whisper : add batched decoding (#1486)

* whisper : add whisper_batch

* whisper : move kv_self to whisper_state

* whisper : full batched decoding support

* whisper : fix memory leak in whisper_batch

* whisper : fix mem leak again + remove oboslete function

* whisper : clear kv cache when using whisper_decode API

* whisper : speed-up sampling

* whisper : fix decoders initializer

* bench : add batch size 5 bench

* whisper : add comment about the KV cache size

* whisper : add check for max number of decoders

* whisper : avoid starting sampling threads with bs=1

* whisper : enable beam-search by default

* cuda : sync llama.cpp fixes
This commit is contained in:
Georgi Gerganov 2023-11-15 16:12:52 +02:00 committed by GitHub
parent d4231649e6
commit b6c5f49b78
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 836 additions and 572 deletions

View File

@ -81,7 +81,7 @@ int whisper_bench_full(const whisper_params & params) {
} }
// heat encoder // heat encoder
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) { if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); fprintf(stderr, "error: failed to encode: %d\n", ret);
return 4; return 4;
} }
@ -90,13 +90,13 @@ int whisper_bench_full(const whisper_params & params) {
// prompt heat // prompt heat
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) { if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4; return 4;
} }
// text-generation heat // text-generation heat
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) { if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4; return 4;
} }
@ -104,20 +104,30 @@ int whisper_bench_full(const whisper_params & params) {
// actual run // actual run
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) { if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); fprintf(stderr, "error: failed to encode: %d\n", ret);
return 4; return 4;
} }
for (int i = 0; i < 16; i++) { // text-generation
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) { for (int i = 0; i < 256; i++) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4; return 4;
} }
} }
for (int i = 0; i < 256; i++) { // batched decoding
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) { for (int i = 0; i < 64; i++) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); if (int ret = whisper_decode(ctx, tokens, 5, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4;
}
}
// prompt processing
for (int i = 0; i < 16; i++) {
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to decode: %d\n", ret);
return 4; return 4;
} }
} }

View File

@ -62,8 +62,8 @@ struct whisper_params {
int32_t progress_step = 5; int32_t progress_step = 5;
int32_t max_context = -1; int32_t max_context = -1;
int32_t max_len = 0; int32_t max_len = 0;
int32_t best_of = 2; int32_t best_of = whisper_full_default_params(WHISPER_SAMPLING_GREEDY).greedy.best_of;
int32_t beam_size = -1; int32_t beam_size = whisper_full_default_params(WHISPER_SAMPLING_BEAM_SEARCH).beam_search.beam_size;
float word_thold = 0.01f; float word_thold = 0.01f;
float entropy_thold = 2.40f; float entropy_thold = 2.40f;
@ -925,9 +925,9 @@ int main(int argc, char ** argv) {
if (params.detect_language) { if (params.detect_language) {
params.language = "auto"; params.language = "auto";
} }
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, %stimestamps = %d ...\n", fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, %d beams + best of %d, lang = %s, task = %s, %stimestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors, params.n_threads, params.n_processors, params.beam_size, params.best_of,
params.language.c_str(), params.language.c_str(),
params.translate ? "translate" : "transcribe", params.translate ? "translate" : "transcribe",
params.tinydiarize ? "tdrz = 1, " : "", params.tinydiarize ? "tdrz = 1, " : "",

View File

@ -44,8 +44,8 @@ if [ "$encoder_only" -eq 0 ]; then
printf "\n" printf "\n"
fi fi
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "PP" "Commit" printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "Bch5" "PP" "Commit"
printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---" printf "| %6s | %6s | %16s | %11s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---" "---"
for model in "${models[@]}"; do for model in "${models[@]}"; do
# actual run # actual run
@ -56,6 +56,7 @@ for model in "${models[@]}"; do
# parse the output: # parse the output:
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}') encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}') decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
batchd_time=$(echo "$output" | grep "batchd time" | awk '{print $11}')
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}') prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
system_info=$(echo "$output" | grep "system_info") system_info=$(echo "$output" | grep "system_info")
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}') n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
@ -94,6 +95,6 @@ for model in "${models[@]}"; do
commit=$(git rev-parse --short HEAD) commit=$(git rev-parse --short HEAD)
if [ $ret -eq 0 ]; then if [ $ret -eq 0 ]; then
printf "| <todo> | <todo> | %16s | %11s | %3s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$prompt_time" "$commit" printf "| <todo> | <todo> | %16s | %11s | %3s | %7s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$batchd_time" "$prompt_time" "$commit"
fi fi
done done

View File

@ -39,7 +39,6 @@
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceGetMemPool hipDeviceGetMemPool
#define cudaDeviceProp hipDeviceProp_t #define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize #define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t #define cudaError_t hipError_t
@ -49,7 +48,6 @@
#define cudaEvent_t hipEvent_t #define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy #define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree #define cudaFree hipFree
#define cudaFreeAsync hipFreeAsync
#define cudaFreeHost hipHostFree #define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice #define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount #define cudaGetDeviceCount hipGetDeviceCount
@ -57,7 +55,6 @@
#define cudaGetErrorString hipGetErrorString #define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError #define cudaGetLastError hipGetLastError
#define cudaMalloc hipMalloc #define cudaMalloc hipMalloc
#define cudaMallocFromPoolAsync hipMallocFromPoolAsync
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy #define cudaMemcpy hipMemcpy
#define cudaMemcpy2DAsync hipMemcpy2DAsync #define cudaMemcpy2DAsync hipMemcpy2DAsync
@ -66,9 +63,6 @@
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind #define cudaMemcpyKind hipMemcpyKind
#define cudaMemPool_t hipMemPool_t
#define cudaMemPoolAttrReleaseThreshold hipMemPoolAttrReleaseThreshold
#define cudaMemPoolSetAttribute hipMemPoolSetAttribute
#define cudaMemset hipMemset #define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync #define cudaMemsetAsync hipMemsetAsync
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
@ -94,6 +88,8 @@
#define CC_OFFSET_AMD 1000000 #define CC_OFFSET_AMD 1000000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define GGML_CUDA_MAX_NODES 8192
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM: // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
@ -188,11 +184,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
do { \ do { \
cudaError_t err_ = (err); \ cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \ if (err_ != cudaSuccess) { \
int dev_id; \ int id; \
cudaGetDevice(&dev_id); \ cudaGetDevice(&id); \
fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \ cudaGetErrorString(err_)); \
fprintf(stderr, "current device: %d\n", dev_id); \ fprintf(stderr, "current device: %d\n", id); \
exit(1); \ exit(1); \
} \ } \
} while (0) } while (0)
@ -202,11 +198,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
do { \ do { \
cublasStatus_t err_ = (err); \ cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \ if (err_ != CUBLAS_STATUS_SUCCESS) { \
int dev_id; \ int id; \
cudaGetDevice(&dev_id); \ cudaGetDevice(&id); \
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
fprintf(stderr, "current device: %d\n", dev_id); \ fprintf(stderr, "current device: %d\n", id); \
exit(1); \ exit(1); \
} \ } \
} while (0) } while (0)
@ -440,6 +436,8 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
#define CUDA_MUL_BLOCK_SIZE 256 #define CUDA_MUL_BLOCK_SIZE 256
#define CUDA_GELU_BLOCK_SIZE 256 #define CUDA_GELU_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_RELU_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32 #define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256 #define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_CLAMP_BLOCK_SIZE 256 #define CUDA_CLAMP_BLOCK_SIZE 256
@ -472,7 +470,6 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
#define MAX_STREAMS 8 #define MAX_STREAMS 8
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr }; static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr };
static cudaMemPool_t g_cudaMemPools[GGML_CUDA_MAX_DEVICES] = { nullptr };
struct ggml_tensor_extra_gpu { struct ggml_tensor_extra_gpu {
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
@ -561,6 +558,24 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] / (1.0f + expf(-x[i])); dst[i] = x[i] / (1.0f + expf(-x[i]));
} }
static __global__ void relu_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = fmaxf(x[i], 0);
}
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] * x[i];
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) { static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll #pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) { for (int mask = 16; mask > 0; mask >>= 1) {
@ -990,7 +1005,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return; if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
@ -1094,7 +1109,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return; if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
@ -1198,7 +1213,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) { static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return; if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row; const int ib0 = row*num_blocks_per_row;
@ -1452,7 +1467,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION"); static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return; if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K; const int num_blocks_per_row = ncols / QK_K;
@ -4262,7 +4277,7 @@ template <bool need_check> static __global__ void
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda> template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) { static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) { if (row >= nrows) {
return; return;
@ -4302,7 +4317,7 @@ template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) { static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
