mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-31 00:24:07 +00:00
backend : add eval callback (llama/4935)
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * simple : no need for ggml_is_contiguous + fix bool parse * llama : fix callback placement in llama_context_params * backend : avoid double-ask callback calls * simple : restore examples, imatrix will serve as a demo
This commit is contained in:
parent
2fe5fbfcc2
commit
8fb5c6a409
@ -802,6 +802,9 @@ struct ggml_backend_sched {
|
|||||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||||
#endif
|
#endif
|
||||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||||
|
|
||||||
|
ggml_backend_sched_eval_callback callback_eval;
|
||||||
|
void * callback_eval_user_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
||||||
@ -1324,9 +1327,38 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||||||
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
uint64_t compute_start_us = ggml_time_us();
|
uint64_t compute_start_us = ggml_time_us();
|
||||||
ggml_backend_graph_compute(split_backend, &split->graph);
|
if (!sched->callback_eval) {
|
||||||
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
ggml_backend_graph_compute(split_backend, &split->graph);
|
||||||
|
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
||||||
|
} else {
|
||||||
|
// similar to ggml_backend_compare_graph_backend
|
||||||
|
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
|
||||||
|
struct ggml_tensor * t = split->graph.nodes[j0];
|
||||||
|
|
||||||
|
// check if the user needs data from this node
|
||||||
|
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||||
|
|
||||||
|
int j1 = j0;
|
||||||
|
|
||||||
|
// determine the range [j0, j1] of nodes that can be computed together
|
||||||
|
while (!need && j1 < split->graph.n_nodes - 1) {
|
||||||
|
t = split->graph.nodes[++j1];
|
||||||
|
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||||
|
|
||||||
|
ggml_backend_graph_compute(split_backend, &gv);
|
||||||
|
|
||||||
|
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
j0 = j1;
|
||||||
|
}
|
||||||
|
}
|
||||||
uint64_t compute_end_us = ggml_time_us();
|
uint64_t compute_end_us = ggml_time_us();
|
||||||
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
||||||
}
|
}
|
||||||
@ -1431,6 +1463,12 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
|||||||
sched_reset(sched);
|
sched_reset(sched);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||||
|
sched->callback_eval = callback;
|
||||||
|
sched->callback_eval_user_data = user_data;
|
||||||
|
}
|
||||||
|
|
||||||
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||||
return sched->n_splits;
|
return sched->n_splits;
|
||||||
}
|
}
|
||||||
|
@ -148,6 +148,14 @@ extern "C" {
|
|||||||
struct ggml_backend_sched;
|
struct ggml_backend_sched;
|
||||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||||
|
|
||||||
|
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
||||||
|
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
||||||
|
//
|
||||||
|
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
||||||
|
// if the user returns false, the scheduler will cancel the graph compute
|
||||||
|
//
|
||||||
|
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||||
|
|
||||||
// Initialize a backend scheduler
|
// Initialize a backend scheduler
|
||||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
||||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||||
@ -168,6 +176,9 @@ extern "C" {
|
|||||||
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
||||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||||
|
|
||||||
|
// Set a callback to be called for each resulting node during graph compute
|
||||||
|
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Utils
|
// Utils
|
||||||
//
|
//
|
||||||
|
Loading…
x
Reference in New Issue
Block a user