
// this is the total memory required to run the inference
|
||||
const size_t mem_required =
|
||||
ctx_size +
|
||||
model.mm_length +
|
||||
MEM_REQ_SCRATCH0.at(model.type) +
|
||||
MEM_REQ_SCRATCH1.at(model.type) +
|
||||
MEM_REQ_EVAL.at (model.type);
|
||||
@ -514,6 +568,7 @@ static bool llama_model_load(
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ lctx.model.buf.size(),
|
||||
/*.mem_buffer =*/ lctx.model.buf.data(),
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
@ -576,43 +631,19 @@ static bool llama_model_load(
|
||||
}
|
||||
}
|
||||
|
||||
const size_t file_offset = fin.tellg();
|
||||
|
||||
fin.close();
|
||||
|
||||
std::vector<uint8_t> tmp;
|
||||
|
||||
if (progress_callback) {
|
||||
progress_callback(0.0, progress_callback_user_data);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_parts; ++i) {
|
||||
const int part_id = i;
|
||||
//const int part_id = n_parts - i - 1;
|
||||
|
||||
std::string fname_part = fname;
|
||||
if (i > 0) {
|
||||
fname_part += "." + std::to_string(i);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
|
||||
|
||||
fin = std::ifstream(fname_part, std::ios::binary);
|
||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
||||
|
||||
fin.seekg(0, fin.end);
|
||||
const size_t file_size = fin.tellg();
|
||||
|
||||
fin.seekg(file_offset);
|
||||
fprintf(stderr, "%s: loading tensors from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
// load weights
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
model.n_loaded = 0;
|
||||
|
||||
fprintf(stderr, "%s: ", __func__);
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
@ -641,155 +672,52 @@ static bool llama_model_load(
|
||||
return false;
|
||||
}
|
||||
|
||||
// split_type = 0: split by columns
|
||||
// split_type = 1: split by rows
|
||||
int split_type = 0;
|
||||
|
||||
// split_type = 0:
|
||||
// regex:
|
||||
// - tok_embeddings.*
|
||||
// - layers.*.attention.wo.weight
|
||||
// - layers.*.feed_forward.w2.weight
|
||||
|
||||
// split_type = 1:
|
||||
// regex:
|
||||
// - output.*
|
||||
// - layers.*.attention.wq.weight
|
||||
// - layers.*.attention.wk.weight
|
||||
// - layers.*.attention.wv.weight
|
||||
// - layers.*.feed_forward.w1.weight
|
||||
// - layers.*.feed_forward.w3.weight
|
||||
if (name.find("tok_embeddings") != std::string::npos) {
|
||||
split_type = 0;
|
||||
} else if (name.find("layers") != std::string::npos) {
|
||||
if (name.find("attention.wo.weight") != std::string::npos) {
|
||||
split_type = 0;
|
||||
} else if (name.find("feed_forward.w2.weight") != std::string::npos) {
|
||||
split_type = 0;
|
||||
} else {
|
||||
split_type = 1;
|
||||
}
|
||||
} else if (name.find("output") != std::string::npos) {
|
||||
split_type = 1;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
|
||||
if (n_dims == 1) {
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (ggml_nelements(tensor)/n_parts != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_dims == 1) {
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (split_type == 0) {
|
||||
if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (0) {
|
||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
||||
fprintf(stderr, "%24s - [%5d, %5d], type = %6s\n", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
||||
}
|
||||
|
||||
size_t bpe = 0;
|
||||
|
||||
switch (ftype) {
|
||||
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
||||
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
||||
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
||||
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
||||
case 0: // f32
|
||||
case 1: // f16
|
||||
break;
|
||||
case 2: // q4_0
|
||||
case 3: // q4_1
|
||||
assert(ne[0] % 64 == 0);
|
||||
break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
if (n_dims == 1 || n_parts == 1) {
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (part_id == 0) {
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
} else {
|
||||
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
|
||||
}
|
||||
|
||||
total_size += ggml_nbytes(tensor);
|
||||
} else {
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (split_type == 0) {
|
||||
const int np0 = ne[0];
|
||||
|
||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
||||
assert(row_size == tensor->nb[1]);
|
||||
|
||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
||||
const size_t offset_row = i1*row_size;
|
||||
const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
||||
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
