CUDA: add conv_2d_transpose (llama/14287)

* CUDA: add conv_2d_transpose

* remove direct include of cuda_fp16

* Review: add brackets for readability, remove ggml_set_param and add asserts
This commit is contained in:
Aman Gupta
2025-06-20 22:48:24 +08:00
committed by Georgi Gerganov
parent a455dcb04c
commit b68222f92c
3 changed files with 100 additions and 0 deletions

View File

@ -0,0 +1,91 @@
#include <algorithm>
#include "conv2d-transpose.cuh"
#include "ggml.h"
__global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel,
float * __restrict__ output, const int in_w, const int in_h, const int out_w,
const int out_h, const int kernel_w, const int kernel_h, const int stride,
const int c_in, const int c_out, const int batches) {
const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const int total_elements = out_w * out_h * c_out * batches;
if (global_idx >= total_elements) {
return;
}
const int out_x_idx = global_idx % out_w;
const int out_y_idx = (global_idx / out_w) % out_h;
const int c_idx = (global_idx / (out_w * out_h)) % c_out;
const int n_idx = global_idx / (out_w * out_h * c_out);
float accumulator = 0;
// For each output idx, find the inputs that contribute to it by checking stride alignment and bounds
for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) {
for (int kh = 0; kh < kernel_h; ++kh) {
int in_y = out_y_idx - kh;
if (in_y < 0 || in_y % stride) continue;
in_y /= stride;
if (in_y >= in_h) continue;
for (int kw = 0; kw < kernel_w; ++kw) {
int in_x = out_x_idx - kw;
if (in_x < 0 || in_x % stride) continue;
in_x /= stride;
if (in_x >= in_w) continue;
const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x;
const int kernel_idx =
(kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw;
float input_val = input[input_idx];
half kern_val = kernel[kernel_idx];
accumulator += input_val * (float) kern_val;
}
}
}
output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator;
}
//input is (W, H, C_in, N), Kernel is (W, H, C_out, C_in)
void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * input = dst->src[1];
GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
const float * input_data = (const float *) input->data;
float * output_data = (float *) dst->data;
const half * kernel_data = (const half *) kernel->data;
const int input_w = input->ne[0];
const int input_h = input->ne[1];
const int output_w = dst->ne[0];
const int output_h = dst->ne[1];
const int channels_in = input->ne[2];
const int channels_out = kernel->ne[2];
const int kernel_w = kernel->ne[0];
const int kernel_h = kernel->ne[1];
const int stride = dst->op_params[0];
const int batches = input->ne[3];
GGML_ASSERT(channels_in == kernel->ne[3]);
GGML_ASSERT(stride > 0);
cudaStream_t st = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(input));
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(ggml_is_contiguous(dst));
const int total = (output_w * output_h * channels_out * batches);
const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE;
conv2d_transpose_kernel<<<blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, 0, st>>>(
input_data, kernel_data, output_data, input_w, input_h, output_w, output_h, kernel_w, kernel_h, stride,
channels_in, channels_out, batches);
}

View File

@ -0,0 +1,4 @@
#include "common.cuh"
#define CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE 256
void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -12,6 +12,7 @@
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/count-equal.cuh"
#include "ggml-cuda/cpy.cuh"
@ -2341,6 +2342,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_2D:
ggml_cuda_conv_2d_transpose_p0(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cuda_op_conv_transpose_1d(ctx,dst);
break;
@ -3252,6 +3256,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
case GGML_OP_IM2COL:
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS: