talk-llama : sync llama.cpp
Some checks failed
Bindings Tests (Ruby) / ubuntu-22 (push) Has been cancelled
CI / determine-tag (push) Has been cancelled
CI / ubuntu-22 (linux/amd64) (push) Has been cancelled
CI / ubuntu-22 (linux/ppc64le) (push) Has been cancelled
CI / ubuntu-22-arm64 (linux/arm64) (push) Has been cancelled
CI / ubuntu-22-arm-v7 (linux/arm/v7) (push) Has been cancelled
CI / macOS-latest (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest (generic/platform=tvOS) (push) Has been cancelled
CI / ubuntu-22-gcc (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-22-gcc (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-22-gcc (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-22-gcc (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-22-gcc-arm64 (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-22-gcc-arm64 (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-22-gcc-arm-v7 (linux/arm/v7, Debug) (push) Has been cancelled
CI / ubuntu-22-gcc-arm-v7 (linux/arm/v7, Release) (push) Has been cancelled
CI / ubuntu-22-clang (linux/amd64, Debug) (push) Has been cancelled
CI / ubuntu-22-clang (linux/amd64, Release) (push) Has been cancelled
CI / ubuntu-22-clang (linux/arm64, Debug) (push) Has been cancelled
CI / ubuntu-22-clang (linux/arm64, Release) (push) Has been cancelled
CI / ubuntu-22-clang (linux/ppc64le, Debug) (push) Has been cancelled
CI / ubuntu-22-clang (linux/ppc64le, Release) (push) Has been cancelled
CI / ubuntu-22-gcc-sanitized (linux/amd64, ADDRESS) (push) Has been cancelled
CI / ubuntu-22-gcc-sanitized (linux/amd64, THREAD) (push) Has been cancelled
CI / ubuntu-22-gcc-sanitized (linux/amd64, UNDEFINED) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/amd64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm/v7, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/arm64, icx, icpx, ON) (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (linux/ppc64le, icx, icpx, ON) (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows (Win32, Release, win32-x86, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows (x64, Release, win32-x86-64, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (Win32, ON, x86, 0.3.29, Release, x86, 2.28.5, ON) (push) Has been cancelled
CI / windows-blas (x64, ON, x64_64, 0.3.29, Release, x64, 2.28.5, ON) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 11.8.0, ON, 2.28.5) (push) Has been cancelled
CI / windows-cublas (x64, Release, ON, 12.2.0, ON, 2.28.5) (push) Has been cancelled
CI / emscripten (Release) (push) Has been cancelled
CI / ios-xcode-build (Release) (push) Has been cancelled
CI / android (push) Has been cancelled
CI / android_java (push) Has been cancelled
CI / bindings-java (push) Has been cancelled
CI / quantize (push) Has been cancelled
CI / release (push) Has been cancelled
CI / coreml-base-en (push) Has been cancelled
CI / vad (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main-musa.Dockerfile platform:linux/amd64 tag:main-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/main.Dockerfile platform:linux/amd64 tag:main]) (push) Has been cancelled
Examples WASM / deploy-wasm-github-pages (push) Has been cancelled

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-01 14:07:36 +03:00
parent 3f46282cbe
commit 7fd6fa8097
22 changed files with 4265 additions and 3552 deletions