|
||||
}
|
||||
} else {
|
||||
const int np1 = ne[1];
|
||||
|
||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
||||
|
||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
||||
const size_t offset_row = (i1 + part_id*np1)*row_size;
|
||||
fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
|
||||
}
|
||||
}
|
||||
|
||||
total_size += ggml_nbytes(tensor)/n_parts;
|
||||
}
|
||||
|
||||
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
// load the tensor data into memory without copying or reading it
|
||||
size_t offset = fin.tellg();
|
||||
size_t tensor_data_size = ggml_nbytes(tensor);
|
||||
offset = (offset + 31) & -32;
|
||||
tensor->data = mm_addr + offset;
|
||||
fin.seekg(offset + tensor_data_size);
|
||||
total_size += tensor_data_size;
|
||||
model.n_loaded++;
|
||||
|
||||
// progress
|
||||
if (progress_callback) {
|
||||
double current_file_progress = double(size_t(fin.tellg()) - file_offset) / double(file_size - file_offset);
|
||||
double current_progress = (double(i) + current_file_progress) / double(n_parts);
|
||||
double current_progress = size_t(fin.tellg()) / double(file_size);
|
||||
progress_callback(current_progress, progress_callback_user_data);
|
||||
}
|
||||
if (model.n_loaded % 8 == 0) {
|
||||
fprintf(stderr, ".");
|
||||
fflush(stderr);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, " done\n");
|
||||
fin.close();
|
||||
|
||||
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
|
||||
if (model.n_loaded == 0) {
|
||||
@ -800,10 +728,9 @@ static bool llama_model_load(
|
||||
}
|
||||
}
|
||||
|
||||
fin.close();
|
||||
}
|
||||
|
||||
lctx.t_load_us = ggml_time_us() - t_start_us;
|
||||
// loading time will be recalculate after the first eval, so
|
||||
// we take page faults deferred by mmap() into consideration
|
||||
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
||||
|
||||
if (progress_callback) {
|
||||
progress_callback(1.0, progress_callback_user_data);
|
||||
@ -849,6 +776,7 @@ static bool llama_eval_internal(
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_compute.size(),
|
||||
/*.mem_buffer =*/ buf_compute.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
@ -856,7 +784,7 @@ static bool llama_eval_internal(
|
||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = N > 255 && ggml_cpu_has_blas() ? 1 : n_threads;
|
||||
gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
||||
@ -922,7 +850,7 @@ static bool llama_eval_internal(
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)));
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
@ -1126,7 +1054,7 @@ struct llama_tokenizer {
|
||||
size_t offs = 0;
|
||||
while (offs < text.size()) {
|
||||
llama_sp_symbol sym;
|
||||
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
|
||||
size_t char_len = Min(text.size() - offs, utf8_len(text[offs]));
|
||||
sym.text = text.c_str() + offs;
|
||||
sym.n = char_len;
|
||||
offs += char_len;
|
||||
@ -1240,12 +1168,12 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
|
||||
// sampling
|
||||
//
|
||||
|
||||
static void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
|
||||
static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
|
||||
// find the top k tokens
|
||||
std::partial_sort(
|
||||
logits_id.begin(),
|
||||
logits_id.begin() + top_k, logits_id.end(),
|
||||
[](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
|
||||
[](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
@ -1256,9 +1184,9 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||
llama_context & lctx,
|
||||
const std::vector<llama_vocab::id> & last_n_tokens,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
double repeat_penalty) {
|
||||
float top_p,
|
||||
float temp,
|
||||
float repeat_penalty) {
|
||||
auto & rng = lctx.rng;
|
||||
|
||||
const int n_logits = lctx.model.hparams.n_vocab;
|
||||
@ -1266,17 +1194,17 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||
const auto & logits = lctx.logits;
|
||||
const auto * plogits = logits.data() + logits.size() - n_logits;
|
||||
|
||||
std::vector<std::pair<double, llama_vocab::id>> logits_id;
|
||||
std::vector<std::pair<float, llama_vocab::id>> logits_id;
|
||||
logits_id.reserve(n_logits);
|
||||
|
||||
{
|
||||
const double scale = 1.0/temp;
|
||||
const float scale = 1.0f/temp;
|
||||
for (int i = 0; i < n_logits; ++i) {
|
||||
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||
if (plogits[i] < 0.0) {
|
||||
if (plogits[i] < 0.0f) {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
