mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-20 05:07:52 +00:00
coreml : attempt to fix ANE-optimized models
This commit is contained in:
parent
4774d2feb0
commit
8cbc363561
@ -31,10 +31,10 @@ API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((v
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// var_1346 as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
|
||||
/// var_1195 as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * var_1195;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
|
||||
- (instancetype)initWithVar_1195:(MLMultiArray *)var_1195 NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
@ -39,21 +39,21 @@
|
||||
|
||||
@implementation whisper_decoder_implOutput
|
||||
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
|
||||
- (instancetype)initWithVar_1195:(MLMultiArray *)var_1195 {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_var_1346 = var_1346;
|
||||
_var_1195 = var_1195;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"var_1346"]];
|
||||
return [NSSet setWithArray:@[@"var_1195"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"var_1346"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
|
||||
if ([featureName isEqualToString:@"var_1195"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.var_1195];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
@ -177,7 +177,7 @@
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
|
||||
return [[whisper_decoder_implOutput alloc] initWithVar_1195:(MLMultiArray *)[outFeatures featureValueForName:@"var_1195"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
@ -192,7 +192,7 @@
|
||||
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
|
||||
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1195:(MLMultiArray *)[resultProvider featureValueForName:@"var_1195"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
|
@ -7,7 +7,6 @@ from torch import Tensor
|
||||
from torch import nn
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase
|
||||
from coremltools.models.neural_network.quantization_utils import quantize_weights
|
||||
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions
|
||||
from whisper import load_model
|
||||
@ -32,12 +31,12 @@ def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata,
|
||||
state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight']
|
||||
return state_dict
|
||||
|
||||
class LayerNormANE(LayerNormANEBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._register_load_state_dict_pre_hook(
|
||||
correct_for_bias_scale_order_inversion)
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
x = x.transpose(1,3)
|
||||
x = super().forward(x)
|
||||
x = x.transpose(1,3)
|
||||
return x
|
||||
|
||||
class MultiHeadAttentionANE(MultiHeadAttention):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
@ -104,9 +103,9 @@ class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
||||
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
||||
super().__init__(n_state, n_head, cross_attention)
|
||||
self.attn = MultiHeadAttentionANE(n_state, n_head)
|
||||
self.attn_ln = LayerNormANE(n_state)
|
||||
self.attn_ln = LayerNorm(n_state)
|
||||
self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
||||
|
||||
n_mlp = n_state * 4
|
||||
self.mlp = nn.Sequential(
|
||||
@ -114,7 +113,7 @@ class ResidualAttentionBlockANE(ResidualAttentionBlock):
|
||||
nn.GELU(),
|
||||
nn.Conv2d(n_mlp, n_state, kernel_size=1)
|
||||
)
|
||||
self.mlp_ln = LayerNormANE(n_state)
|
||||
self.mlp_ln = LayerNorm(n_state)
|
||||
|
||||
|
||||
class AudioEncoderANE(AudioEncoder):
|
||||
@ -124,7 +123,7 @@ class AudioEncoderANE(AudioEncoder):
|
||||
self.blocks = nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln_post = LayerNormANE(n_state)
|
||||
self.ln_post = LayerNorm(n_state)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
"""
|
||||
@ -168,7 +167,7 @@ class TextDecoderANE(TextDecoder):
|
||||
self.blocks= nn.ModuleList(
|
||||
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln= LayerNormANE(n_state)
|
||||
self.ln= LayerNorm(n_state)
|
||||
|
||||
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
||||
"""
|
||||
|
@ -8,7 +8,7 @@
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model tiny.en
|
||||
python3 models/convert-whisper-to-coreml.py --model tiny.en --optimize-ane True
|
||||
|
||||
mv -v models/coreml-encoder-tiny.en.mlpackage models/whisper-encoder-impl.mlpackage
|
||||
xcrun coremlc generate models/whisper-encoder-impl.mlpackage coreml/
|
||||
|
@ -13,7 +13,7 @@ mname="$1"
|
||||
wd=$(dirname "$0")
|
||||
cd "$wd/../"
|
||||
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
|
||||
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True --optimize-ane True
|
||||
|
||||
xcrun coremlc compile models/coreml-encoder-${mname}.mlpackage models/
|
||||
rm -rf models/ggml-${mname}-encoder.mlmodelc
|
||||
|
Loading…
Reference in New Issue
Block a user