mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-19 20:57:52 +00:00
talk : improve prompting
This commit is contained in:
parent
930c693989
commit
a613f16aec
@ -31,7 +31,7 @@ To run this, you will need a ggml GPT-2 model: [instructions](https://github.com
|
||||
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
||||
|
||||
```
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://ggml.ggerganov.com/ggml-model-gpt-2-117M.bin
|
||||
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/datasets/ggerganov/ggml/raw/main/ggml-model-gpt-2-117M.bin
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
@ -139,7 +139,7 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
}
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
||||
//for (int i = 0; i < (int) logits_id.size(); i++) {
|
||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
||||
//}
|
||||
//exit(0);
|
||||
@ -825,8 +825,8 @@ Me too.
|
||||
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 20;
|
||||
float top_p = 0.98f;
|
||||
int32_t top_k = 5;
|
||||
float top_p = 0.9f;
|
||||
float temp = 1.0f;
|
||||
};
|
||||
|
||||
@ -840,7 +840,7 @@ struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -913,10 +913,7 @@ std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens)
|
||||
result += ctx->vocab.id_to_token[embd[0]];
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256 ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "." ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "!" ||
|
||||
ctx->vocab.id_to_token[embd.back()] == "?") {
|
||||
if (embd.back() == 50256) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -473,56 +473,15 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
|
||||
return result;
|
||||
}
|
||||
|
||||
// compute similarity between two strings using Levenshtein distance
|
||||
float similarity(const std::string & s0, const std::string & s1) {
|
||||
const size_t len0 = s0.size() + 1;
|
||||
const size_t len1 = s1.size() + 1;
|
||||
const std::string k_prompt =
|
||||
R"(This is a dialogue between {0} (A) and a person (B). The dialogue so far is:
|
||||
|
||||
std::vector<int> col(len1, 0);
|
||||
std::vector<int> prevCol(len1, 0);
|
||||
B: Hello {0}, how are you?
|
||||
A: I'm fine, thank you.
|
||||
{1}
|
||||
Here is how {0} (A) continues the dialogue:
|
||||
|
||||
for (size_t i = 0; i < len1; i++) {
|
||||
prevCol[i] = i;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len0; i++) {
|
||||
col[0] = i;
|
||||
for (size_t j = 1; j < len1; j++) {
|
||||
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
||||
}
|
||||
col.swap(prevCol);
|
||||
}
|
||||
|
||||
const float dist = prevCol[len1 - 1];
|
||||
|
||||
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
||||
}
|
||||
|
||||
// generated with ChatGPT
|
||||
std::map<std::string, std::string> k_prompts = {
|
||||
{ "Santa",
|
||||
R"(Kid: Hi Santa! Are you real?
|
||||
Santa: Of course I am, my dear! Ho ho ho!
|
||||
Kid: Can you please bring me a new toy for Christmas?
|
||||
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
||||
Kid: I will, Santa! Thank you!
|
||||
Santa: You're welcome, little one. Merry Christmas! Ho ho ho!
|
||||
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
||||
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
||||
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
||||
Santa: I'm sorry, but only good boys and girls get to ride in my sleigh.
|
||||
)" },
|
||||
{ "Kid",
|
||||
R"(Kid: Hi Santa! Are you real?
|
||||
Santa: Of course I am, my dear! Ho ho ho!
|
||||
Kid: Can you please bring me a new toy for Christmas?
|
||||
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
||||
Kid: I will, Santa! Thank you!
|
||||
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
||||
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
||||
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
||||
)" },
|
||||
};
|
||||
A:)";
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
@ -579,7 +538,7 @@ int main(int argc, char ** argv) {
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = params.person == "Kid";
|
||||
bool force_speak = false;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
float prob = 0.0f;
|
||||
@ -587,19 +546,13 @@ int main(int argc, char ** argv) {
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
if (k_prompts.find(params.person) == k_prompts.end()) {
|
||||
fprintf(stderr, "%s: unknown person '%s'\n", __func__, params.person.c_str());
|
||||
return 1;
|
||||
}
|
||||
gpt2_set_prompt(ctx_gpt, "");
|
||||
|
||||
gpt2_set_prompt(ctx_gpt, k_prompts.at(params.person).c_str());
|
||||
const int voice_id = rand()%6;
|
||||
|
||||
const std::string person_other = params.person == "Santa" ? "Kid" : "Santa";
|
||||
const int voice_id = params.person == "Santa" ? 5 : 2;
|
||||
|
||||
fprintf(stderr, "gpt-2: prompt_base:\n");
|
||||
fprintf(stderr, "gpt-2: prompt:\n");
|
||||
fprintf(stderr, "========================\n\n");
|
||||
fprintf(stderr, "%s\n", gpt2_get_prompt(ctx_gpt));
|
||||
fprintf(stderr, "%s\n", ::replace(k_prompt, "{0}", params.person).c_str());
|
||||
fprintf(stderr, "========================\n\n");
|
||||
|
||||
// main loop
|
||||
@ -636,13 +589,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
||||
std::string text_heard = "Hey little one, what do you want for Christmas?";
|
||||
std::string text_heard = "";
|
||||
|
||||
if (!force_speak) {
|
||||
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms));
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
@ -667,13 +619,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str());
|
||||
|
||||
if (text_heard.empty() || tokens.empty()) {
|
||||
if (text_heard.empty() || tokens.empty() || force_speak) {
|
||||
fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
||||
audio.clear();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms);
|
||||
|
||||
std::string prompt_base = gpt2_get_prompt(ctx_gpt);
|
||||
@ -681,9 +635,11 @@ int main(int argc, char ** argv) {
|
||||
std::string text_to_speak;
|
||||
|
||||
{
|
||||
text_heard = person_other + ": " + text_heard;
|
||||
prompt_base += "B: " + text_heard + "\n";
|
||||
|
||||
text_to_speak = gpt2_gen_text(ctx_gpt, (prompt_base + text_heard + "\n").c_str(), params.max_tokens);
|
||||
std::string prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
|
||||
|
||||
text_to_speak = gpt2_gen_text(ctx_gpt, prompt.c_str(), params.max_tokens);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
@ -703,13 +659,20 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
prompt_base += text_heard + "\n" + text_to_speak + "\n";
|
||||
prompt_base += "A:" + text_to_speak + "\n";
|
||||
|
||||
{
|
||||
prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
|
||||
|
||||
printf("===============\n");
|
||||
printf("prompt:\n");
|
||||
printf("%s\n", prompt.c_str());
|
||||
printf("===============\n");
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s\n", text_to_speak.c_str());
|
||||
|
||||
//printf("========================\n");
|
||||
//printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str());
|
||||
//printf("gpt-2: prompt_base:\n%s\n", prompt_base.c_str());
|
||||
//printf("========================\n");
|
||||
|
||||
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
||||
|
@ -40,7 +40,7 @@ if exist "ggml-%model%.bin" (
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://ggml.ggerganov.com/ggml-model-whisper-%model%.bin -OutFile ggml-%model%.bin"
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://huggingface.co/datasets/ggerganov/whisper.cpp/raw/main/ggml-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
|
Loading…
Reference in New Issue
Block a user