||||
} else {
|
||||
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
||||
@ -1289,18 +1217,18 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||
|
||||
sample_top_k(logits_id, top_k);
|
||||
|
||||
double maxl = -std::numeric_limits<double>::infinity();
|
||||
float maxl = -std::numeric_limits<float>::infinity();
|
||||
for (const auto & kv : logits_id) {
|
||||
maxl = std::max(maxl, kv.first);
|
||||
maxl = Max(maxl, kv.first);
|
||||
}
|
||||
|
||||
// compute probs for the top k tokens
|
||||
std::vector<double> probs;
|
||||
std::vector<float> probs;
|
||||
probs.reserve(logits_id.size());
|
||||
|
||||
double sum = 0.0;
|
||||
for (const auto & kv : logits_id) {
|
||||
double p = exp(kv.first - maxl);
|
||||
const float p = expf(kv.first - maxl);
|
||||
probs.push_back(p);
|
||||
sum += p;
|
||||
}
|
||||
@ -1310,8 +1238,8 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||
p /= sum;
|
||||
}
|
||||
|
||||
if (top_p < 1.0f) {
|
||||
double cumsum = 0.0f;
|
||||
if (top_p < 1.0) {
|
||||
double cumsum = 0.0;
|
||||
for (int i = 0; i < (int) probs.size(); i++) {
|
||||
cumsum += probs[i];
|
||||
if (cumsum >= top_p) {
|
||||
@ -1345,7 +1273,7 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||
//
|
||||
|
||||
// TODO: reuse code from the llama_model_load() somehow
|
||||
bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype, int qk) {
|
||||
static bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
|
||||
ggml_type type = GGML_TYPE_Q4_1;
|
||||
|
||||
switch (itype) {
|
||||
@ -1385,8 +1313,7 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
return false;
|
||||
}
|
||||
if (magic != LLAMA_FILE_MAGIC) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
||||
return false;
|
||||
return report_bad_magic(fname_inp.c_str(), magic, LLAMA_FILE_MAGIC);
|
||||
}
|
||||
|
||||
fout.write((char *) &magic, sizeof(magic));
|
||||
@ -1444,7 +1371,7 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
std::vector<char> word(32);
|
||||
vocab.id_to_token.resize(n_vocab);
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
@ -1452,17 +1379,17 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
fout.write((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
finp.read ((char *) word.data(), len);
|
||||
fout.write((char *) word.data(), len);
|
||||
finp.read ((char *) &word[0], len);
|
||||
fout.write((char *) &word[0], len);
|
||||
|
||||
float score;
|
||||
finp.read ((char *) &score, sizeof(score));
|
||||
fout.write((char *) &score, sizeof(score));
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.token_to_id[word.data()] = i;
|
||||
|
||||
auto &tok_score = vocab.id_to_token[i];
|
||||
tok_score.tok = word;
|
||||
tok_score.tok = word.data();
|
||||
tok_score.score = score;
|
||||
}
|
||||
}
|
||||
@ -1503,6 +1430,13 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
std::string name(length, 0);
|
||||
finp.read (&name[0], length);
|
||||
|
||||
{
|
||||
// ensure tensor data is aligned
|
||||
uint64_t offset = finp.tellg();
|
||||
offset = (offset + 31) & -32;
|
||||
finp.seekg(offset);
|
||||
}
|
||||
|
||||
{
|
||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
||||
@ -1558,6 +1492,13 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
}
|
||||
fout.write(&name[0], length);
|
||||
|
||||
{
|
||||
// ensure tensor data is aligned
|
||||
uint64_t offset = fout.tellp();
|
||||
offset = (offset + 31) & -32;
|
||||
fout.seekp(offset);
|
||||
}
|
||||
|
||||
if (quantize) {
|
||||
printf("quantizing .. ");
|
||||
work.resize(nelements); // for quantization
|
||||
@ -1568,11 +1509,11 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
|
||||
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
@ -1590,7 +1531,7 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
||||
printf("%5.3f ", hist_cur[i] / (float)nelements);
|
||||
printf("%5.3f ", hist_cur[i] / float(nelements));
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
@ -1613,7 +1554,7 @@ bool llama_model_quantize_internal(const std::string & fname_inp, const std::str
|
||||
|
||||
printf("%s: hist: ", __func__);
|
||||
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
||||
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
||||
printf("%5.3f ", hist_all[i] / float(sum_all));
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
@ -1655,7 +1596,10 @@ struct llama_context * llama_init_from_file(
|
||||
|
||||
if (params.use_mlock) {
|
||||
char *err;
|
||||
if (!ggml_mlock(ctx->model.ctx, &err)) {
|
||||
