mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-27 14:49:55 +00:00
whisper : support ggml_conv with CUDA and Metal (#1473)
* ggml : add CUDA support for ggml_conv * whisper : remove ggml_repeat for conv bias + single backend * cuda : fix im2col kernel * metal : add im2col support + mul mat-vec f16 x f16 * bench-all : add q4 models
This commit is contained in:
parent
c99e290a7f
commit
933c5bef97
@ -18,11 +18,11 @@ else
|
||||
fi
|
||||
|
||||
models=( \
|
||||
"tiny" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
|
||||
"base" "base-q5_0" "base-q5_1" "base-q8_0" \
|
||||
"small" "small-q5_0" "small-q5_1" "small-q8_0" \
|
||||
"medium" "medium-q5_0" "medium-q5_1" "medium-q8_0" \
|
||||
"large" "large-q5_0" "large-q5_1" "large-q8_0" \
|
||||
"tiny" "tiny-q4_0" "tiny-q4_1" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
|
||||
"base" "base-q4_0" "base-q4_1" "base-q5_0" "base-q5_1" "base-q8_0" \
|
||||
"small" "small-q4_0" "small-q4_1" "small-q5_0" "small-q5_1" "small-q8_0" \
|
||||
"medium" "medium-q4_0" "medium-q4_1" "medium-q5_0" "medium-q5_1" "medium-q8_0" \
|
||||
"large" "large-q4_0" "large-q4_1" "large-q5_0" "large-q5_1" "large-q8_0" \
|
||||
)
|
||||
|
||||
if [ "$encoder_only" -eq 0 ]; then
|
||||
|
96
ggml-cuda.cu
96
ggml-cuda.cu
@ -4476,6 +4476,13 @@ static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||||
*dsti = __float2half(*xi);
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
half * dsti = (half *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
@ -4729,6 +4736,25 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static __global__ void im2col_f32_f16(
|
||||
const float * x, half * dst,
|
||||
int ofs0, int ofs1, int IW, int IH, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
|
||||
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
|
||||
|
||||
const int offset_dst =
|
||||
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
|
||||
(blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z);
|
||||
|
||||
if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
|
||||
const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1;
|
||||
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
|
||||
} else {
|
||||
dst[offset_dst] = __float2half(0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
@ -5618,6 +5644,16 @@ static void ggml_cpy_f32_f16_cuda(
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||
@ -5701,6 +5737,15 @@ static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, c
|
||||
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_cuda(const float * x, half * dst,
|
||||
int OH, int IW, int IH, int OW, int IC,
|
||||
int KH, int KW, int N, int ofs0, int ofs1,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) {
|
||||
dim3 block_nums(IC, OH, OW);
|
||||
dim3 block_dims(N, KH, KW);
|
||||
im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
|
||||
// buffer pool for cuda
|
||||
#define MAX_CUDA_BUFFERS 256
|
||||
|
||||
@ -6483,7 +6528,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream);
|
||||
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16;
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
|
||||
size_t dst_f16_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream);
|
||||
|
||||
@ -6659,6 +6704,45 @@ inline void ggml_cuda_op_alibi(
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_im2col(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||||
|
||||
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||||
|
||||
const int64_t N = src1->ne[is_2D ? 3 : 2];
|
||||
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||||
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||||
const int64_t IW = src1->ne[0];
|
||||
|
||||
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||||
const int64_t KW = src0->ne[0];
|
||||
|
||||
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||||
const int64_t OW = dst->ne[1];
|
||||
|
||||
const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
|
||||
const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
|
||||
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd,
|
||||
OH, IW, IH, OW, IC, KH, KW, N,
|
||||
ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
|
||||
(void) src0;
|
||||
(void) src0_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_diag_mask_inf(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