// qk = quantized weights per x block // qk = quantized weights per x block
// qr = number of quantized weights per data value in x block // qr = number of quantized weights per data value in x block
const int row = blockIdx.y*blockDim.y + threadIdx.y; const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) { if (row >= nrows) {
return; return;
@ -4741,7 +4756,7 @@ static __global__ void im2col_f32_f16(
int ofs0, int ofs1, int IW, int IH, int CHW, int ofs0, int ofs1, int IW, int IH, int CHW,
int s0, int s1, int p0, int p1, int d0, int d1) { int s0, int s1, int p0, int p1, int d0, int d1) {
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0; const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1; const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
const int offset_dst = const int offset_dst =
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW + (threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
@ -4793,6 +4808,16 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k); silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
} }
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0); GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) { if (ncols < 1024) {
@ -4901,7 +4926,8 @@ static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cu
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0> dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4910,7 +4936,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1> dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4919,7 +4945,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0> dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4928,7 +4954,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1> dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4937,7 +4963,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0> dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4947,7 +4973,7 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny; const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1); const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
} }
@ -4956,7 +4982,7 @@ static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION; const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny; const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1); const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
} }
@ -4965,7 +4991,7 @@ static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION; const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny; const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1); const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
} }
@ -4980,7 +5006,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION; const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny; const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1); const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
} }
@ -4988,7 +5014,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK4_0 == 0); GGML_ASSERT(ncols % QK4_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1> mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -4997,7 +5023,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK4_1 == 0); GGML_ASSERT(ncols % QK4_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1> mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5006,7 +5032,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK5_0 == 0); GGML_ASSERT(ncols % QK5_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1> mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5015,7 +5041,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK5_1 == 0); GGML_ASSERT(ncols % QK5_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1> mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5024,7 +5050,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK8_0 == 0); GGML_ASSERT(ncols % QK8_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1> mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5033,7 +5059,7 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1> mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5042,7 +5068,7 @@ static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1> mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5051,7 +5077,7 @@ static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1> mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5060,7 +5086,7 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1> mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5069,7 +5095,7 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0); GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1> mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5088,7 +5114,7 @@ static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cu
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1); const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<1, 1, convert_f16> dequantize_mul_mat_vec<1, 1, convert_f16>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows); <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -5825,16 +5851,6 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr; return ptr;
} }
static void * ggml_cuda_pool_malloc_async(size_t size, size_t * actual_size, int id, cudaStream_t stream) {
if (g_cudaMemPools[id] == nullptr) {
return ggml_cuda_pool_malloc(size, actual_size);
}
void *ptr;
CUDA_CHECK(cudaMallocFromPoolAsync(&ptr, size, g_cudaMemPools[id], stream));