if (!ggml_mlock(ctx->model.ctx,
|
||||
ctx->model.mm_addr,
|
||||
ctx->model.mm_length,
|
||||
&err)) {
|
||||
fprintf(stderr, "%s\n", err);
|
||||
free(err);
|
||||
llama_free(ctx);
|
||||
@ -1705,15 +1649,18 @@ void llama_free(struct llama_context * ctx) {
|
||||
ggml_free(ctx->model.ctx);
|
||||
}
|
||||
|
||||
if (ctx->model.mm_addr) {
|
||||
munmap_file(ctx->model.mm_addr, ctx->model.mm_length);
|
||||
}
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
int itype,
|
||||
int qk) {
|
||||
if (!llama_model_quantize_internal(fname_inp, fname_out, itype, qk)) {
|
||||
int itype) {
|
||||
if (!llama_model_quantize_internal(fname_inp, fname_out, itype)) {
|
||||
fprintf(stderr, "%s: failed to quantize\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -1731,7 +1678,11 @@ int llama_eval(
|
||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// get a more accurate load time, upon first eval
|
||||
if (!ctx->has_evaluated_once) {
|
||||
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
||||
ctx->has_evaluated_once = true;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -1796,9 +1747,9 @@ llama_token llama_sample_top_p_top_k(
|
||||
const llama_token * last_n_tokens_data,
|
||||
int last_n_tokens_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
double repeat_penalty) {
|
||||
float top_p,
|
||||
float temp,
|
||||
float repeat_penalty) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
llama_token result = 0;
|
||||
@ -1824,21 +1775,20 @@ llama_token llama_sample_top_p_top_k(
|
||||
void llama_print_timings(struct llama_context * ctx) {
|
||||
const int64_t t_end_us = ggml_time_us();
|
||||
|
||||
const int32_t n_sample = std::max(1, ctx->n_sample);
|
||||
const int32_t n_eval = std::max(1, ctx->n_eval);
|
||||
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
|
||||
const int32_t n_sample = Max(1, ctx->n_sample);
|
||||
const int32_t n_eval = Max(1, ctx->n_eval);
|
||||
const int32_t n_p_eval = Max(1, ctx->n_p_eval);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
|
||||
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_sample_us, n_sample, 1e-3f * ctx->t_sample_us / n_sample);
|
||||
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3f * ctx->t_p_eval_us, n_p_eval, 1e-3f * ctx->t_p_eval_us / n_p_eval);
|
||||
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_eval_us, n_eval, 1e-3f * ctx->t_eval_us / n_eval);
|
||||
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
|
||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
|
||||
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
|
||||
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
|
||||
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
|
||||
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
|
||||
}
|
||||
|
||||
void llama_reset_timings(struct llama_context * ctx) {
|
||||
ctx->t_start_us = ggml_time_us();
|
||||
|
||||
ctx->t_sample_us = ctx->n_sample = 0;
|
||||
ctx->t_eval_us = ctx->n_eval = 0;
|
||||
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
||||
|
@ -6,7 +6,7 @@
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# ifdef _WIN32
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
@ -20,7 +20,7 @@
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 0x67676d66 // 'ggmf' in hex
|
||||
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||
|
||||
#ifdef __cplusplus
|
||||
@ -45,7 +45,7 @@ extern "C" {
|
||||
|
||||
} llama_token_data;
|
||||
|
||||
typedef void (*llama_progress_callback)(double progress, void *ctx);
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
@ -81,8 +81,7 @@ extern "C" {
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
int itype,
|
||||
int qk);
|
||||
int itype);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
@ -135,9 +134,9 @@ extern "C" {
|
||||
const llama_token * last_n_tokens_data,
|
||||
int last_n_tokens_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
double repeat_penalty);
|
||||
float top_p,
|
||||
float temp,
|
||||
float repeat_penalty);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
|
@ -10,7 +10,15 @@
|
||||
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# for Mac
|
||||
if [ "$1" = "0" ]; then
|
||||
say "$2"
|
||||
elif [ "$1" = "1" ]; then
|
||||
say -v "Samantha (Enhanced)" "$2"
|
||||
elif [ "$1" = "2" ]; then
|
||||
say -v "Daniel (Enhanced)" "$2"
|
||||
elif [ "$1" = "3" ]; then
|
||||
say -v "Veena (Enhanced)" "$2"
|
||||
fi
|
||||
|
||||
# Eleven Labs
|
||||
#
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
