SYCL: Remove misleading ggml_sycl_op_flatten function (llama/12387)

* SYCL: Remove misleading ggml_sycl_op_flatten function

* remove trailing whitespace

* Fix L2 norm from rebase

* remove try catch block from element_wise.cpp

* remove comment from common.hp

* ggml-sycl.cpp: Add try catch sycl::exception block in compute_forward

* norm.cpp: remove try catch exception block
This commit is contained in:
Akarshan Biswas 2025-03-31 14:55:24 +05:30 committed by Georgi Gerganov
parent dd7eb4f5b2
commit c42e30e462
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
12 changed files with 369 additions and 586 deletions

View File

@ -66,41 +66,6 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
return sycl_down_blk_size;
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const bool use_src1 = src1 != nullptr;
if(use_src1)
GGML_ASSERT(strcmp(src1->buffer->buft->iface.get_name(src1->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
GGML_ASSERT(strcmp(dst->buffer->buft->iface.get_name(dst->buffer->buft), GGML_SYCL_NAME "_Split") != 0);
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
float * dst_ddf = (float *) dst->data;
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
ggml_sycl_set_device(ctx.device);
queue_ptr main_stream = ctx.stream();
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
// do the computation
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
// print_ggml_tensor("tensor", dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
void release_extra_gpu(ggml_tensor_extra_gpu * extra, std::vector<queue_ptr> streams) {
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {

View File

@ -494,12 +494,6 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
@ -757,24 +751,22 @@ struct bin_bcast_sycl {
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
const ggml_tensor *src1, ggml_tensor *dst) {
dpct::queue_ptr main_stream = ctx.stream();
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
op()(ctx, src0, src1, dst, (const float *)src0->data, (const float *)src1->data, (float *)dst->data, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
(sycl::half *)dst_dd, main_stream);
op()(ctx, src0, src1, dst, (const sycl::half *)src0->data, (const float *)src1->data,
(sycl::half *)dst->data, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
op()(ctx, src0, src1, dst, (const sycl::half *)src0->data, (const float *)src1->data, (float *)dst->data,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
op()(ctx, src0, src1, dst, (const int32_t *)src0->data, (const int32_t *)src1->data, (int32_t *)dst->data,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
op()(ctx, src0, src1, dst, (const int16_t *)src0->data, (const int16_t *)src1->data, (int16_t *)dst->data,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
@ -784,8 +776,4 @@ inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_t
}
bool gpu_has_xmx(sycl::device &dev);
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
#endif // GGML_SYCL_COMMON_HPP

View File

@ -509,497 +509,409 @@ static void pad_f32_sycl(const float *x, float *dst, const int ne00,
});
}
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), negative_slope, main_stream);
}
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(dst->src[0]), main_stream);
}
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const float sf0 = (float)dst->ne[0]/src0->ne[0];
const float sf1 = (float)dst->ne[1]/src0->ne[1];
const float sf2 = (float)dst->ne[2]/src0->ne[2];
const float sf3 = (float)dst->ne[3]/src0->ne[3];
const float sf0 = (float)dst->ne[0]/dst->src[0]->ne[0];
const float sf1 = (float)dst->ne[1]/dst->src[0]->ne[1];
const float sf2 = (float)dst->ne[2]/dst->src[0]->ne[2];
const float sf3 = (float)dst->ne[3]/dst->src[0]->ne[3];
upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
upscale_f32_sycl(src0_dd, dst_dd, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2], dst->src[0]->nb[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
pad_f32_sycl(src0_dd, dst_dd,
src0->ne[0], src0->ne[1], src0->ne[2],
dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
const float * src1_dd = static_cast<const float*>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), dst->src[1]->ne[0], dst->src[1]->ne[1], dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
}
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, dst->src[0], dst->src[1], dst);
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqrt);
ggml_sycl_op_sqrt(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sin);
ggml_sycl_op_sin(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_cos);
ggml_sycl_op_cos(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_acc);
ggml_sycl_op_acc(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu);
ggml_sycl_op_gelu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_silu);
ggml_sycl_op_silu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_gelu_quick);
ggml_sycl_op_gelu_quick(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_tanh);
ggml_sycl_op_tanh(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_relu);
ggml_sycl_op_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sigmoid);
ggml_sycl_op_sigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardsigmoid);
ggml_sycl_op_hardsigmoid(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_hardswish);
ggml_sycl_op_hardswish(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_exp);
ggml_sycl_op_exp(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_log);
ggml_sycl_op_log(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_neg);
ggml_sycl_op_neg(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_step);
ggml_sycl_op_step(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_leaky_relu);
ggml_sycl_op_leaky_relu(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sqr);
ggml_sycl_op_sqr(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_upscale);
ggml_sycl_op_upscale(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pad);
ggml_sycl_op_pad(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
@ -1007,24 +919,24 @@ void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_add);
ggml_sycl_op_add(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sub);
ggml_sycl_op_sub(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_mul);
ggml_sycl_op_mul(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
void ggml_sycl_div(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_div);
ggml_sycl_op_div(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}