*actual_size = size;
return ptr;
}
static void ggml_cuda_pool_free(void * ptr, size_t size) { static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock); scoped_spin_lock lock(g_cuda_pool_lock);
int id; int id;
@ -5852,12 +5868,10 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
CUDA_CHECK(cudaFree(ptr)); CUDA_CHECK(cudaFree(ptr));
} }
static bool g_cublas_loaded = false;
static void ggml_cuda_pool_free_async(void * ptr, size_t actual_size, int id, cudaStream_t stream) { bool ggml_cublas_loaded(void) {
if (g_cudaMemPools[id] == nullptr) { return g_cublas_loaded;
return ggml_cuda_pool_free(ptr, actual_size);
}
CUDA_CHECK(cudaFreeAsync(ptr, stream));
} }
void ggml_init_cublas() { void ggml_init_cublas() {
@ -5872,7 +5886,12 @@ void ggml_init_cublas() {
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
#endif #endif
CUDA_CHECK(cudaGetDeviceCount(&g_device_count)); if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
initialized = true;
g_cublas_loaded = false;
return;
}
GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
int64_t total_vram = 0; int64_t total_vram = 0;
#if defined(GGML_CUDA_FORCE_MMQ) #if defined(GGML_CUDA_FORCE_MMQ)
@ -5914,19 +5933,13 @@ void ggml_init_cublas() {
// create cublas handle // create cublas handle
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH)); CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
// configure memory pool
cudaError_t err = cudaDeviceGetMemPool(&g_cudaMemPools[id], id);
if (err == cudaSuccess) {
size_t treshold = UINT64_MAX;
CUDA_CHECK(cudaMemPoolSetAttribute(g_cudaMemPools[id], cudaMemPoolAttrReleaseThreshold, &treshold));
}
} }
// configure logging to stdout // configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
initialized = true; initialized = true;
g_cublas_loaded = true;
} }
} }
@ -6193,6 +6206,34 @@ inline void ggml_cuda_op_silu(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_relu(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_sqr(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_norm( inline void ggml_cuda_op_norm(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -6514,7 +6555,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr); GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = row_diff*ne00; size_t ne = row_diff*ne00;
src0_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src0_as, id, stream); src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream); to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
} }
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16; const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
@ -6525,12 +6566,12 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr); GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = src1_ncols*ne10; size_t ne = src1_ncols*ne10;
src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream); src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
} }
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16; const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
size_t dst_f16_as = 0; size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream); half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
const half alpha_f16 = 1.0f; const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f; const half beta_f16 = 0.0f;
@ -6548,15 +6589,14 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
if (dst_f16_as != 0) { ggml_cuda_pool_free(dst_f16, dst_as);
ggml_cuda_pool_free_async(dst_f16, dst_f16_as, id, stream);
}
if (src0_as != 0) { if (src0_as != 0) {
ggml_cuda_pool_free_async(src0_as_f16, src0_as, id, stream); ggml_cuda_pool_free(src0_as_f16, src0_as);
} }
if (src1_as != 0) { if (src1_as != 0) {
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, stream); ggml_cuda_pool_free(src1_as_f16, src1_as);
} }
} }
else { else {
@ -6566,7 +6606,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
if (src0->type != GGML_TYPE_F32) { if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
GGML_ASSERT(to_fp32_cuda != nullptr); GGML_ASSERT(to_fp32_cuda != nullptr);
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc_async(row_diff*ne00 * sizeof(float), &src0_as, id, stream); // NOLINT src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream); to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
} }
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32; const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
@ -6583,7 +6623,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
&beta, dst_dd_i, ldc)); &beta, dst_dd_i, ldc));
if (src0_as != 0) { if (src0_as != 0) {
ggml_cuda_pool_free_async(src0_ddq_as_f32, src0_as, id, stream); ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
} }
} }
@ -7008,6 +7048,8 @@ static void ggml_cuda_op_mul_mat(
int64_t row_low[GGML_CUDA_MAX_DEVICES]; int64_t row_low[GGML_CUDA_MAX_DEVICES];
int64_t row_high[GGML_CUDA_MAX_DEVICES]; int64_t row_high[GGML_CUDA_MAX_DEVICES];
int used_devices = 0;
for (int64_t id = 0; id < g_device_count; ++id) { for (int64_t id = 0; id < g_device_count; ++id) {
// by default, use all rows // by default, use all rows
row_low[id] = 0; row_low[id] = 0;
@ -7035,6 +7077,8 @@ static void ggml_cuda_op_mul_mat(
continue; continue;
} }
used_devices++;
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
@ -7045,22 +7089,21 @@ static void ggml_cuda_op_mul_mat(
src0_dd[id] = (char *) src0_extra->data_device[id]; src0_dd[id] = (char *) src0_extra->data_device[id];
} else { } else {
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