@ -7549,6 +7633,9 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@ -7580,6 +7667,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||
}
|
||||
|
||||
void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
||||
}
|
||||
|
||||
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
(void) src0;
|
||||
(void) src1;
|
||||
@ -7943,6 +8034,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_OP_ALIBI:
|
||||
func = ggml_cuda_alibi;
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
func = ggml_cuda_im2col;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
76
ggml-metal.m
76
ggml-metal.m
@ -86,6 +86,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -114,6 +115,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(rope_f32);
|
||||
GGML_METAL_DECL_KERNEL(rope_f16);
|
||||
GGML_METAL_DECL_KERNEL(alibi_f32);
|
||||
GGML_METAL_DECL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||
@ -287,6 +289,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -317,6 +320,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(rope_f32);
|
||||
GGML_METAL_ADD_KERNEL(rope_f16);
|
||||
GGML_METAL_ADD_KERNEL(alibi_f32);
|
||||
GGML_METAL_ADD_KERNEL(im2col_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||
@ -386,6 +390,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(rms_norm);
|
||||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -416,6 +421,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(rope_f32);
|
||||
GGML_METAL_DEL_KERNEL(rope_f16);
|
||||
GGML_METAL_DEL_KERNEL(alibi_f32);
|
||||
GGML_METAL_DEL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||
@ -1139,6 +1145,7 @@ void ggml_metal_graph_compute(
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
|
||||
nrows = 4;
|
||||
} break;
|
||||
@ -1146,13 +1153,18 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
nth0 = 32;
|
||||
nth1 = 1;
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
if (src1t == GGML_TYPE_F32) {
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
||||
nrows = 4;
|
||||
}
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
|
||||
nrows = 4;
|
||||
}
|
||||
} break;
|
||||
@ -1464,6 +1476,58 @@ void ggml_metal_graph_compute(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
||||
const int32_t IC = src1->ne[is_2D ? 2 : 1];
|
||||
const int32_t IH = is_2D ? src1->ne[1] : 1;
|
||||
const int32_t IW = src1->ne[0];
|
||||
|
||||
const int32_t KH = is_2D ? src0->ne[1] : 1;
|
||||
const int32_t KW = src0->ne[0];
|
||||
|
||||
const int32_t OH = is_2D ? dst->ne[2] : 1;
|
||||
const int32_t OW = dst->ne[1];
|
||||
|
||||
const int32_t CHW = IC * KH * KW;
|
||||
|
||||
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
|
||||
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
|
||||
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
|
||||
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
|
||||
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
|
||||
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
|
||||
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
|
||||
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
|
||||
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
|
||||
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
|
||||
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
|
||||
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
|
108
ggml-metal.metal
108
ggml-metal.metal
@ -792,7 +792,7 @@ kernel void kernel_mul_mv_f32_f32(
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t rb = tgpig.y*N_F32_F32;
|
||||
@ -844,6 +844,79 @@ kernel void kernel_mul_mv_f32_f32(
|
||||
}
|
||||
}
|
||||
|
||||
#define N_F16_F16 4
|
||||
|
||||
kernel void kernel_mul_mv_f16_f16(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t rb = tgpig.y*N_F16_F16;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00; i += 32) {
|
||||
sumf += (half) x[i] * (half) y[i];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
device const half4 * x4 = (device const half4 *)x;
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
|
||||
device const half4 * y4 = (device const half4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mv_f16_f32_1row(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@ -1229,6 +1302,39 @@ kernel void kernel_rope(
|
||||
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
|
||||
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
device const float * x,
|
||||
device half * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
constant int32_t & IH,