View File

@ -257,50 +257,54 @@ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tens
GGML_UNUSED(ctx);
}
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_d, const float *src1_d,
float *dst_d, const queue_ptr &stream) {
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->src[0]->nb[0] == ggml_type_size(dst->src[0]->type));
GGML_ASSERT(dst->src[1]->nb[0] == ggml_type_size(dst->src[1]->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) src1_d;
switch (src0->type) {
const int32_t * src1_i32 = (const int32_t *) dst->src[1]->data;
/* TODO: Refactor and remove duplicates */
switch (dst->src[0]->type) {
case GGML_TYPE_F16:
get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
src1_i32, dst_d, stream);
get_rows_sycl_float(ctx, dst->src[0], dst->src[1], dst, (const sycl::half *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_F32:
get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl_float(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q4_0:
if (ctx.opt_feature.reorder && dst->op == GGML_OP_MUL_MAT) {
get_rows_sycl_reorder<QK4_0, QR4_0, dequantize_q4_0_reorder>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl_reorder<QK4_0, QR4_0, dequantize_q4_0_reorder>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
} else {
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
}
break;
case GGML_TYPE_Q4_1:
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q5_0:
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q5_1:
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
case GGML_TYPE_Q8_0:
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, dst->src[0], dst->src[1], dst, (const float *)dst->src[0]->data,
src1_i32, (float *)dst->data, ctx.stream());
break;
default:
// TODO: k-quants
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(dst->src[0]->type));
GGML_ABORT("fatal error");
}
}

View File

@ -15,9 +15,6 @@
#include "common.hpp"
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_d, const float *src1_d,
float *dst_d, const queue_ptr &stream);
void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst);
#endif // GGML_SYCL_GETROWS_HPP

View File

@ -1988,16 +1988,8 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_d, const float *src1_d,
float *dst_d,
const queue_ptr &main_stream) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(src1_d);
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, dst->src[0], dst);
}
@ -2132,13 +2124,14 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd, const queue_ptr &main_stream) {
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
@ -2149,8 +2142,8 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
const int p0 = opts[5];
const int p1 = opts[6];
const int64_t IH = src0->ne[1];
const int64_t IW = src0->ne[0];
const int64_t IH = dst->src[0]->ne[1];
const int64_t IW = dst->src[0]->ne[0];
const int64_t N = dst->ne[3];
const int64_t OC = dst->ne[2];
@ -2169,163 +2162,125 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
parallel_elements, src0_dd, dst_dd, op,
item_ct1);
});
GGML_UNUSED(src1);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int64_t ne = ggml_nelements(src0);
const int64_t ne = ggml_nelements(dst->src[0]);
sum_rows_f32_sycl(src0_dd, dst_dd, ne, 1, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
argsort_f32_i32_sycl(src0_dd, (int *) dst_dd, ncols, nrows, order, main_stream);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
argmax_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, main_stream);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
argmax_f32_i32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx,ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int nrows0 = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int nrows0 = ggml_nrows(dst->src[0]);
const int n_past = ((int32_t *) dst->op_params)[0];
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(dst->src[0]), main_stream);
/*
DPCT1010:87: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
*/
SYCL_CHECK(0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(dst->src[0]), ctx.stream());
/*
DPCT1010:88: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
*/
SYCL_CHECK(0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
@ -2695,37 +2650,37 @@ catch (sycl::exception const &exc) {
static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_repeat);
ggml_sycl_op_repeat(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_get_rows);
ggml_sycl_op_get_rows(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_norm);
ggml_sycl_op_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rms_norm);
ggml_sycl_op_rms_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_l2_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_l2_norm);
ggml_sycl_op_l2_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_SYCL_DEBUG("call %s\n", __func__);
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_group_norm);
ggml_sycl_op_group_norm(ctx, dst);
GGML_SYCL_DEBUG("call %s done\n", __func__);
}
@ -3269,48 +3224,48 @@ catch (sycl::exception const &exc) {
}
static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_scale);
ggml_sycl_op_scale(ctx, dst);
}
static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_clamp);
ggml_sycl_op_clamp(ctx, dst);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_diag_mask_inf);
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rope);
ggml_sycl_op_rope(ctx, dst);
}
static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_pool2d);
ggml_sycl_op_pool2d(ctx, dst);
}
static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_im2col);
ggml_sycl_op_im2col(ctx, dst);
}
static void ggml_sycl_sum(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum);
ggml_sycl_op_sum(ctx, dst);
}
static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_sum_rows);
ggml_sycl_op_sum_rows(ctx, dst);
}
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argsort);
ggml_sycl_op_argsort(ctx, dst);
}
static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_argmax);
ggml_sycl_op_argmax(ctx, dst);
}
@ -3335,7 +3290,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * dst) {
static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * dst) try {
if (!g_sycl_loaded) return false;
if (dst->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(dst->src[0]->buffer)) {
@ -3528,6 +3483,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
}
return true;
} catch (sycl::exception & e) {
std::cerr << e.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
std::exit(1);
}
GGML_API void ggml_backend_sycl_get_device_description(int device, char *description,