View File

@ -5,7 +5,10 @@
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model-loader.h"
#include "llama-kv-cache.h"
#include "llama-kv-cache-unified.h"
#include "llama-kv-cache-unified-iswa.h"
#include "llama-kv-cache-recurrent.h"
#include "ggml-cpp.h"
@ -683,6 +686,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
ml.get_arr_n(LLM_KV_CLASSIFIER_OUTPUT_LABELS, hparams.n_cls_out, false);
switch (hparams.n_layer) {
case 3:
@ -2113,7 +2117,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
case LLM_ARCH_NOMIC_BERT_MOE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
if (arch == LLM_ARCH_BERT) {
pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
@ -2121,8 +2125,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
}
tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
@ -2131,7 +2135,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
if (arch == LLM_ARCH_BERT) {
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
if (!layer.wqkv) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
@ -2140,12 +2147,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
} else {
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
}
if (arch == LLM_ARCH_NOMIC_BERT_MOE) {
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
@ -5887,8 +5888,10 @@ struct llm_build_bert : public llm_graph_context {
inpL = build_inp_embd(model.tok_embd);
// token types are hardcoded to zero ("Sentence A")
ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
if (model.type_embd) {
ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
}
if (model.arch == LLM_ARCH_BERT) {
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
}
@ -5909,36 +5912,11 @@ struct llm_build_bert : public llm_graph_context {
ggml_tensor * Vcur;
// self-attention
if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, il);
}
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, il);
}
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
} else {
// compute Q and K and RoPE them
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
@ -5946,11 +5924,32 @@ struct llm_build_bert : public llm_graph_context {
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
} else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// RoPE
if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
@ -8896,9 +8895,9 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
const auto kv_head = kv_self->head;
const auto kv_head = kv_state->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
@ -8916,8 +8915,8 @@ struct llm_build_mamba : public llm_graph_context {
GGML_ASSERT(ubatch.equal_seqs);
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = kv_self->k_l[il];
ggml_tensor * ssm_states_all = kv_self->v_l[il];
ggml_tensor * conv_states_all = kv_state->get_k_l(il);
ggml_tensor * ssm_states_all = kv_state->get_v_l(il);
// (ab)using the KV cache to store the states
ggml_tensor * conv = build_copy_mask_state(
@ -11644,7 +11643,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@ -11654,7 +11653,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
const auto n_head = n_embd / head_size;
const auto n_head_kv = hparams.n_head_kv(il);
const auto kv_head = kv_self->head;
const auto kv_head = kv_state->get_head();
const auto & layer = model.layers[il];
@ -11766,7 +11765,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
}
ggml_tensor * wkv_state = build_copy_mask_state(
gf, kv_self->v_l[il], state_copy, state_mask,
gf, kv_state->get_v_l(il), state_copy, state_mask,
hparams.n_embd_v_s(), n_seqs);
ggml_tensor * wkv_output;
@ -11785,9 +11784,9 @@ struct llm_build_rwkv6_base : public llm_graph_context {
wkv_state,
ggml_view_1d(
ctx0,
kv_self->v_l[il],
kv_state->get_v_l(il),
hparams.n_embd_v_s() * n_seqs,
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
)
)
);
@ -12040,7 +12039,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
@ -12049,7 +12048,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
const auto head_count = n_embd / head_size;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto kv_head = kv_self->head;
const auto kv_head = kv_state->get_head();
const auto & layer = model.layers[il];
@ -12120,7 +12119,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
ggml_tensor * wkv_state = build_copy_mask_state(
gf, kv_self->v_l[il], state_copy, state_mask,
gf, kv_state->get_v_l(il), state_copy, state_mask,
hparams.n_embd_v_s(), n_seqs);
ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
@ -12134,9 +12133,9 @@ struct llm_build_rwkv7_base : public llm_graph_context {
wkv_state,
ggml_view_1d(
ctx0,
kv_self->v_l[il],
kv_state->get_v_l(il),
hparams.n_embd_v_s() * n_seqs,
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
)
)
);
@ -13234,7 +13233,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
params.swa_full,
cparams.n_ctx,
cparams.n_seq_max,
cparams.n_batch,
cparams.n_ubatch,
padding);
} else {
GGML_ASSERT(!hparams.is_swa_any());
@ -13266,7 +13265,6 @@ llm_graph_result_ptr llama_model::build_graph(
switch (arch) {
case LLM_ARCH_LLAMA:
case LLM_ARCH_MINICPM:
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
@ -13507,6 +13505,7 @@ llm_graph_result_ptr llama_model::build_graph(
} break;
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_MINICPM:
{
llm = std::make_unique<llm_build_granite>(*this, params, gf);
} break;
@ -13597,6 +13596,10 @@ int32_t llama_model_n_head_kv(const llama_model * model) {
return model->hparams.n_head_kv();
}
int32_t llama_model_n_swa(const llama_model * model) {
return model->hparams.n_swa;
}
// deprecated
int32_t llama_n_ctx_train(const llama_model * model) {
return llama_model_n_ctx_train(model);