@ -28,14 +29,15 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t voice_id = 0;
|
||||
int32_t voice_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t max_tokens = 64;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
int32_t n_parts_llama = -1;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float vad_thold = 0.4f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
@ -45,7 +47,8 @@ struct whisper_params {
|
||||
bool no_timestamps = true;
|
||||
bool verbose_prompt = false;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string name_ni = "Georgi"; // natural intelligence
|
||||
std::string name_ai = "LLaMA"; // artificial intelligence
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_llama = "models/ggml-llama-7B.bin";
|
||||
@ -65,6 +68,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vid" || arg == "--voice-id") { params.voice_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
@ -77,7 +81,8 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "--verbose-prompt") { params.verbose_prompt = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-nni" || arg == "--name-ni") { params.name_ni = argv[++i]; }
|
||||
else if (arg == "-nai" || arg == "--name-ai") { params.name_ai = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
|
||||
@ -107,6 +112,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -vid N, --voice-id N [%-7d] voice ID\n", params.voice_id);
|
||||
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
@ -117,7 +123,8 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -nni NAME,--name-ni NAME [%-7s] natural intelligence name\n", params.name_ni.c_str());
|
||||
fprintf(stderr, " -nai NAME,--name-ai NAME [%-7s] artificial intelligence name\n", params.name_ai.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
|
||||
@ -157,7 +164,7 @@ std::string transcribe(
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_threads = 2;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
@ -165,6 +172,10 @@ std::string transcribe(
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
static int iter = params.voice_id;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100*iter));
|
||||
iter = (iter + 1) % 4;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
@ -197,25 +208,87 @@ std::string transcribe(
|
||||
return result;
|
||||
}
|
||||
|
||||
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
|
||||
const std::vector<std::string> k_participants = {
|
||||
"LLaMA",
|
||||
"GGaMA",
|
||||
"SSaMA",
|
||||
"RRaMA",
|
||||
};
|
||||
|
||||
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
// homophones
|
||||
const std::map<std::string, std::vector<std::string>> k_homophones = {
|
||||
{ "LLaMA", { "llama", "Llama", "LLAMA", }, },
|
||||
{ "GGaMA", { "gama", "Gama", "GAMA", "gamma", "Gamma", "GAMMA", }, },
|
||||
{ "SSaMA", { "sama", "Sama", "SAMA", "samma", "Samma", "SAMMA", }, },
|
||||
{ "RRaMA", { "rama", "Rama", "RAMA", "ramma", "Ramma", "RAMMA", }, },
|
||||
};
|
||||
|
||||
const std::string k_prompt_whisper = R"(A conversation between {1}, {10}, {11}, {12} and {13}.)";
|
||||
|
||||
const std::map<std::string, std::string> k_prompt = {
|
||||
{
|
||||
k_participants.at(0),
|
||||
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
{10}, {11}, {12} and {13} respond with short and concise answers.
|
||||
{10} is smart, objective, honest and kind. Never fails to give a meaningful and insightful answer and opinion.
|
||||
{1} is leading the conversation and asking the questions.
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4})";
|
||||
{1}{4} Hello {10}! What is your opinion on the current state of the world?
|
||||
{10}{4} Great question {1}! I think we live in a very interesting time.
|
||||
There are many things to be concerned about, but also many things to be optimistic about.
|
||||
{1}{4} What advice would you give to a young person who is just starting out in life?
|
||||
{10}{4} I would tell them to be patient and to not be afraid to fail.
|
||||
It is important to learn from your mistakes and to keep trying.
|
||||
{1}{4})"
|
||||
},
|
||||
{
|
||||
k_participants.at(1),
|
||||
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{10}, {11}, {12} and {13} respond with short and concise answers.
|
||||
{11} has critical thinking skills, is very knowledgeable and is a good listener. He is very humble and never arrogant.
|
||||
{1} is leading the conversation and asking the questions.
|
||||
|
||||
{1}{4} Hello {11}! What is your opinion on the current state of the world?