View File

@ -82,10 +82,9 @@ static void im2col_sycl(
}
}
void ggml_sycl_op_im2col(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream) {
void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -115,12 +114,8 @@ void ggml_sycl_op_im2col(
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
if (dst->type == GGML_TYPE_F16) {
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
im2col_sycl((const float *) src1->data, (sycl::half *)dst->data, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, ctx.stream());
} else {
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
im2col_sycl((const float *) src1->data, (float *)dst->data, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, ctx.stream());
}
GGML_UNUSED(src0);
GGML_UNUSED(src0_dd);
GGML_UNUSED(ctx);
}

View File

@ -16,8 +16,6 @@
#include "common.hpp"
void ggml_sycl_op_im2col(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd, const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
ggml_backend_sycl_context & ctx, ggml_tensor *dst);
#endif // GGML_SYCL_IM2COL_HPP

View File

@ -397,90 +397,78 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
}
}
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
}
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
GGML_UNUSED(ctx);
int group_size = dst->src[0]->ne[0] * dst->src[0]->ne[1] * ((dst->src[0]->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, dst->src[0]->ne[0] * dst->src[0]->ne[1] * dst->src[0]->ne[2], main_stream, ctx.device);
}
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
}
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream) {
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
l2_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
(void)src1;
(void)dst;
(void)src1_dd;
}

View File

@ -15,27 +15,12 @@
#include "common.hpp"
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst, const float* src0_dd,
const float* src1_dd, float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst,
const float* src0_dd, const float* src1_dd,
float* dst_dd,
const queue_ptr& main_stream);
void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst);
#endif // GGML_SYCL_NORM_HPP

View File

@ -192,18 +192,15 @@ static void rope_neox_sycl(
}
}
void ggml_sycl_op_rope(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
const ggml_tensor * src2 = dst->src[2];
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->src[0]->type == dst->type);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t nr = ggml_nrows(src0);
const int64_t ne00 = dst->src[0]->ne[0];
const int64_t ne01 = dst->src[0]->ne[1];
const int64_t nr = ggml_nrows(dst->src[0]);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
@ -228,49 +225,47 @@ void ggml_sycl_op_rope(
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const int32_t * pos = (const int32_t *) src1_dd;
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
if (dst->src[2] != nullptr) {
freq_factors = (const float *) dst->src[2]->data;
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
// compute
if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_neox_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_neox_sycl(
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
(const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else {
GGML_ABORT("fatal error");
}
} else {
if (src0->type == GGML_TYPE_F32) {
if (dst->src[0]->type == GGML_TYPE_F32) {
rope_norm_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
(const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
} else if (dst->src[0]->type == GGML_TYPE_F16) {
rope_norm_sycl(
(const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
(const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, main_stream
);
} else {
GGML_ABORT("fatal error");
}
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}

View File

@ -15,8 +15,6 @@
#include "common.hpp"
void ggml_sycl_op_rope(
ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream);
void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst);
#endif // GGML_SYCL_ROPE_HPP