mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-16 22:08:07 +00:00
feat: ref. cross entropy, add CUDA, fix grad test (ggml/929)
This commit is contained in:
committed by
Georgi Gerganov
parent
df06468d9e
commit
8954769aa2
@ -2671,6 +2671,19 @@ static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x,
|
||||
return sum;
|
||||
}
|
||||
|
||||
static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||||
// log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
|
||||
|
||||
int i = 0;
|
||||
ggml_float sum = 0;
|
||||
for (; i < n; ++i) {
|
||||
float val = x[i] - max;
|
||||
y[i] = val;
|
||||
sum += (ggml_float)expf(val);
|
||||
}
|
||||
return sum = (ggml_float)logf(sum);
|
||||
}
|
||||
|
||||
inline static float ggml_silu_backward_f32(float x, float dy) {
|
||||
const float s = 1.0f/(1.0f + expf(-x));
|
||||
return dy*s*(1.0f + x*(1.0f - s));
|
||||
@ -17022,8 +17035,6 @@ static void ggml_compute_forward_cross_entropy_loss_f32(
|
||||
}
|
||||
ggml_barrier(params->shared);
|
||||
|
||||
const double eps = 1e-9;
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
@ -17044,20 +17055,15 @@ static void ggml_compute_forward_cross_entropy_loss_f32(
|
||||
}
|
||||
#endif
|
||||
|
||||
// soft_max
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
|
||||
assert(sum > 0.0);
|
||||
sum = (1.0 - eps) / sum;
|
||||
ggml_float sum = ggml_vec_log_soft_max_f32(nc, st, s0, max);
|
||||
assert(sum >= 0.0);
|
||||
|
||||
// avoid log(0) by rescaling from [0..1] to [eps..1]
|
||||
ggml_vec_scale_f32(nc, st, sum);
|
||||
ggml_vec_add1_f32(nc, st, st, eps);
|
||||
ggml_vec_log_f32(nc, st, st);
|
||||
ggml_vec_add1_f32(nc, st, st, -sum);
|
||||
ggml_vec_mul_f32(nc, st, st, s1);
|
||||
|
||||
float st_sum = 0;
|
||||
float st_sum = 0.0f;
|
||||
ggml_vec_sum_f32(nc, &st_sum, st);
|
||||
sums[ith] += st_sum;
|
||||
|
||||
@ -17114,8 +17120,6 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||||
const int64_t ith = params->ith;
|
||||
const int64_t nth = params->nth;
|
||||
|
||||
const double eps = 1e-9;
|
||||
|
||||
// TODO: handle transposed/permuted matrices
|
||||
const int64_t nc = src0->ne[0];
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
@ -17147,11 +17151,9 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
||||
assert(sum > 0.0);
|
||||
sum = (1.0 - eps) / sum;
|
||||
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
|
||||
|
||||
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
|
||||
ggml_vec_scale_f32(nc, ds0, sum);
|
||||
ggml_vec_add1_f32(nc, ds0, ds0, eps);
|
||||
ggml_vec_sub_f32(nc, ds0, ds0, s1);
|
||||
ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
|
||||
|
||||
@ -20287,6 +20289,7 @@ static enum ggml_opt_result ggml_opt_adam(
|
||||
ggml_opt_callback callback,
|
||||
void * callback_data) {
|
||||
GGML_ASSERT(ggml_is_scalar(f));
|
||||
GGML_ASSERT(f->type == GGML_TYPE_F32);
|
||||
|
||||
// these will store the parameters we want to optimize
|
||||
struct ggml_tensor * ps[GGML_MAX_PARAMS];
|
||||
|
Reference in New Issue
Block a user