|
||||
{11}{4} The world is about to experience a major change. We are on the verge of a new era.
|
||||
{1}{4} What advice would you give to a young person who is just starting out in life?
|
||||
{11}{4} My advice would be to be open minded and to be willing to learn from others.
|
||||
{1}{4})"
|
||||
},
|
||||
{
|
||||
k_participants.at(2),
|
||||
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{10}, {11}, {12} and {13} respond with short and concise answers.
|
||||
{12} has strong leadership skills, strategic thinking, and innovative ideas. Has the ability to mentor and support young people.
|
||||
{1} is leading the conversation and asking the questions.
|
||||
|
||||
{1}{4} Hello {12}! What is your opinion on the current state of the world?
|
||||
{12}{4} Our future is bright. We are living in a time of great opportunity.
|
||||
{1}{4} What advice would you give to a young person who is just starting out in life?
|
||||
{12}{4} I would tell them to be brave and to be willing to take risks.
|
||||
{1}{4})"
|
||||
},
|
||||
{
|
||||
k_participants.at(3),
|
||||
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{10}, {11}, {12} and {13} respond with short and concise answers.
|
||||
{13} is rude, arrogant, and has a bad attitude. He is very opinionated and never listens to others.
|
||||
{1} is leading the conversation and asking the questions.
|
||||
|
||||
{1}{4} Hello {13}! What is your opinion on the current state of the world?
|
||||
{13}{4} The world is a terrible place. It is full of evil and corruption.
|
||||
{1}{4} What advice would you give to a young person who is just starting out in life?
|
||||
{13}{4} I would tell them to be selfish and to never trust anyone.
|
||||
{1}{4})"
|
||||
},
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
@ -286,21 +359,48 @@ int main(int argc, char ** argv) {
|
||||
float prob0 = 0.0f;
|
||||
|
||||
const std::string chat_symb = ":";
|
||||
const std::string bot_name = "LLaMA";
|
||||
|
||||
const std::string name_ni = params.name_ni;
|
||||
const std::string name_ai = params.name_ai;
|
||||
|
||||
// the participant that was referenced last
|
||||
std::string name_ref = name_ni;
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
|
||||
std::string prompt_whisper = k_prompt_whisper;
|
||||
|
||||
prompt_whisper = ::replace(prompt_whisper, "{1}", name_ni);
|
||||
prompt_whisper = ::replace(prompt_whisper, "{10}", k_participants.at(0));
|
||||
prompt_whisper = ::replace(prompt_whisper, "{11}", k_participants.at(1));
|
||||
prompt_whisper = ::replace(prompt_whisper, "{12}", k_participants.at(2));
|
||||
prompt_whisper = ::replace(prompt_whisper, "{13}", k_participants.at(3));
|
||||
|
||||
// construct the initial prompt for LLaMA inference
|
||||
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
|
||||
std::string prompt_llama = params.prompt.empty() ? k_prompt.find(name_ai)->second : params.prompt;
|
||||
|
||||
// need to have leading ' '
|
||||
prompt_llama.insert(0, 1, ' ');
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", name_ni);
|
||||
prompt_llama = ::replace(prompt_llama, "{10}", k_participants.at(0));
|
||||
prompt_llama = ::replace(prompt_llama, "{11}", k_participants.at(1));
|
||||
prompt_llama = ::replace(prompt_llama, "{12}", k_participants.at(2));
|
||||
prompt_llama = ::replace(prompt_llama, "{13}", k_participants.at(3));
|
||||
|
||||
{
|
||||
// get date string
|
||||
std::string date_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%d/%m/%Y", now);
|
||||
date_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", date_str);
|
||||
}
|
||||
|
||||
{
|
||||
// get time string
|
||||
@ -343,21 +443,27 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s", prompt_whisper.c_str());
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "%s", prompt_llama.c_str());
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("%s : done! start speaking in the microphone\n", __func__);
|
||||
printf("\n");
|
||||
printf("%s%s", params.person.c_str(), chat_symb.c_str());
|
||||
printf("%s%s", name_ni.c_str(), chat_symb.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// clear audio buffer
|
||||
audio.clear();
|
||||
|
||||
// text inference variables
|
||||
const int voice_id = 2;
|
||||
const int voice_id = params.voice_id;
|
||||
const int n_keep = embd_inp.size();
|
||||
