sycl: reordered Q4_K MMVQ (llama/13109)

This commit is contained in:
Svetlozar Georgiev
2025-05-15 16:35:44 +01:00
committed by Georgi Gerganov
parent d807c497a4
commit 8081e7a23d
7 changed files with 280 additions and 84 deletions

View File

@ -352,7 +352,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
if (tensor->type == GGML_TYPE_Q4_0 && !g_ggml_sycl_disable_optimize) {
if ((tensor->type == GGML_TYPE_Q4_0 || tensor->type == GGML_TYPE_Q4_K) && !g_ggml_sycl_disable_optimize) {
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
tensor->extra = extra;
ctx->tensor_extras.push_back(extra); //used to release it when destroy ctx.
@ -2900,6 +2900,8 @@ inline bool ggml_sycl_supports_reorder_mul_mat_sycl(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return true;
case GGML_TYPE_Q4_K:
return !g_ggml_sycl_prioritize_dmmv;
default:
return false;
}
@ -2917,6 +2919,7 @@ inline bool ggml_sycl_supports_reorder_dmmv(enum ggml_type type) {
inline bool ggml_sycl_supports_reorder_mmvq(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_K:
return true;
default:
return false;
@ -2942,16 +2945,16 @@ static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
}
}
static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
static void reorder_qw_q4_0(uint8_t * data_device, const int ncols, const int nrows, size_t size, size_t offset,
dpct::queue_ptr stream) {
auto * tmp_buf = sycl::malloc_shared<uint8_t>(size, *stream);
SYCL_CHECK(
CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size)
.wait()));
GGML_ASSERT((size % sizeof(block_q4_0) == 0));
GGML_ASSERT((offset % sizeof(block_q4_0) == 0));
int offset_blks = offset / sizeof(block_q4_0);
auto qs_ptr = (uint8_t*)data_device + offset_blks * QK4_0 / 2;
auto qs_ptr = data_device + offset_blks * QK4_0 / 2;
auto d_ptr = (sycl::half*)(qs_ptr + ncols * nrows / 2) + offset_blks;
stream->parallel_for(
@ -2965,18 +2968,59 @@ static void reorder_qw(char *data_device, const int ncols, const int nrows,
*(qs_ptr + ib * QK4_0 / 2 + j) = x[ib].qs[j];
}
*(d_ptr + ib) = x[ib].d;
});
}).wait_and_throw();
sycl::free(tmp_buf, *stream);
}
static void reorder_qw_q4_k(uint8_t * data_device, size_t size, size_t offset, dpct::queue_ptr stream) {
GGML_ASSERT(size % sizeof(block_q4_K) == 0);
GGML_ASSERT(offset % sizeof(block_q4_K) == 0);
const int nblocks = size / sizeof(block_q4_K);
auto * tmp_buf = sycl::malloc_shared<uint8_t>(size, *stream);
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(tmp_buf, data_device, size).wait()));
auto * qs_ptr = data_device;
auto * scales_ptr = qs_ptr + QK_K / 2 * nblocks;
auto * dm_ptr = (sycl::half2 *) (scales_ptr + K_SCALE_SIZE * nblocks);
stream->parallel_for(nblocks, [=](auto i) {
const block_q4_K * x = (const block_q4_K *) tmp_buf;
const int ib = i;
for (int j = 0; j < QK_K / 2; ++j) {
qs_ptr[ib * (QK_K / 2) + j] = x[ib].qs[j];
}
for (int j = 0; j < K_SCALE_SIZE; ++j) {
scales_ptr[ib * K_SCALE_SIZE + j] = x[ib].scales[j];
}
dm_ptr[ib] = x[ib].dm;
}).wait_and_throw();
sycl::free(tmp_buf, *stream);
}
static void reorder_qw(const ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
uint8_t * data_device = (uint8_t *) src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
size_t size = ggml_nbytes(src0);
reorder_qw(data_device, ncols, nrows, size, 0, stream);
switch (src0->type) {
case GGML_TYPE_Q4_0:
reorder_qw_q4_0(data_device, ncols, nrows, size, 0, stream);
break;
case GGML_TYPE_Q4_K:
reorder_qw_q4_k(data_device, size, 0, stream);
break;
default:
GGML_ABORT("reorder_qw() called with unsupported type");
break;
}
}
static bool should_reorder_tensor(ggml_backend_sycl_context& ctx, const ggml_tensor * dst) {
@ -3019,8 +3063,18 @@ static void opt_for_reorder(ggml_backend_sycl_context * ctx, const ggml_tensor *
extra->optimized_feature.reorder = true; // Used to decode/dequan in next steps and avoid re-reordering
}
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
static bool can_use_dequantize_mul_mat_vec(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
return ggml_sycl_supports_dmmv(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
}
static bool can_use_mul_mat_vec_q(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
return ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
}
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
int64_t min_compute_capability = INT_MAX;
@ -3043,13 +3097,9 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
}
// check data types and tensor shapes for custom matrix multiplication kernels:
bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
bool use_dequantize_mul_mat_vec = can_use_dequantize_mul_mat_vec(src0, src1, dst);
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_vec_q = can_use_mul_mat_vec_q(src0, src1, dst);
bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;