|
||||
constant int32_t & CHW,
|
||||
constant int32_t & s0,
|
||||
constant int32_t & s1,
|
||||
constant int32_t & p0,
|
||||
constant int32_t & p1,
|
||||
constant int32_t & d0,
|
||||
constant int32_t & d1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tgpg[[threadgroups_per_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
|
||||
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
|
||||
|
||||
const int32_t offset_dst =
|
||||
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
||||
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
|
||||
|
||||
if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
|
||||
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
|
||||
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
} else {
|
||||
dst[offset_dst] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f16_f16(
|
||||
device const half * src0,
|
||||
device half * dst,
|
||||
|
19
ggml.h
19
ggml.h
@ -403,13 +403,8 @@ extern "C" {
|
||||
GGML_OP_ROPE_BACK,
|
||||
GGML_OP_ALIBI,
|
||||
GGML_OP_CLAMP,
|
||||
GGML_OP_CONV_1D,
|
||||
GGML_OP_CONV_1D_STAGE_0, // internal
|
||||
GGML_OP_CONV_1D_STAGE_1, // internal
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_2D_STAGE_0, // internal
|
||||
GGML_OP_CONV_2D_STAGE_1, // internal
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
@ -1398,6 +1393,18 @@ extern "C" {
|
||||
float min,
|
||||
float max);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_im2col(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
242
whisper.cpp
242
whisper.cpp
@ -588,7 +588,6 @@ struct whisper_kv_cache {
|
||||
};
|
||||
|
||||
struct whisper_model_data {
|
||||
ggml_backend_buffer_t buffer_conv; // TODO: tmp until GPU support for conv
|
||||
ggml_backend_buffer_t buffer_main;
|
||||
};
|
||||
|
||||
@ -818,23 +817,9 @@ struct whisper_context {
|
||||
|
||||
whisper_state * state = nullptr;
|
||||
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
ggml_backend_t backend_gpu = nullptr;
|
||||
ggml_backend_t backend = nullptr;
|
||||
|
||||
std::string path_model; // populated by whisper_init_from_file_with_params()
|
||||
|
||||
ggml_backend_t backend_kv() const {
|
||||
return backend_gpu ? backend_gpu : backend_cpu;
|
||||
}
|
||||
|
||||
// TODO: always on CPU until we have a GPU support for conv
|
||||
ggml_backend_t backend_conv() const {
|
||||
return backend_cpu;
|
||||
}
|
||||
|
||||
ggml_backend_t backend_main() const {
|
||||
return backend_gpu ? backend_gpu : backend_cpu;
|
||||
}
|
||||
};
|
||||
|
||||
struct whisper_global {
|
||||
@ -1192,16 +1177,16 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
// encoder
|
||||
{
|
||||
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
||||
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
||||
|
||||
model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state);
|
||||
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
||||
model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state);
|
||||
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2*n_audio_ctx, n_audio_state);
|
||||
|
||||
model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state);
|
||||
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
||||
model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state);
|
||||
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_ctx, n_audio_state);
|
||||
|
||||
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
// map by name
|
||||
model.tensors["encoder.positional_embedding"] = model.e_pe;
|
||||
@ -1394,45 +1379,30 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
#endif
|
||||
|
||||
if (backend_gpu) {
|
||||
wctx.backend_gpu = backend_gpu;
|
||||
wctx.backend = backend_gpu;
|
||||
} else {
|
||||
wctx.backend_gpu = nullptr;
|
||||
wctx.backend = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
// always add the CPU backend as a fallback
|
||||
wctx.backend_cpu = ggml_backend_cpu_init();
|
||||
}
|
||||
|
||||
{
|
||||
size_t size_conv = 0;
|
||||
size_t size_main = 0;
|
||||
|
||||
for (const auto & t : model.tensors) {
|
||||
if (t.first.find("conv") != std::string::npos) {
|
||||
size_conv += ggml_nbytes(t.second) + ggml_tensor_overhead();
|
||||
} else {
|
||||
size_main += ggml_nbytes(t.second) + ggml_tensor_overhead();
|
||||
}
|
||||
size_main += ggml_nbytes(t.second) + ggml_tensor_overhead();
|
||||
}
|
||||
|
||||
model.data->buffer_conv = ggml_backend_alloc_buffer(wctx.backend_conv(), size_conv);