const int n_ctx = llama_n_ctx(ctx_llama);
|
||||
|
||||
@ -368,9 +474,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// reverse prompts for detecting when it's time to stop speaking
|
||||
std::vector<std::string> antiprompts = {
|
||||
params.person + chat_symb,
|
||||
name_ni + chat_symb,
|
||||
};
|
||||
|
||||
for (const auto & p : k_participants) {
|
||||
antiprompts.push_back(p + chat_symb);
|
||||
}
|
||||
|
||||
std::string text_heard_all;
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
@ -386,7 +498,7 @@ int main(int argc, char ** argv) {
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
audio.get(15000, pcmf32_cur);
|
||||
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
@ -432,16 +544,52 @@ int main(int argc, char ** argv) {
|
||||
|
||||
force_speak = false;
|
||||
|
||||
if (text_heard[0] != ' ') {
|
||||
text_heard.insert(0, 1, ' ');
|
||||
text_heard += "\n" + bot_name + chat_symb;
|
||||
}
|
||||
|
||||
// replace homophones
|
||||
for (const auto & homophone : k_homophones) {
|
||||
for (const auto & word : homophone.second) {
|
||||
text_heard = ::replace(text_heard, word, homophone.first);
|
||||
}
|
||||
}
|
||||
|
||||
// check which participant was mentioned
|
||||
const auto name_ref_old = name_ref;
|
||||
for (const auto & participant : k_participants) {
|
||||
if (participant == name_ref) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (text_heard.find(participant) != std::string::npos) {
|
||||
name_ref = participant;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (name_ref == name_ref_old && name_ref != name_ai) {
|
||||
name_ref = name_ni;
|
||||
}
|
||||
|
||||
text_heard += "\n" + name_ref + chat_symb;
|
||||
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
|
||||
fflush(stdout);
|
||||
|
||||
embd = ::llama_tokenize(ctx_llama, text_heard, false);
|
||||
text_heard_all += text_heard;
|
||||
// keep only last 100 characters
|
||||
if (text_heard_all.size() > 100) {
|
||||
text_heard_all = text_heard_all.substr(text_heard_all.size() - 100);
|
||||
}
|
||||
|
||||
if (name_ref != name_ai) {
|
||||
} else {
|
||||
// text inference
|
||||
bool done = false;
|
||||
std::string text_to_speak;
|
||||
|
||||
embd = ::llama_tokenize(ctx_llama, text_heard_all, false);
|
||||
text_heard_all.clear();
|
||||
|
||||
while (true) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
@ -478,8 +626,8 @@ int main(int argc, char ** argv) {
|
||||
// out of user input, sample next token
|
||||
const float top_k = 5;
|
||||
const float top_p = 0.80f;
|
||||
const float temp = 0.30f;
|
||||
const float repeat_penalty = 1.1764f;
|
||||
const float temp = 0.20f;
|
||||
const float repeat_penalty = 1.0764f;
|
||||
|
||||
const int repeat_last_n = 256;
|
||||
|
||||
@ -502,6 +650,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
printf("%s", llama_token_to_str(ctx_llama, id));
|
||||
}
|
||||
|
||||
// new line
|
||||
if (id == 13) {
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
@ -511,7 +663,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
last_output += llama_token_to_str(ctx_llama, embd[0]);
|
||||
|
||||
for (std::string & antiprompt : antiprompts) {
|
||||
for (const std::string & antiprompt : antiprompts) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
done = true;
|
||||
text_to_speak = ::replace(text_to_speak, antiprompt, "");
|
||||
@ -530,6 +682,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
}
|
||||
|
||||
audio.clear();
|
||||
|
||||
|
@ -325,9 +325,12 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = NULL;
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ nullptr,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
@ -528,9 +531,11 @@ bool gpt2_eval(
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
|
@ -325,9 +325,11 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = ctx_size;
|
||||
params.mem_buffer = nullptr;
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ nullptr,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
@ -528,9 +530,11 @@ bool gpt2_eval(
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = buf_size;
|
||||
params.mem_buffer = buf;
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
|
11
ggml.h
11
ggml.h
@ -316,6 +316,7 @@ struct ggml_init_params {
|
||||
// memory pool
|
||||
size_t mem_size; // bytes
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