src0_dd[id] = (char *) ggml_cuda_pool_malloc_async(ggml_nbytes(src0), &src0_as[id], id, stream); src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
} }
if (src1_on_device && src1_is_contiguous) { if (src1_on_device && src1_is_contiguous) {
src1_ddf[id] = (float *) src1_extra->data_device[id]; src1_ddf[id] = (float *) src1_extra->data_device[id];
} else { } else {
src1_ddf[id] = (float *) ggml_cuda_pool_malloc_async(ggml_nbytes(src1), &src1_asf[id], id, stream); src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
} }
if (convert_src1_to_q8_1) { if (convert_src1_to_q8_1) {
const size_t size_dst_ddq = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs; src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
src1_ddq[id] = (char *) ggml_cuda_pool_malloc_async(size_dst_ddq, &src1_asq[id], id, stream);
if (src1_on_device && src1_is_contiguous) { if (src1_on_device && src1_is_contiguous) {
quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
// CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
} }
} }
@ -7068,18 +7111,18 @@ static void ggml_cuda_op_mul_mat(
dst_dd[id] = (float *) dst_extra->data_device[id]; dst_dd[id] = (float *) dst_extra->data_device[id];
} else { } else {
const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
dst_dd[id] = (float *) ggml_cuda_pool_malloc_async(size_dst_ddf, &dst_as[id], id, stream); dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]);
} }
} }
// if multiple devices are used they need to wait for the main device // if multiple devices are used they need to wait for the main device
// here an event is recorded that signals that the main device has finished calculating the input data // here an event is recorded that signals that the main device has finished calculating the input data
if (split && g_device_count > 1) { if (split && used_devices > 1) {
CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(ggml_cuda_set_device(g_main_device));
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0])); CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
} }
const int64_t src1_col_stride = split && g_device_count > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0; const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
@ -7194,6 +7237,27 @@ static void ggml_cuda_op_mul_mat(
} }
} }
for (int64_t id = 0; id < g_device_count; ++id) {
if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
continue;
}
CUDA_CHECK(ggml_cuda_set_device(id));
// free buffers again when done
if (src0_as[id] > 0) {
ggml_cuda_pool_free(src0_dd[id], src0_as[id]);
}
if (src1_asf[id] > 0) {
ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
}
if (src1_asq[id] > 0) {
ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]);
}
if (dst_as[id] > 0) {
ggml_cuda_pool_free(dst_dd[id], dst_as[id]);
}
}
// main device waits for all other devices to be finished // main device waits for all other devices to be finished
if (split && g_device_count > 1) { if (split && g_device_count > 1) {
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
@ -7201,6 +7265,9 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(ggml_cuda_set_device(g_main_device));
for (int64_t id = 0; id < g_device_count; ++id) { for (int64_t id = 0; id < g_device_count; ++id) {
if (row_low[id] == row_high[id]) {
continue;
}
for (int64_t is = 0; is < is_max; ++is) { for (int64_t is = 0; is < is_max; ++is) {
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0)); CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
} }
@ -7211,21 +7278,6 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(ggml_cuda_set_device(g_main_device));
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
} }
for (int64_t id = 0; id < g_device_count; ++id) {
if (src0_as[id] > 0) {
ggml_cuda_pool_free_async(src0_dd[id], src0_as[id], id, g_cudaStreams[id][0]);
}
if (src1_asf[id] > 0) {
ggml_cuda_pool_free_async(src1_ddf[id], src1_asf[id], id, g_cudaStreams[id][0]);
}
if (src1_asq[id] > 0) {
ggml_cuda_pool_free_async(src1_ddq[id], src1_asq[id], id, g_cudaStreams[id][0]);
}
if (dst_as[id] > 0) {
ggml_cuda_pool_free_async(dst_dd[id], dst_as[id], id, g_cudaStreams[id][0]);
}
}
} }
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -7252,6 +7304,14 @@ static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, g
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
} }
static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
}
static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
}
static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
} }
@ -7261,6 +7321,8 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
} }
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (!g_cublas_loaded) return false;
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0]; const int64_t ne0 = dst->ne[0];
@ -7412,11 +7474,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
GGML_ASSERT(to_fp16_cuda != nullptr); GGML_ASSERT(to_fp16_cuda != nullptr);
size_t src1_as = 0; size_t src1_as = 0;
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne1 * sizeof(half), &src1_as, id, main_stream); half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream); to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
size_t dst_as = 0; size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &dst_as, id, main_stream); half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0); GGML_ASSERT(ne13 % ne03 == 0);
@ -7470,8 +7532,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
size_t ptrs_src_s = 0; size_t ptrs_src_s = 0;