|
||||
model.data->buffer_main = ggml_backend_alloc_buffer(wctx.backend_main(), size_main);
|
||||
model.data->buffer_main = ggml_backend_alloc_buffer(wctx.backend, size_main);
|
||||
|
||||
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend_conv()), size_conv / 1024.0 / 1024.0);
|
||||
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend_main()), size_main / 1024.0 / 1024.0);
|
||||
WHISPER_LOG_INFO("%s: %8s buffer size = %8.2f MB\n", __func__, ggml_backend_name(wctx.backend), size_main / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
ggml_allocr * alloc_conv = ggml_allocr_new_from_buffer(model.data->buffer_conv);
|
||||
ggml_allocr * alloc_main = ggml_allocr_new_from_buffer(model.data->buffer_main);
|
||||
|
||||
// allocate tensors in the backend buffers
|
||||
{
|
||||
for (const auto & t : model.tensors) {
|
||||
if (t.first.find("conv") != std::string::npos) {
|
||||
ggml_allocr_alloc(alloc_conv, t.second);
|
||||
} else {
|
||||
ggml_allocr_alloc(alloc_main, t.second);
|
||||
}
|
||||
ggml_allocr_alloc(alloc_main, t.second);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1475,45 +1445,67 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
WHISPER_LOG_ERROR("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n",
|
||||
__func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]);
|
||||
return false;
|
||||
|
||||
const bool is_conv_bias = (name == "encoder.conv1.bias" || name == "encoder.conv2.bias");
|
||||
|
||||
if (!is_conv_bias) {
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
WHISPER_LOG_ERROR("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n",
|
||||
__func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
|
||||
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
|
||||
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
WHISPER_LOG_ERROR("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
const bool is_conv = name.find("conv") != std::string::npos;
|
||||
|
||||
ggml_backend * backend = is_conv ? wctx.backend_conv() : wctx.backend_main();
|
||||
ggml_backend_t backend = wctx.backend;
|
||||
|
||||
//printf("%s: [%5.5s] %s\n", __func__, ggml_backend_name(backend), name.c_str());
|
||||
|
||||
if (ggml_backend_is_cpu(backend)
|
||||
if ((ggml_backend_is_cpu(backend)
|
||||
#ifdef GGML_USE_METAL
|
||||
|| ggml_backend_is_metal(backend)
|
||||
#endif
|
||||
) {
|
||||
) && !is_conv_bias) {
|
||||
// for the CPU and Metal backend, we can read directly into the tensor
|
||||
loader->read(loader->context, tensor->data, ggml_nbytes(tensor));
|
||||
BYTESWAP_TENSOR(tensor);
|
||||
} else {
|
||||
// read into a temporary buffer first, then copy to device memory
|
||||
read_buf.resize(ggml_nbytes(tensor));
|
||||
loader->read(loader->context, read_buf.data(), read_buf.size());
|
||||
|
||||
// we repeat the 2 bias tensors along dim 0:
|
||||
// [1, 512] -> [3000, 512] (conv1.bias)
|
||||
// [1, 512] -> [1500, 512] (conv2.bias)
|
||||
if (is_conv_bias) {
|
||||
loader->read(loader->context, read_buf.data(), read_buf.size() / tensor->ne[0]);
|
||||
|
||||
float * data_f32 = (float *) read_buf.data();
|
||||
for (int64_t y = 0; y < tensor->ne[1]; ++y) {
|
||||
const int64_t yy = tensor->ne[1] - y - 1;
|
||||
const float val = data_f32[yy];
|
||||
|
||||
for (int64_t x = 0; x < tensor->ne[0]; ++x) {
|
||||
data_f32[yy*tensor->ne[0] + x] = val;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
loader->read(loader->context, read_buf.data(), read_buf.size());
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
@ -1532,7 +1524,6 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
}
|
||||
}
|
||||
|
||||
ggml_allocr_free(alloc_conv);
|
||||
ggml_allocr_free(alloc_main);
|
||||
|
||||
wctx.t_load_us = ggml_time_us() - t_start_us;
|
||||
@ -1595,7 +1586,7 @@ static struct ggml_cgraph * whisper_build_graph_conv(
|
||||
float * dst = wstate.inp_mel.data();
|
||||
memset(dst, 0, ggml_nbytes(mel));
|
||||
|
||||
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
||||
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
||||
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
|
||||
|
||||
for (int j = 0; j < mel_inp.n_mel; ++j) {
|
||||
@ -1613,20 +1604,22 @@ static struct ggml_cgraph * whisper_build_graph_conv(
|
||||
// convolution + gelu
|
||||
{
|
||||
cur = ggml_conv_1d_ph(ctx0, model.e_conv_1_w, mel, 1, 1);
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0,