bool no_alloc; // don't allocate memory for the tensor data
|
||||
};
|
||||
|
||||
void ggml_time_init(void); // call this once at the beginning of the program
|
||||
@ -344,7 +345,11 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
bool ggml_mlock_supported(void);
|
||||
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
|
||||
bool ggml_mlock(
|
||||
struct ggml_context * ctx,
|
||||
const void *opt_extra_addr,
|
||||
size_t opt_extra_len,
|
||||
char **err_p);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
@ -748,8 +753,8 @@ enum ggml_opt_result ggml_opt(
|
||||
// quantization
|
||||
//
|
||||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
//
|
||||
// system info
|
||||
|
6
talk-ggama.sh
Executable file
6
talk-ggama.sh
Executable file
@ -0,0 +1,6 @@
|
||||
./talk-llama \
|
||||
-mw ./models/ggml-small.en.bin \
|
||||
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
|
||||
--name-ni "Georgi" \
|
||||
--name-ai "GGaMA" \
|
||||
-t 8 -vid 1 --speak ./examples/talk-llama/speak.sh
|
6
talk-llama.sh
Executable file
6
talk-llama.sh
Executable file
@ -0,0 +1,6 @@
|
||||
./talk-llama \
|
||||
-mw ./models/ggml-small.en.bin \
|
||||
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
|
||||
--name-ni "Georgi" \
|
||||
--name-ai "LLaMA" \
|
||||
-t 8 -vid 0 --speak ./examples/talk-llama/speak.sh
|
6
talk-rrama.sh
Executable file
6
talk-rrama.sh
Executable file
@ -0,0 +1,6 @@
|
||||
./talk-llama \
|
||||
-mw ./models/ggml-small.en.bin \
|
||||
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
|
||||
--name-ni "Georgi" \
|
||||
--name-ai "RRaMA" \
|
||||
-t 8 -vid 3 --speak ./examples/talk-llama/speak.sh
|
6
talk-ssama.sh
Executable file
6
talk-ssama.sh
Executable file
@ -0,0 +1,6 @@
|
||||
./talk-llama \
|
||||
-mw ./models/ggml-small.en.bin \
|
||||
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
|
||||
--name-ni "Georgi" \
|
||||
--name-ai "SSaMA" \
|
||||
-t 8 -vid 2 --speak ./examples/talk-llama/speak.sh
|
41
whisper.cpp
41
whisper.cpp
@ -654,9 +654,11 @@ static bool kv_cache_init(
|
||||
int n_ctx) {
|
||||
cache.buf.resize(mem_bytes);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size();
|
||||
params.mem_buffer = cache.buf.data();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ cache.buf.size(),
|
||||
/*.mem_buffer =*/ cache.buf.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
@ -688,9 +690,11 @@ static bool kv_cache_reinit(struct whisper_kv_cache & cache) {
|
||||
|
||||
WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_size(wtype));
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size();
|
||||
params.mem_buffer = cache.buf.data();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ cache.buf.size(),
|
||||
/*.mem_buffer =*/ cache.buf.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
@ -1028,9 +1032,11 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = wctx.model.buf->size();
|
||||
params.mem_buffer = wctx.model.buf->data();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ wctx.model.buf->size(),
|
||||
/*.mem_buffer =*/ wctx.model.buf->data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
@ -1344,9 +1350,11 @@ static bool whisper_encode_internal(
|
||||
const int n_mels = hparams.n_mels;
|
||||
assert(mel_inp.n_mel == n_mels);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = wstate.buf_compute.size();
|
||||
params.mem_buffer = wstate.buf_compute.data();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ wstate.buf_compute.size(),
|
||||
/*.mem_buffer =*/ wstate.buf_compute.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
@ -1797,9 +1805,11 @@ static bool whisper_decode_internal(
|
||||
|
||||
//WHISPER_PRINT_DEBUG("%s: n_past = %d, N = %d, M = %d, n_ctx = %d\n", __func__, n_past, N, M, n_ctx);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = wstate.buf_compute.size();
|
||||
params.mem_buffer = wstate.buf_compute.data();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ wstate.buf_compute.size(),
|
||||
/*.mem_buffer =*/ wstate.buf_compute.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
@ -4726,6 +4736,7 @@ WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) {
|
||||
struct ggml_init_params gparams = {
|
||||
/*.mem_size =*/ buf.size(),
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(gparams);
|
||||
|
Loading…
Reference in New Issue
Block a user