size_t ptrs_dst_s = 0; size_t ptrs_dst_s = 0;
ptrs_src = (const void **) ggml_cuda_pool_malloc_async(2*ne23*sizeof(void *), &ptrs_src_s, id, main_stream); ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
ptrs_dst = ( void **) ggml_cuda_pool_malloc_async(1*ne23*sizeof(void *), &ptrs_dst_s, id, main_stream); ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
dim3 block_dims(ne13, ne12); dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
@ -7484,6 +7546,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
dst->nb[2], dst->nb[3], dst->nb[2], dst->nb[3],
r2, r3); r2, r3);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK( CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, ne01, ne11, ne10,
@ -7495,30 +7558,29 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); CUBLAS_GEMM_DEFAULT_TENSOR_OP));
if (ptrs_src_s != 0) { if (ptrs_src_s != 0) {
ggml_cuda_pool_free_async(ptrs_src, ptrs_src_s, id, main_stream); ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
} }
if (ptrs_dst_s != 0) { if (ptrs_dst_s != 0) {
ggml_cuda_pool_free_async(ptrs_dst, ptrs_dst_s, id, main_stream); ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
} }
} }
#endif #endif
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream); to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
if (src1_as != 0) {
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, main_stream); ggml_cuda_pool_free(src1_as_f16, src1_as);
} ggml_cuda_pool_free(dst_f16, dst_as);
if (dst_as != 0) {
ggml_cuda_pool_free_async(dst_f16, dst_as, id, main_stream);
}
} }
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device = const bool all_on_device =
(src0->backend == GGML_BACKEND_GPU) && (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_GPU) && (src1->backend == GGML_BACKEND_GPU) &&
( dst->backend == GGML_BACKEND_GPU); ( dst->backend == GGML_BACKEND_GPU);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX; int64_t min_compute_capability = INT_MAX;
for (int64_t id = 0; id < g_device_count; ++id) { for (int64_t id = 0; id < g_device_count; ++id) {
if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
@ -7540,13 +7602,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch // KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst); ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch // KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst); ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch // KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst); ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F32) {
@ -7667,7 +7729,7 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
} }
void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
} }
@ -7782,11 +7844,11 @@ static size_t g_temp_tensor_extra_index = 0;
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (g_temp_tensor_extras == nullptr) { if (g_temp_tensor_extras == nullptr) {
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE]; g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
} }
size_t alloc_index = g_temp_tensor_extra_index; size_t alloc_index = g_temp_tensor_extra_index;
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE; g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));
@ -7953,6 +8015,8 @@ void ggml_cuda_free_scratch() {
} }
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
if (!g_cublas_loaded) return false;
ggml_cuda_func_t func; ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
@ -7995,6 +8059,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_UNARY_OP_SILU: case GGML_UNARY_OP_SILU:
func = ggml_cuda_silu; func = ggml_cuda_silu;
break; break;
case GGML_UNARY_OP_RELU:
func = ggml_cuda_relu;
break;
default: default:
return false; return false;
} break; } break;
@ -8013,6 +8080,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_SCALE: case GGML_OP_SCALE:
func = ggml_cuda_scale; func = ggml_cuda_scale;
break; break;
case GGML_OP_SQR:
func = ggml_cuda_sqr;
break;
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
if (!any_on_device) { if (!any_on_device) {
return false; return false;
@ -8105,11 +8175,11 @@ struct ggml_backend_buffer_context_cuda {
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (temp_tensor_extras == nullptr) { if (temp_tensor_extras == nullptr) {
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE]; temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
} }
size_t alloc_index = temp_tensor_extra_index; size_t alloc_index = temp_tensor_extra_index;
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE; temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));

View File

@ -17,7 +17,12 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16 #define GGML_CUDA_MAX_DEVICES 16
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
GGML_API void ggml_init_cublas(void); GGML_API void ggml_init_cublas(void);
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
GGML_API bool ggml_cublas_loaded(void);
GGML_API void * ggml_cuda_host_malloc(size_t size); GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr); GGML_API void ggml_cuda_host_free(void * ptr);

File diff suppressed because it is too large Load Diff

View File

@ -78,7 +78,9 @@ extern "C" {
struct whisper_state; struct whisper_state;
struct whisper_full_params; struct whisper_full_params;
typedef int whisper_token; typedef int32_t whisper_pos;
typedef int32_t whisper_token;
typedef int32_t whisper_seq_id;
struct whisper_context_params { struct whisper_context_params {
bool use_gpu; bool use_gpu;