|
||||
model.e_conv_1_b,
|
||||
cur),
|
||||
cur);
|
||||
cur = ggml_add(ctx0, cur, model.e_conv_1_b);
|
||||
//cur = ggml_add(ctx0,
|
||||
// ggml_repeat(ctx0,
|
||||
// model.e_conv_1_b,
|
||||
// cur),
|
||||
// cur);
|
||||
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
cur = ggml_conv_1d_ph(ctx0, model.e_conv_2_w, cur, 2, 1);
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0,
|
||||
model.e_conv_2_b,
|
||||
cur),
|
||||
cur);
|
||||
cur = ggml_add(ctx0, cur, model.e_conv_2_b);
|
||||
//cur = ggml_add(ctx0,
|
||||
// ggml_repeat(ctx0,
|
||||
// model.e_conv_2_b,
|
||||
// cur),
|
||||
// cur);
|
||||
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
}
|
||||
@ -1685,6 +1678,14 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
|
||||
ggml_allocr * alloc = wstate.alloc_encode.alloc;
|
||||
|
||||
//struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_ctx, n_state);
|
||||
//ggml_allocr_alloc(alloc, cur);
|
||||
|
||||
//if (!ggml_allocr_is_measure(alloc)) {
|
||||
// ggml_backend_tensor_copy(wstate.embd_conv, cur);
|
||||
//}
|
||||
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_conv);
|
||||
|
||||
struct ggml_tensor * KQscale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
ggml_allocr_alloc(alloc, KQscale);
|
||||
|
||||
@ -1693,13 +1694,6 @@ static struct ggml_cgraph * whisper_build_graph_encoder(
|
||||
ggml_backend_tensor_set(KQscale, &val, 0, sizeof(float));
|
||||
}
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_ctx, n_state);
|
||||
ggml_allocr_alloc(alloc, cur);
|
||||
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
ggml_backend_tensor_copy(wstate.embd_conv, cur);
|
||||
}
|
||||
|
||||
// ===================================================================
|
||||
// NOTE: experimenting with partial evaluation of the encoder (ignore)
|
||||
//static int iter = -1;
|
||||
@ -1939,12 +1933,13 @@ static struct ggml_cgraph * whisper_build_graph_cross(
|
||||
|
||||
ggml_allocr * alloc = wstate.alloc_cross.alloc;
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
|
||||
ggml_allocr_alloc(alloc, cur);
|
||||
//struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
|
||||
//ggml_allocr_alloc(alloc, cur);
|
||||
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
ggml_backend_tensor_copy(wstate.embd_enc, cur);
|
||||
}
|
||||
//if (!ggml_allocr_is_measure(alloc)) {
|
||||
// ggml_backend_tensor_copy(wstate.embd_enc, cur);
|
||||
//}
|
||||
struct ggml_tensor * cur = ggml_view_tensor(ctx0, wstate.embd_enc);
|
||||
|
||||
struct ggml_tensor * Kscale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
ggml_allocr_alloc(alloc, Kscale);
|
||||
@ -2022,15 +2017,15 @@ static bool whisper_encode_internal(
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
|
||||
if (!whisper_encode_external(wstate)) {
|
||||
if (ggml_backend_is_cpu(wctx.backend_conv())) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend_conv(), n_threads);
|
||||
if (ggml_backend_is_cpu(wctx.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(wctx.backend_conv())) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend_conv(), n_threads);
|
||||
if (ggml_backend_is_metal(wctx.backend)) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
ggml_backend_graph_compute(wctx.backend_conv(), gf);
|
||||
ggml_backend_graph_compute(wctx.backend, gf);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2044,15 +2039,15 @@ static bool whisper_encode_internal(
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
|
||||
if (ggml_backend_is_cpu(wctx.backend_main())) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_cpu(wctx.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(wctx.backend_main())) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_metal(wctx.backend)) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
ggml_backend_graph_compute(wctx.backend_main(), gf);
|
||||
ggml_backend_graph_compute(wctx.backend, gf);
|
||||
}
|
||||
|
||||
// cross
|
||||
@ -2065,15 +2060,15 @@ static bool whisper_encode_internal(
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
|
||||
if (ggml_backend_is_cpu(wctx.backend_main())) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_cpu(wctx.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(wctx.backend_main())) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_metal(wctx.backend)) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
ggml_backend_graph_compute(wctx.backend_main(), gf);
|
||||
ggml_backend_graph_compute(wctx.backend, gf);
|
||||
}
|
||||
|
||||
wstate.t_encode_us += ggml_time_us() - t_start_us;
|
||||
@ -2464,15 +2459,15 @@ static bool whisper_decode_internal(
|
||||
|
||||
logits = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
if (ggml_backend_is_cpu(wctx.backend_main())) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_cpu(wctx.backend)) {
|
||||
ggml_backend_cpu_set_n_threads(wctx.backend, n_threads);
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(wctx.backend_main())) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend_main(), n_threads);
|
||||
if (ggml_backend_is_metal(wctx.backend)) {
|
||||
ggml_backend_metal_set_n_cb(wctx.backend, n_threads);
|
||||
}
|
||||
#endif
|
||||
ggml_backend_graph_compute(wctx.backend_main(), gf);
|
||||
ggml_backend_graph_compute(wctx.backend, gf);
|
||||
}
|
||||
|
||||
// extract logits for all N tokens
|
||||
@ -2915,7 +2910,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
whisper_state * state = new whisper_state;
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, state->decoders[0].kv_self, ctx->backend_kv(), ctx->itype, ctx->model.hparams.n_text_ctx)) {
|
||||
if (!kv_cache_init(ctx->model.hparams, state->decoders[0].kv_self, ctx->backend, ctx->itype, ctx->model.hparams.n_text_ctx)) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
delete state;
|
||||
return nullptr;
|
||||
@ -2926,7 +2921,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
WHISPER_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, state->kv_cross, ctx->backend_kv(), ctx->itype, ctx->model.hparams.n_audio_ctx)) {
|
||||
if (!kv_cache_init(ctx->model.hparams, state->kv_cross, ctx->backend, ctx->itype, ctx->model.hparams.n_audio_ctx)) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_init() failed for cross-attention cache\n", __func__);
|
||||
delete state;
|
||||
return nullptr;
|
||||
@ -2968,7 +2963,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
// conv allocator
|
||||
{
|
||||
whisper_allocr_graph_init(state->alloc_conv, ctx->backend_conv(),
|
||||
whisper_allocr_graph_init(state->alloc_conv, ctx->backend,
|
||||
[&]() {
|
||||
return whisper_build_graph_conv(*ctx, *state, 0);
|
||||
});
|
||||
@ -2978,7 +2973,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
// encoder allocator
|
||||
if (!whisper_encode_external(*state)) {
|
||||
whisper_allocr_graph_init(state->alloc_encode, ctx->backend_main(),
|
||||
whisper_allocr_graph_init(state->alloc_encode, ctx->backend,
|
||||
[&]() {
|
||||
return whisper_build_graph_encoder(*ctx, *state);
|
||||
});
|
||||
@ -2988,7 +2983,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
// cross allocator
|
||||
{
|
||||
whisper_allocr_graph_init(state->alloc_cross, ctx->backend_main(),
|
||||
whisper_allocr_graph_init(state->alloc_cross, ctx->backend,
|
||||
[&]() {
|
||||
return whisper_build_graph_cross(*ctx, *state);
|
||||
});
|
||||
@ -2998,7 +2993,7 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
// decoder allocator
|
||||
{
|
||||
whisper_allocr_graph_init(state->alloc_decode, ctx->backend_main(),
|
||||
whisper_allocr_graph_init(state->alloc_decode, ctx->backend,
|
||||
[&]() {
|
||||
const auto & hparams = ctx->model.hparams;
|
||||
|
||||
@ -3273,7 +3268,6 @@ void whisper_free(struct whisper_context * ctx) {
|
||||
ggml_free(ctx->model.ctx);
|
||||
}
|
||||
if (ctx->model.data) {
|
||||
ggml_backend_buffer_free(ctx->model.data->buffer_conv);
|
||||
ggml_backend_buffer_free(ctx->model.data->buffer_main);
|
||||
|
||||
delete ctx->model.data;
|
||||
@ -3281,11 +3275,7 @@ void whisper_free(struct whisper_context * ctx) {
|
||||
|
||||
whisper_free_state(ctx->state);
|
||||
|
||||
ggml_backend_free(ctx->backend_cpu);
|
||||
|
||||
if (ctx->backend_gpu) {
|
||||
ggml_backend_free(ctx->backend_gpu);
|
||||
}
|
||||
ggml_backend_free(ctx->backend);
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
@ -4583,7 +4573,7 @@ int whisper_full_with_state(
|
||||
|
||||
if (decoder.kv_self.ctx == nullptr) {
|
||||
decoder.kv_self = state->decoders[0].kv_self;
|
||||
if (!kv_cache_reinit(decoder.kv_self, ctx->backend_kv())) {
|
||||
if (!kv_cache_reinit(decoder.kv_self, ctx->backend)) {
|
||||
WHISPER_LOG_ERROR("%s: kv_cache_reinit() failed for self-attention, decoder %d\n", __func__, j);
|
||||
return -4;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user